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Abstract

A graph is said to be reconstructible if it is determined up to isomor-
phism from the collection of all its one-vertex deleted unlabeled subgraphs.
Reconstruction Conjecture (RC) asserts that all graphs on at least three
vertices are reconstructible. In this paper, we prove that interval-regular
graphs and some new classes of graphs are reconstructible and show that
RC is true if and only if all non-geodetic and non-interval-regular blocks G
with diam(G) = 2 or diam(G) = diam(G) = 3 are reconstructible.
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1. Introduction

All graphs in this paper are finite, simple and undirected. We use the terminol-
ogy of Harary [10]. The degree of a vertex v of a graph G is denoted by degG(v).
By dG(u, v), we mean the distance between two vertices u and v in G. The ec-

centricity eG(v) of a vertex in a connected graph G is maximum of dG(u, v) for
all u. The radius and diameter of a graph G, denoted by rad(G) and diam(G)
respectively, are the minimum and maximum of the vertex eccentricities respec-
tively. A connected graph is called separable if it has cut vertices and is called a
block otherwise. The set of all neighbours of a vertex u of G is denoted by N(u)
(or NG(u)). For any two vertices u and v in G, the set I(u, v) = {w ∈ V (G) : w
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lies on a shortest u− v path} is the interval in G between u and v. A connected
graph G is called interval-regular if |I(u, v)∩N(u)| = dG(u, v) for all u, v ∈ V (G).
Interval-regular graphs have been introduced and studied in [17]. Graph in which
every pair of vertices have unique shortest path is a geodetic graph.

A vertex-deleted subgraph (or card) G− v of a graph G is the unlabeled sub-
graph obtained from G by deleting v and all edges incident with v. The collection
of all cards of G is called the deck of G. A graph H is called a reconstruction

of G if H has the same deck as G. A graph is said to be reconstructible if it is
isomorphic to all its reconstructions. A family F of graphs is recognizable if, for
each G ∈ F , every reconstruction of G is also in F , and weakly reconstructible

if, for each graph G ∈ F , all reconstructions of G that are in F are isomorphic
to G. A family F of graphs is reconstructible if, for any graph G ∈ F , G is
reconstructible (i.e. if F is both recognizable and weakly reconstructible). A
parameter p defined on graphs is reconstructible if, for any graph G, it takes the
same value on every reconstruction of G. Ulam’s Conjecture, also called Recon-
struction Conjecture (RC) [9] asserts that all graphs on at least three vertices
are reconstructible. [1, 2, 4, 13, 14], and [18] are surveys of workdone on RC and
related problems.

Yang Yongzhi [22] settled the problem listed in survey [1] when he proved
the following.

Theorem 1. RC is true if and only if all 2-connected graphs are reconstructible.

Definition 2 [8]. pav(G, i) (pv(G, i)) (where i ∈ [0, n − 2]) is the number of
adjacent (non-adjacent) pairs of vertices of G such that, for each pair, there are
exactly i paths of length two between the two vertices.

Using the parameters pv(G, i), Gupta et al. [8] have proved the following reduc-
tion of RC.

Theorem 3. RC is true if and only if all graphs G with diam(G) = 2 or

diam(G) = diam(G) = 3 are weakly reconstructible.

If a connected graphG has pv(G, λ) = pav(G, λ) > 0 and pv(G, i) = pav(G, i) = 0
for all i 6= λ, then every pair of vertices of G has exactly λ common neighbours
or none at all, and vice-versa. Mulder [16] defined such a connected graph as
(0, λ)-graph and proved that it is regular (graph in which all vertices have equal
degree).

In their book [3], Brouwer et al. have discussed many classes of regular
graphs. In particular, they studied regular graphs in which any two non-adjacent
vertices have precisely µ common neighbours, and they called such graphs are co-
edge-regular graphs. Co-edge-regular graphs with µ > 0 are clearly connected and
have diameter at most two. Here we prove, using the parameters pv(G, i), that
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connected graphs G, in which every pair of non-adjacent vertices has precisely µ
common neighbours or none at all, are reconstructible. For µ = 1, graph G is
geodetic and for µ = 2, graph G is interval-regular. We also show that all graphs
are reconstructible if and only if all non-geodetic and non-interval-regular blocks
G with diam(G) = 2 or diam(G) = diam(G) = 3 are reconstructible.

2. Geodetic Graphs and Interval-regular Graphs

The following three lemmas are proved by Gupta et al. [8].

Lemma 4. For a graph G of order n and i ∈ [0, n− 2], the parameters pv(G, i)
are reconstructible.

Lemma 5. Graphs G with diam(G) = 2 are recognizable.

Definition 6. For a graph G of order n and µ ∈ [0, n − 2], Sµ(G) is the set of
all vertices u such that there exists a vertex v non-adjacent to u such that u and
v have exactly µ common neighbours in G.

Theorem 7. Connected graphs G in which every pair of non-adjacent vertices

has exactly µ common neighbours or none at all are reconstructible, where µ is a

constant greater than one.

Proof. Recognition. The class of connected graphs G under consideration is
recognizable if pv(G,µ) > 0 and pv(G, i) = 0 for i ∈ [1, n− 2] and i 6= µ.

Weak reconstruction. For v ∈ V (G), we have dG(x, y) ≤ 2 for all x, y ∈
NG(v). Depending on this fact, we consider two cases as follows.

Case 1. There is a vertex v in G such that for each vertex x ∈ NG(v), there
exists a vertex y ∈ NG(v) such that dG(x, y) = 2. This case is recognizable if there
exists a card G− v such that |Sµ−1(G− v)| = degG(v). Since pv(G,µ− 1) = 0, it
follows that the set Sµ−1(G − v) in the card G − v must be the neighbourhood
of v in G. Now all graphs obtained from G − v by adding a new vertex and
joining it with all the vertices in Sµ−1(G − v) are isomorphic to G. Hence G is
reconstructible.

Case 2. For each vertex v ∈ V (G), there exists a vertex x ∈ NG(v) such that
dG(x, y) = 1 for all y ∈ NG(v). This case occurs if there exists no card G−v
satisfying the equation |Sµ−1(G−v)| = degG(v). Now consider a card G−x such
that degG(x) = ∆(G) (the maximum degree). Let (A,B) be the bipartition of
NG(x) in G such that A = {y ∈ NG(x) : y is non-adjacent to at least one vertex
in NG(x)} and B = NG(x) − A. Since |Sµ−1(G − v)| 6= degG(v) for every card
G − v of G, it follows that |Sµ−1(G − x)| < degG(x) and hence B is non-empty
(by our hypothesis in Case 2).
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In the card G− x, the set A is identifiable uniquely as the set Sµ−1(G− x). But
the set B can be identified up to automorphism in G− x (as in (i) below). Now
all graphs obtained by adding a new vertex to G − x and joining it with all the
vertices in A ∪B are isomorphic to G. Hence G is reconstructible.

(i) The set B consists of neighbours of x that are adjacent to all other neigh-
bours of x in G. Therefore, in the card G−x, the set B is identifiable as a vertex
set of a complete subgraph, say C, of size ∆(G)− |A| such that each vertex of C
is adjacent to all the vertices in the identifiable set A and is non-adjacent to any
vertex in V (G − x) − (A ∪ V (C)). If there exists more than one such complete
subgraph, say C1 and C2 in G−x, then the mapping α : V (G−x) −→ V (G−x),
defined by α(V (C1)) = V (C2) and fixing all other vertices, is an automorphism
of G− x.

Theorem 8. Graphs G in which every pair of non-adjacent vertices has exactly

µ common neighbours are reconstructible, where µ is a non-zero constant.

Proof. The graph G is clearly connected and diam(G) = 2 and hence
pv(G, 0) = 0.

Recognition. The class of connected graphs G under consideration is recog-
nizable if pv(G,µ) > 0 and pv(G, i) = 0 for i ∈ [0, n− 2] and i 6= µ.

Weak reconstruction. If µ ≥ 2, then G is reconstructible by Theorem 7.
So assume that µ = 1. Then there exists a card G − v (obtained by deleting
the unique neighbour of a non-adjacent pair of vertices) with pv(G − v, 0) > 0.
Since pv(G, 0) = 0, graph G can be obtained uniquely (up to isomorphism) from
the card G − v by adding a new vertex w and joining it with all the vertices in
S0(G− v).

For µ = 1, Theorem 8 implies

Corollary 9. Geodetic graphs of diameter two are reconstructible.

Since any two non-adjacent vertices of distance two in an interval-regular graph
have exactly two common neighbours, Theorem 7 for µ = 2 gives

Corollary 10. Interval-regular graphs are reconstructible.

Theorem 11. Let G be a connected graph of diameter two with k pairs of non-

adjacent vertices; let µ1, µ2, . . . , µk be the number of common neighbours of the

k pairs. If |µr − µs| ≥ 2 for all r 6= s, then G is reconstructible.

Proof. Recognition. Follows from Lemmas 4 and 5.
Weak reconstruction. We shall assume that pv(G, 0) = 0 (as otherwise,

diam(G) 6= 2). Then since diam(G) = 2, it follows that pv(G, i) > 0 for some
i ∈ [1, n − 2]. If pv(G, j) = 0 for all j ∈ [1, n − 2] and j 6= i, then G is recon-
structible by Theorem 8 with µ = i. So, we shall assume that pv(G, j) > 0 for
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some j ∈ [1, n−2] and j 6= i. But from our hypothesis, pv(G, i−1) = pv(G, i+1) =
pv(G, j − 1) = pv(G, j + 1) = 0.

If there exists a card G− v such that |Si−1(G− v)∪Sj−1(G− v)| = degG(v),
then the set Si−1(G−v)∪Sj−1(G−v) in the card G−v must be the neighbourhood
of v in G (because pv(G, i−1) = pv(G, j−1) = 0) and hence G is reconstructible.
So, we shall assume that there exists no card G − v satisfying the equation
|Si−1(G− v) ∪ Sj−1(G− v)| = degG(v).

Now consider a card G − x such that degG(x) = ∆(G). Let (A,B) be the
bipartition of NG(x) in G such that A = {y ∈ NG(x) : y is non-adjacent to at
least one vertex inNG(x)} and B = NG(x)−A. Since |Si−1(G−v)∪Sj−1(G−v)| 6=
degG(v) for every card G− v of G, it follows that |Si−1(G− v) ∪ Sj−1(G− v)| <
degG(v) and for every vertex v in G, there exists a neighbour w of v such that w
is adjacent to all other neighbours of v in G. Therefore B is non-empty.

In the card G− x, the set A is identifiable uniquely as the set Si−1(G− x)∪
Sj−1(G− x). But the set B can be identified (up to automorphism) in G− x by
using similar arguments we employed for identifying B in Case 2 of Theorem 7.
Hence G is reconstructible.

3. Geodetic Blocks of Diameter Three

Parthasarathy and Srinivasan [20] have obtained some structural properties of
geodetic blocks of diameter three and proved that geodetic blocks of diameter
three are self-centered (graphs H with diam(H) = rad(H)).

Theorem 12 [20]. Every geodetic block of diameter three is self-centered.

Using Theorem 12, we first prove that if a geodetic block has diameter three,
then its complement has diameter two. It will be used while proving Theorem
16. The next theorem is well known.

Theorem 13 [21]. If diam(G) ≥ 3, then diam(G) ≤ 3.

When U and W are disjoint subsets of the vertex set V (G) of a graph G, U ∼ W
means that every vertex in U is adjacent to every vertex in W, and when u /∈ W,
u ∼ W means that u is adjacent to every vertex in W.

Theorem 14. If G is a geodetic block of diameter three, then G has diameter

two.

Proof. Since G is a block, diam(G) 6= 1 and hence diam(G) = 2 or 3, by
Theorem 13. We assume, to the contrary, that diam(G) = 3. Then since G is a
geodetic block of diameter three, eG(v) = 3 for all vertices v in G, by Theorem
12. Consider a vertex v in G. Let Ni(v) (i = 1, 2, 3) be the set of all vertices
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which are at distance i from v in G. Since eG(v) = 3, Ni(v) is non-empty for
i = 1, 2, 3.

Now in G, v ∼ N2(v) ∪ N3(v) and N1(v) ∼ N3(v). Therefore, dG(u,w) ≤ 2
for every pair of vertices u and w except for the case when one is in N1(v)
and the other is in N2(v). Since diam(G) = 3, it follows that dG(x, y) = 3 for
some x ∈ N1(v) and y ∈ N2(v) see (Figure 1); in Figure 1, a thick line denotes
the existence of all possible edges, a dashed line denotes non-adjacency. Since
N1(v) ∼ N3(v) in G, it follows that the vertex y is not adjacent to any vertex in
N3(v) in G (as otherwise, dG(x, y) = 2). Consequently, we get y ∼ N3(v) in G.

v

N1(v)

N2(v)

N3(v)

x

y

G

y′

Figure 1

G

x

y

v

y′

x′ x′

Now in G, the vertex y is adjacent to the vertex x (because dG(x, y) = 3) and
so y is not adjacent to any other vertex in N1(v) (because G is geodetic). Con-
sequently, the vertex y is adjacent to all the vertices in N1(v)\{x} in G. This,
together with dG(x, y) = 3, implies that the vertex x is not adjacent to any vertex
in N1(v) in G. Consequently, we get x ∼ N1(v) in G. Also, we have x ∼ N2(v)
(as in (i) below).

Thus in G, we have proved that x ∼ N1(v), y ∼ N3(v), and x ∼ N2(v).
Therefore dG(x,w) ≤ 2 for every vertex w of G and hence eG(x) = 2, giving a
contradiction to G being a self-centered graph of diameter 3.

(i) Suppose there exists a vertex y′ in N2(v) such that y′ were not adjacent
to x in G. Since G is geodetic, y′ would have a unique neighbour say x′ in N1(v).
Now in G, no vertex in N2(v) is adjacent to both x and y (because dG(x, y) = 3)
and hence the vertex y′ would be adjacent to exactly one of the vertices of x
and y. Consequently, we would have yy′ ∈ E(G). Hence in G, the non-adjacent
vertices x and y′ would have two common neighbours (namely x′ and y), giving
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a contradiction to G being geodetic.

The next theorem is well known.

Theorem 15 [1]. A graph G is reconstructible if and only if G is reconstructible.

Theorem 16. All 2-connected graphs are reconstructible if and only if all non-

geodetic and non-interval-regular blocks G such that diam(G) = 2 or diam(G) =
diam(G) = 3 are weakly reconstructible.

Proof. The necessity is obvious.
Sufficiency: Let G be a 2-connected graph. Then, by Theorems 13 and 15,

it is enough to reconstruct only 2-connected graphs G with diam(G) ≤ 3. If
diam(G) = 1, then G is a complete graph and hence G is reconstructible. If
diam(G) = 2, then G is reconstructible by Corollary 9 or 10, or our hypothesis.
So we assume that diam(G) = 3.

Now diam(G) ≤ 3. If diam(G) = 1, thenG is reconstructible. If diam(G) = 2
and G is 2-connected, then G is reconstructible by Corollary 9 or 10, or our
hypothesis. If diam(G) = 2 and G is separable, then all blocks of G are end-
blocks and hence G has only one cutvertex, say v. Since diam(G) = 2, the vertex
v must be adjacent to all other vertices of G and hence G is reconstructible. So
we shall assume that diam(G) = 3. Then G is reconstructible by either Theorem
14 and Corollary 10 or our hypothesis.

Theorem 17. All graphs on at least three vertices are reconstructible if and only

if all non-geodetic and non-interval-regular blocks G such that diam(G) = 2 or

diam(G) = diam(G) = 3 are weakly reconstructible.

Proof. Follows from Theorems 1 and 16.

4. Conclusion

Some subclasses of 2-connected graphs are already proved to be reconstructible
(see [5, 6, 7, 11, 12, 15, 19]). Several other classes of graphs already proved
to be reconstructible contain 2-connected graphs. Attempts to prove RC using
them may lead to the reconstruction of more classes of graphs and further narrow
down the classes of graphs to be reconstructed to prove RC. Using the parameters
pv(G, i) and pav(G, i), short of proving the reconstructibility of these narrowed
down classes, one can divide it further into some subclasses and can try to prove
the reconstructibility of these subclasses. If at all RC is false, then these narrowed
down classes must contain a pair of non-isomorphic graphs having the same deck.
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