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Abstract

Let G = G1 ∪ G2 be the sum of two simple graphs G1, G2 having a
common edge or G = G1 ∪ e1 ∪ e2 ∪ G2 be the sum of two simple disjoint
graphs G1, G2 connected by two edges e1 and e2 which form a cycle C4

inside G. We give a method of computing the determinant detA(G) of the
adjacency matrix of G by reducing the calculation of the determinant to
certain subgraphs of G1 and G2. To show the scope and effectiveness of our
method we give some examples.
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1. Introduction

We say that a graph is singular if the determinant of its adjacency matrix is
equal to 0. For a large n, computations of the determinant of an n×n matrix are
generally difficult. There are known certain reduction procedures for calculating
the determinant of the adjacency matrix of some graphs, presented by F. Harary
[2], H.M. Rara [4], L. Huang and W. Yan [3] and A. Abdollahi [1]. In S. Arwon
and P. Wojtylak [5], some reduction procedures are used in case of paths of cycles
and cycles of cycles. This paper was an inspiration for the present work in which
we consider sums of two graphs with a common edge and two separate graphs
connected by two edges.

A graph G is a pair (V (G), E(G)), where V (G) is a non-empty set of vertices
and E(G) is a set of unordered pairs of vertices, called edges. Let [x, y] stand
for the edge with the vertices x and y. If [x, y] ∈ E(G), we also say that y
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is a neighbour of x. We denote the set of all neighbours of x by NG(x). The
cardinality of the set NG(x), denoted by degG(x), is the degree of the vertex x.
If all vertices of a graph have the same degree we call it a regular graph.

The graph Pn, where n ≥ 1, with the vertex set V (Pn) = {1, 2, . . . , n} and
the edge set E(Pn) = {{x, y} ⊆ V (Pn) : |x − y| = 1} is called a path of order n.
And the graph Cn, where n ≥ 3, with the vertex set V (Cn) = {1, 2, . . . , n} and
the edge set E(Cn) = {{x, y} ⊆ V (Cn) : |x− y| ≡ 1(mod n)} is called a cycle of

order n.
Let G and H be graphs. Then H is called a subgraph of G if V (H) ⊆ V (G)

and E(H) ⊆ E(G). If x ∈ V (G) then G \ x means the subgraph of G with
the vertex set V (G) \ {x} and the edge set E(G) \ {[x, y] : y ∈ NG(x)}. By
G \ [x, y] we mean the subgraph G with the vertex set V (G) and the edge set
E(G) \ [x, y]. A subgraph H of G is called a spanning subgraph if V (G) = V (H).
The union G ∪ H of two graphs G and H is a graph defined by two equations
V (G ∪H) = V (G) ∪ V (H) and E(G ∪H) = E(G) ∪ E(H). Sesquivalent graphs

are (disjoint) unions of regular graphs of degree 1 or 2. In other words, a graph
is sesquivalent if it consists of single edges and cycles.

Let v1, v3, . . . , vn be the vertices of a graph G and assume that vi 6= vj if
i 6= j. The adjacency matrix of G is the matrix A(G) = [aij ]n×n where

aij =

{

1 if vi and vj are adjacent in G,

0 otherwise.

Lemma 1. If G and H are (vertex) disjoint graphs, then

detA(G ∪H) = detA(G) · detA(H).

By the following theorem, see Harary [2], we can compute the determinant of the
adjacency matrix of any graph:

Theorem 2. For each graph G

detA(G) =
∑

(−1)r(Γ) · 2s(Γ)

where the summation is over all sesquivalent spanning subgraphs Γ of G where

c(Γ) is the number of components of the graph Γ, and r(Γ) = |V (Γ)| − c(Γ) and

s(Γ) = |E(Γ)| − |V (Γ)|+ c(Γ).

In particular, we obtain the following results.

Corollary 1. For each n ≥ 1,

detA(Pn)=







1 if n ≡ 0(mod 4),
−1 if n ≡ 2(mod 4),
0 otherwise.
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Corollary 2. For each n ≥ 1,

detA(Cn) =







0 if n ≡ 0(mod 4),
−4 if n ≡ 2(mod 4),
2 otherwise.

2. Sums of Two Graphs with a Common Edge

Theorem 3. Let G, F and H be simple graphs such that G = F ∪ H, and

V (F ) ∩ V (H) = {x, y} and E(F ) ∩ E(H) = [x, y]. Then

detA(G) = detA(G \ [x, y]) + detA(F ) · detA(H \ {x, y})
+ detA(F \ {x, y}) · detA(H \ [x, y])
+ detA(F \ {x, y}) · detA(H \ {x, y}).

Proof. Let Γ be a sesquivalent spanning subgraph of G = F ∪H.

If x and y belong to a cycle in Γ, then Γ must be included in one (and only one)
of the graphs G \ [x, y] or F ∪H \ {x, y} or F \ {x, y} ∪H.

If the edge [x, y] belongs to Γ, then Γ must be included in F ∪H \ {x, y} or
in F \ {x, y} ∪ H, though it may be included in both. However, if it happens,
then Γ is included in F \ {x, y} ∪H \ {x, y} ∪ [x, y].

If [x, y] 6∈ E(Γ) (and x, y do not belong to a cycle in Γ), then there are
t, z ∈ V (G) such that [x, t], [y, z] ∈ E(Γ). If one of the elements {t, z} is in F

and the other in H, then Γ is a sesquivalent spanning subgraph of G \ [x, y].
If {t, z} ⊆ V (H), then Γ is a sesquivalent spanning subgraph of G \ [x, y] and
F \{x, y}∪H \[x, y]. Similarly if {t, z} ⊆ V (H), then Γ is a sesquivalent spanning
subgraph of G \ [x, y] and F \ [x, y] ∪H \ {x, y}.

Summing up, a sesquivalent spanning subgraph Γ of G is a subgraph of
G \ [x, y], or F ∪H \ {x, y} or F \ {x, y}∪H. No sesquivalent spanning subgraph
of G can be a subgraph of all three graphs G \ [x, y], and F ∪ H \ {x, y} and
F \ {x, y} ∪H. It may happen, however, that Γ is included in two of them. But
it takes place if and only if Γ is a sesquivalent spanning subgraph in one (and
only one) of the graphs: F \ {x, y} ∪H \ {x, y} ∪ [x, y], F \ [x, y] ∪H \ {x, y} or
F \ {x, y} ∪H \ [x, y]. Therefore, using Theorem 2 and Lemma 1 we obtain
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detA(G) = detA(G \ [x, y])+detA(F ∪H \ {x, y})+detA(F \ {x, y} ∪H)
− detA(F \ {x, y} ∪H \ [x, y])− detA(F \ {x, y} ∪H \ [x, y])
− detA(F \ {x, y} ∪H \ {x, y} ∪ [x, y]) = detA(G \ [x, y])
+ detA(F ) · detA(H \ {x, y}) + detA(F \ {x, y}) · detA(H)
− detA(F \ [x, y]) · detA(H \ {x, y})− detA(F \ {x, y})
· detA(H \ [x, y]) + detA(F \ {x, y}) · detA(H \ {x, y}).

3. Two Cycles with a Common Edge

In this part we will consider the graph G = Cm∪Cn, where Cm and Cn, m,n > 2,
are two cycles with a common edge such that V (Cm) ∩ V (Cn) = {x, y} and
E(Cm) ∩ E(Cn) = [x, y].

According to Theorem 5,

Corollary 3. If m and n are odd, then

detA(Cm ∪ Cn) = detA(Cm+n−2) =

{

4 if m+ n ≡ 0 (mod 4),
0 if m+ n ≡ 2 (mod 4).

For example,

b b

b

b

b b

b

b

det A(C3 ∪ C3) = = = 0.

Now, let m be odd and n even. Then we have

detA(G) = detA(Cm ∪ Cn) = detA(Cm+n−2) + detA(Cm) · detA(Pn−2).

Therefore, we obtain

Corollary 4. If m is odd, then

detA(Cm ∪ Cn) =

{

4 if n ≡ 2 (mod 4),
0 if n ≡ 0 (mod 4).



Two Graphs with a Common Edge 501

For example,

det A(C5 ∪ C6) = = + = 2 + 2 · (−1) · (−1) = 4.

It remains for us to consider the case when m and n are even numbers. Then

detA(G) = detA(Cm ∪ Cn) = detA(Cm+n−2) + detA(Cm) · detA(Pn−2)
+ detA(Pm−2) · detA(Cn)− detA(Pm) · detA(Pn−2)
− detA(Pm−2) · detA(Pn) + detA(Pm−2) · detA(Pn−2)

= detA(Cm+n−2) + detA(Cm) · (−1)
n−2

2 + (−1)
m−2

2 · detA(Cn)

− (−1)
m

2 · (−1)
n−2

2 − (−1)
m−2

2 · (−1)
n

2 + (−1)
m−2

2 · (−1)
n−2

2

= detA(Cm+n−2) + (−1)
n−2

2 · detA(Cm) + (−1)
m−2

2 · detA(Cn)

+ 3 · (−1)
m+n

2 .

We have three possibilities:

1. If m,n ≡ 0(mod 4), then detA(G) = −4+(−1) ·0+(−1) ·0+3 ·1 = −1.

2. If m,n ≡ 2(mod 4), then detA(G) = −4+1 · (−4)+1 · (−4)+3 ·1 = −9.

3. If m ≡ 0(mod 4), n ≡ 2(mod 4), then detA(G) = 0 + 1 · 0 + (−1) · (−4)

+3 · (−1) = 1.

Hence,

Corollary 5. If m and n are even, then

detA(G)=







−9 if m,n ≡ 2(mod 4),
−1 if m,n ≡ 0(mod 4),
1 if m ≡ 0(mod 4), n ≡ 2(mod 4).

For example,

det A(C4 ∪ C4) =

= = + + − − + =

= −4 + 0 + 0− (−1)− (−1) + 1 = −1.

To recapitulate,
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Theorem 4. Let G = Cm∪Cn, m,n > 2 be the sum of two cycles Cm and Cn with

common vertices V (Cm)∩ V (Cn) = {x, y} and common edges E(Cm)∩E(Cn) =
[x, y]. The determinant of adjacency matrix of the graph is given by

detA(G) =







































−9 if m ≡ 2(mod 4), n ≡ 2(mod 4),
−4 if m+ n ≡ 0(mod 4),m, n are odd,

−1 if m ≡ 0(mod 4), n ≡ 0(mod 4),
0 if m+ n ≡ 2(mod 4),m, n are odd or

m ≡ 0(mod 4), n is odd,

1 if m ≡ 0(mod 4), n ≡ 2(mod 4),
4 if m ≡ 2(mod 4), n is odd.

4. Sums of Two Graphs Connected by Two Edges

Theorem 5. Let F and H be simple disjoint graphs and G be graph such that

G = F ∪H∪ [x, z]∪ [y, t], where {x, y} ⊆ V (F ), {z, t} ⊆ V (H) and [x, y] ∈ E(F ),
[z, t] ∈ E(H).Then

detA(G) = detA(G \ {[x, y], [z, t]}) + detA(F ) · detA(H)
+ detA(F ∪ {z, t} \ [x, y]) · detA(H \ {z, t})
+ detA(F \ {x, y}) · detA(H ∪ {x, y} \ [z, t])
− detA(F \ [x, y]) · detA(H \ [z, t])
− 4 · detA(F \ {x, y}) · detA(H \ {z, t})
+ detA(F \ [x, y]) · detA(H \ {z, t})
+ detA(F \ {x, y}) · detA(H \ [z, t]).

Proof. Let Γ be a sesquivalent spanning subgraph of G = F ∪H ∪ [x, z] ∪ [y, t].

If x, y, z and t belong to a cycle in Γ, then Γ must be included in one (and only
one) of the graphs G \ {[x, y], [z, t]} or F ∪H or (F ∪ {z, t} \ [x, y]) ∪H \ {z, t}
or F \ {x, y} ∪ (H ∪ {x, y} \ [z, t]) or F \ {x, y} ∪ C4 ∪H \ {x, y}, where C4 is a
cycle such that {x, y, z, t} ∈ V (C4).

Notice that, if [x, z] belongs to Γ, then Γ must be included in G\{[x, y], [z, t]}
or (F ∪{z, t}\[x, y])∪H \{z, t} or F \{x, y}∪(H∪{x, y}\[z, t]) or F \{x, y}∪C4∪
H \ {x, y}, though it may be included in each of them. However, if it happens,
then Γ is included in F \ {x, y} ∪ [x, z] ∪ [y, t] ∪H \ {z, t}.

If the edge [x, y] and [z, t] belongs to Γ, then Γ must be included in F ∪H

or F \ {x, y} ∪ C4 ∪H \ {x, y}, though it may be included in both. However, if
it happens, then Γ is included in F \ {x, y} ∪ [x, y] ∪ [z, t] ∪H \ {z, t}.
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If the edge [x, y] belongs to Γ and [z, t] does not belong to Γ, then Γ must be
included in F ∪H or F \ [x, y]∪ (H ∪{x, y} \ [z, t]), though it may be included in
both. However, if it happens, then Γ is included in F \ {x, y} ∪ [x, y] ∪H \ [z, t].

Similarly, if the edge [x, y] does not belong to Γ and [z, t] belongs to Γ, then Γ
must be included in F∪H or (F∪{z, t}\[x, y])∪H\[z, t], though it may be included
in both. However, if it happens, then Γ is included in F \[x, y]∪[z, t]∪(H∪{z, t}).

If [x, z] and [x, y] do not belong to Γ, then x, y, z do not belong to a cycle in
Γ and there are {k, p} ∈ V (G) such that [x, k], [z, p] ∈ E(Γ) and [x, k] ∈ F \ [x, y]
and [z, p] ∈ H \ [z, t]. So Γ is a sesquivalent spanning subgraph of G\{[x, y], [z, t]}
or F ∪ G, though it may be included in both. However, if it happens, then Γ is
included in F \ [x, y] ∪H \ [z, t].

Summing up, a sesquivalent spanning subgraph Γ of G is a subgraph of
G \ {[x, y], [z, t]} or F ∪H or (F ∪ {z, t} \ [x, y]) ∪H \ {z, t} or F \ {x, y} ∪ (H ∪
{x, y} \ [z, t]) or F \ {x, y} ∪ C4 ∪H \ {x, y}.

Let us notice that:

• the sesquivalent spanning subgraph Γ of F \ [x, y]∪H \ [z, t] can be a subgraph
of two graphs G \ {[x, y], [z, t]} and F ∪H,

• the sesquivalent spanning subgraph Γ of F \{x, y}∪[x, z]∪[u, t]∪H \{z, t} can
be a subgraph of four graphs G\{[x, y], [z, t]} and (F ∪{z, t}\[x, y])∪H\{z, t}
and F \ {x, y} ∪ (H ∪ {x, y} \ [z, t]) and F \ {x, y} ∪ C4 ∪H \ {x, y},

• the sesquivalent spanning subgraph Γ of F \ [x, y] ∪ [z, t] ∪H \ {z, t} can be
a subgraph of two graphs F ∪H and (F ∪ {z, t} \ [x, y]) ∪H \ {z, t},

• the sesquivalent spanning subgraph Γ of F \ {x, y} ∪ [x, y] ∪H \ [z, t] can be
a subgraph of two graphs F ∪H and F \ {x, y} ∪ (H ∪ {x, y} \ [z, t]),

• the sesquivalent spanning subgraph Γ of F \ {x, y} ∪ [x, y] ∪ [z, t] ∪H \ {z, t}
can be a subgraph of two graphs F ∪H and F \ {x, y} ∪ C4 ∪H \ {x, y}.

Therefore, using Theorem 2 and Lemma 1 we obtain

detA(G) = detA(G \ {[x, y], [z, t]}) + detA(F ∪H)
+detA((F ∪ {z, t} \ [x, y]) ∪H \ {z, t})
+detA(F \ {x, y} ∪ (H ∪ {x, y} \ [z, t]))
+detA(F \ {x, y} ∪ C4 ∪H \ {z, t})
− detA(F \ [x, y] ∪H \ [z, t])
−3 · detA(F \ {x, y} ∪ [x, z] ∪ [y, t] ∪H \ {z, t})
− detA(F \ [x, y] ∪ [z, t] ∪H \ {z, t})
− detA(F \ {x, y} ∪ [x, y] ∪H \ [z, t])
− detA(F \ {x, y} ∪ [x, y] ∪ [z, t] ∪H \ {z, t})
= detA(G \ {[x, y], [z, t]}) + detA(F ) · detA(H)
+detA(F ∪ {z, t} \ [x, y]) · detA(H \ {z, t})
+detA(F \ {x, y}) · detA(H ∪ {x, y} \ [z, t])
− detA(F \ [x, y]) · detA(H \ [z, t])
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−4 · detA(F \ {x, y}) · detA(H \ {z, t})
+detA(F \ [x, y]) · detA(H \ {z, t})
+detA(F \ {x, y}) · detA(H \ [z, t]).

5. Two Cycles Connected by Two Edges

In this part we will consider the graph G = Cm ∪ [x, z] ∪ [y, t] ∪ Cn, where Cm

and Cn, m,n > 2 are two cycles such that {x, y} ∈ V (Cm), {z, t} ∈ V (Cn) and
[x, y] ∈ E(Cm), [z, t] ∈ E(Cn).

According to Theorem 5 we get

detA(G) = detA(Cm+n) + detA(Cm) · detA(Cn) + detA(Cm+2) · detA(Pn−2) +
detA(Pm−2)·detA(Cn+2)−detA(Pm)·detA(Pn)−4·detA(Pm−2)·detA(Pn−2)+
detA(Pm) · detA(Pn−2) + detA(Pm−2) · detA(Pn).
It follows that

Corollary 6. If m and n are odd, then

detA(G) = detA(Cm+n) + 4 =

{

0 if m+ n ≡ 2 (mod 4),
4 if m+ n ≡ 0 (mod 4).

For example,

= + = −4 + 2 · 2 = 0.

= + = 0 + 2 · 2 = 4.
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Now, let m be odd and n even. Then we have detA(G) = 2 + 2 · detA(Cn) + 2 ·
detA(Pn−2).

Therefore, we get

Corollary 7. If m is odd, then

detA(G) =

{

−4 if n ≡ 2 (mod 4),
0 if n ≡ 0 (mod 4).

For example,

= + + =

= 2 + 2 · (−4) + 2 · (−1) · (−1) = −4.

= + + =

= 2 + 2 · 0 + 2 · (−1) = 0.

It remains for us to consider the case when m and n are even numbers. Then

detA(G) = detA(Cm+n) + detA(Cm) · detA(Cn)
+detA(Cm+2) · detA(Pn−2) + detA(Pm−2) · detA(Cn+2)
− detA(Pm) · detA(Pn)− 4 · detA(Pm−2) · detA(Pn−2)
+detA(Pm) · detA(Pn−2) + detA(Pm−2) · detA(Pn)

= detA(Cm+n) + detA(Cm) · detA(Cn) + detA(Cm+2) · (−1)
n−2

2

+(−1)
m−2

2 · detA(Cn+2)− (−1)
m

2 · (−1)
n

2

−4 · (−1)
m−2

2 · (−1)
n−2

2 + (−1)
m

2 · (−1)
n−2

2

+(−1)
m−2

2 · (−1)
n

2 = detA(Cm+n) + detA(Cm) · detA(Cn)

−(−1)
n

2 · detA(Cm+2)− (−1)
m

2 · detA(Cn+2)− 7 · (−1)
m+n

2 .
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We have three possibilities:
1. If m,n ≡ 0(mod 4), then detA(G)=0+ 0 · 0− 1 · (−4)− 1 · (−4)− 7 = 1.
2. If m,n ≡ 2(mod 4), then detA(G)=0+(−4)2− (−1) ·0− (−1) ·0−7= 9.
3. If m ≡ 0(mod 4), n ≡ 2(mod 4), then detA(G)=−4+ 0 · (−4)− (−1)·
(−4)− 1 · 0− 7=−1.

Hence

Corollary 8. If m and n are even then

detA(G) =







9 if m,n ≡ 2(mod 4),
1 if m,n ≡ 0(mod 4),

−1 if m ≡ 0(mod 4), n ≡ 2(mod 4).

For example

= + + + + −

− 3 · − − − − = 1.

To recapitulate,

Theorem 6. Let G = Cm ∪ [x, z] ∪ [y, t] ∪ Cn, where Cm and Cn, m,n > 2
are two cycles such that {x, y} ⊆ V (Cm), {z, t} ⊆ V (Cn) and [x, y] ∈ E(Cm),
[z, t] ∈ E(Cn). The determinant of adjacency matrix of the graph is given by,

detA(G) =







































9 if m ≡ 2(mod 4), n ≡ 2(mod 4),
4 if m+ n ≡ 0(mod 4)),m, n are odd,

1 if m ≡ 0(mod 4), n ≡ 0(mod 4),
0 if m+ n ≡ 2(mod 4)),m, n are odd

or n ≡ 0(mod 4),m is odd,

−1 if m ≡ 0(mod 4), n ≡ 2(mod 4),
−4 if n ≡ 2(mod 4),m is odd.

Comparing the above Theorem 6 with Theorem 4, we easily notice that we get
the same formula (for computing the determinant) with the opposite sign. Thus
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Observation 9. The determinant of the adjacency matrix of two cycles with a

common edge and the determinant of the adjacency matrix of two cycles connected

by two edges differ only with the sign ±1.
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