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Abstract

The niche graph of a digraph D is the (simple undirected) graph which
has the same vertex set as D and has an edge between two distinct vertices
x and y if and only if N+

D
(x) ∩ N+

D
(y) 6= ∅ or N−

D
(x) ∩ N−

D
(y) 6= ∅, where

N+

D
(x) (resp. N−

D
(x)) is the set of out-neighbors (resp. in-neighbors) of x in

D. A digraph D = (V,A) is called a semiorder (or a unit interval order) if
there exist a real-valued function f : V → R on the set V and a positive real
number δ ∈ R such that (x, y) ∈ A if and only if f(x) > f(y)+ δ. A digraph
D = (V,A) is called an interval order if there exists an assignment J of a
closed real interval J(x) ⊂ R to each vertex x ∈ V such that (x, y) ∈ A if
and only if min J(x) > max J(y).

Kim and Roberts characterized the competition graphs of semiorders and
interval orders in 2002, and Sano characterized the competition-common
enemy graphs of semiorders and interval orders in 2010. In this note, we
give characterizations of the niche graphs of semiorders and interval orders.
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1. Introduction

Cohen [2] introduced the notion of competition graphs in 1968 in connection
with a problem in ecology. The competition graph C(D) of a digraph D is the
(simple undirected) graph which has the same vertex set as D and has an edge
between two distinct vertices x and y if and only if N+

D (x) ∩ N+
D (y) 6= ∅, where

N+
D (x) = {v ∈ V (D) | (x, v) ∈ A(D)} is the set of out-neighbors of x in D. (For

a digraph D, we denote the vertex set and the arc set of D by V (D) and A(D),
respectively.) It has been one of the important research problems in the study of
competition graphs to characterize the competition graphs of digraphs satisfying
some specified conditions.

A digraph D = (V,A) is called a semiorder (or a unit interval order) if
there exist a real-valued function f : V → R on the set V and a positive real
number δ ∈ R such that (x, y) ∈ A if and only if f(x) > f(y) + δ. A digraph
D = (V,A) is called an interval order if there exists an assignment J of a closed
real interval J(x) ⊂ R to each vertex x ∈ V such that (x, y) ∈ A if and only if
min J(x) > max J(y). We call J an interval assignment of D. (See [3] for details
on interval orders.)

A complete graph is a graph which has an edge between every pair of vertices.
We denote the complete graph with n vertices byKn. An edgeless graph is a graph
which has no edges. We denote the edgeless graph with n vertices by In. The
(disjoint) union of two graphs G and H is the graph G ∪H whose vertex set is
the disjoint union of the vertex sets of G and H and whose edge set is the disjoint
union of the edge sets of G and H.

Kim and Roberts characterized the competition graphs of semiorders and
interval orders as follows.

Theorem 1 [4]. Let G be a graph. Then the following are equivalent.

(a) G is the competition graph of a semiorder,

(b) G is the competition graph of an interval order,

(c) G = Kr ∪ Iq where if r ≥ 2 then q ≥ 1.

Scott [6] introduced the competition-common enemy graphs of digraphs in 1987
as a variant of competition graphs. The competition-common enemy graph of
a digraph D is the graph which has the same vertex set as D and has an edge
between two distinct vertices x and y if and only if both N+

D (x)∩N+
D (y) 6= ∅ and

N−

D (x) ∩N−

D (y) 6= ∅ hold, where N−

D (x) = {v ∈ V (D) | (v, x) ∈ A(D)} is the set
of in-neighbors of x in D.

Sano characterized the competition-common enemy graphs of semiorders and
interval orders as follows.

Theorem 2 [5]. Let G be a graph. Then the following are equivalent.
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(a) G is the competition-common enemy graph of a semiorder,

(b) G is the competition-common enemy graph of an interval order,

(c) G = Kr ∪ Iq where if r ≥ 2 then q ≥ 2.

Niche graphs are another variant of competition graphs, which were introduced
by Cable, Jones, Lundgren and Seager [1]. The niche graph of a digraph D is the
graph which has the same vertex set as D and has an edge between two distinct
vertices x and y if and only if N+

D (x) ∩N+
D (y) 6= ∅ or N−

D (x) ∩N−

D (y) 6= ∅.
In this note, we characterize the niche graphs of semiorders and interval

orders. As a consequence, it turns out that the class of the niche graphs of
interval orders is larger than the class of the niche graphs of semiorders. In fact,
the graph P3 ∪ I1 (the union of a path with three vertices and an isolated vertex)
is the niche graph of an interval order, but P3 ∪ I1 is not the niche graph of a
semiorder.

2. Main Results

To state our main results, we first recall basic terminology in graph theory. The
vertex set and the edge set of a graph G are denoted by V (G) and E(G), respec-
tively. The complement of a graph G is the graph G defined by V (G) = V (G)
and E(G) = {vv′ | v, v′ ∈ V (G), v 6= v′, vv′ 6∈ E(G)}. For positive integers m and
n, the complete bipartite graph Km,n is the graph defined by V (Km,n) = X ∪ Y ,
where |X| = m and |Y | = n, and E(Km,n) = {xy | x ∈ X, y ∈ Y }. We can
observe that Km,n = Km ∪Kn.

The niche graphs of semiorders are characterized as follows.

Theorem 3. A graph G is the niche graph of a semiorder if and only if G is one

of the following graphs.

(i) an edgeless graph Iq,

(ii) the union of two complete graphs Km ∪Kn,

(iii) the union of two complete graphs and an edgeless graph Km ∪Kn ∪ Iq,

(iv) the complement of the union of a complete bipartite graph and an edgeless

graph Km,n ∪ Iq,

where m, n, and q are positive integers.

Proof. First, we show the “only if” part. Let G be the niche graph of a semiorder
D. Then there exist a function f : V (D) → R and a positive real number δ ∈ R>0

such that A(D) = {(x, y) | x, y ∈ V (D), f(x) > f(y) + δ}. Let r1 and r2 be real
numbers defined by

r1 = minx∈V (D) f(x) and r2 = maxx∈V (D) f(x).
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We consider the following three cases: Case 1. r1+ δ ≥ r2, Case 2. r1+ δ < r2 ≤
r1 + 2δ, Case 3. r1 + 2δ < r2.

Case 1. Consider the case where r1 + δ ≥ r2. In this case, we can observe
that D has no arcs. Therefore G is an edgeless graph.

Case 2. Consider the case where r1 + δ < r2 ≤ r1 + 2δ. Note that r1 <

r2 − δ ≤ r1 + δ < r2. Let V1, V2, and V3 be subsets of V (D) defined by

V1={v ∈ V (D) | r1 ≤ f(v) < r2 − δ},

V2={v ∈ V (D) | r2 − δ ≤ f(v) ≤ r1 + δ},

V3={v ∈ V (D) | r1 + δ < f(v) ≤ r2}.

Then it follows that V (G) = V1 ∪ V2 ∪ V3 and Vi ∩ Vj = ∅ if i 6= j. Note that
V1 6= ∅ since there exists a vertex x ∈ V (D) such that f(x) = r1, and that V3 6= ∅
since there exists a vertex x ∈ V (D) such that f(x) = r2. The set V1 forms a
clique in G since any vertex in V1 has a common in-neighbor which belongs to
V3 in D. The set V3 forms a clique in G since any vertex in V3 has a common
out-neighbor which belongs to V1 in D. Any vertex in V1 and any vertex in V3

are not adjacent in G since any vertex in V1 has no out-neighbor in D and any
vertex in V3 has no in-neighbor in D. Furthermore, any vertex in the set V2 is an
isolated vertex in G since it has neither an in-neighbor nor an out-neighbor in D.
That is, the set V2 induces an edgeless graph if V2 6= ∅. Thus, G is the union of
two complete graphs, or G is the union of two complete graphs and an edgeless
graph.

Case 3. Consider the case where r1 + 2δ < r2. Note that r1 < r1 + δ <

r2 − δ < r2. Let V1, V2, and V3 be subsets of V (D) defined by

V1={v ∈ V (D) | r1 ≤ f(v) ≤ r1 + δ},

V2={v ∈ V (D) | r1 + δ < f(v) < r2 − δ},

V3={v ∈ V (D) | r2 − δ ≤ f(v) ≤ r2}.

Then it follows that V (G) = V1 ∪ V2 ∪ V3 and Vi ∩ Vj = ∅ if i 6= j. Note that
V1 6= ∅ and V3 6= ∅. The set V2∪V3 forms a clique in G since any vertex in V2∪V3

has a common out-neighbor which belongs to V1 in D. The set V1 ∪ V2 forms a
clique in G since any vertex in V1 ∪ V2 has a common in-neighbor which belongs
to V3 in D. Any vertex in V1 and any vertex in V3 are not adjacent in G since any
vertex in V1 has no out-neighbor in D and any vertex in V3 has no in-neighbor
in D. Therefore, G = Km,n ∪ Iq where m = |V1|, n = |V3|, and q = |V2|. Thus,
G is the union of two complete graphs if V2 = ∅, and G is the complement of the
union of a complete bipartite graph and an edgeless graph if V2 6= ∅.

Second, we show the “if” part.
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Case (i). Let G be an edgeless graph. We define a function f : V (G) → R

by f(x) = 1 for all x ∈ V (G), and let δ = 1. Then f and δ gives a semiorder
D = (V,A) where V = V (G) and A = ∅, and the niche graph of the semiorder D
is the graph G.

Cases (ii) and (iii). Let G be the union of two complete graphs K and K ′

and an edgeless graph I, where I may possibly be the graph with no vertices. We
define a function f : V (G) → R by f(x) = 1 if x ∈ V (K), f(x) = 4 if x ∈ V (K ′),
f(x) = 2 if x ∈ V (I), and let δ = 2. Then f and δ gives a semiorder D = (V,A)
where V = V (G) and A = {(x, y) | x ∈ V (K ′), y ∈ V (K)}, and the niche graph
of the semiorder D is the graph G.

Case (iv). Let G = Km,n ∪ Iq. Let X and Y be the partite sets of the
complete bipartite graph Km,n and let Z be the vertex set of the edgeless graph
Iq. Then (X,Y, Z) is a tripartition of the vertex set of G and E(G) = {vv′ |
v, v′ ∈ V (G), v 6= v′} \ {xy | x ∈ X, y ∈ Y }. Now, we define a function f :
V (G) → R by f(x) = 1 if x ∈ X, f(z) = 3 if z ∈ Z, f(y) = 5 if y ∈ Y , and
let δ = 1. Then f and δ gives a semiorder D = (V,A) where V = V (G) and
A = {(y, x) | x ∈ X, y ∈ Y }∪{(z, x) | x ∈ X, z ∈ Z}∪{(y, z) | z ∈ Z, y ∈ Y }, and
the niche graph of the semiorder D is the graph G. Hence the theorem holds.

The next theorem characterizes the niche graphs of interval orders.

Theorem 4. A graph G is the niche graph of an interval order if and only if G

is one of the following graphs:

(i) an edgeless graph Iq,

(ii) the union of two complete graphs Km ∪Kn,

(iii) the union of two complete graphs and an edgeless graph Km ∪Kn ∪ Ir,

(iv) the complement of the union of a complete bipartite graph and an edgeless

graph Km,n ∪ Iq,

(v) the union of an edgeless graph and the complement of the union of a complete

bipartite graph and an edge less graph Ir ∪Km,n ∪ Iq,

where m, n, q, and r are positive integers.

Proof. For positive integers m and n and non-negative integers q and r, let

Γ(m,n, q, r) = Km,n ∪ Iq ∪ Ir.

We remark that Γ(m,n, 0, 0) = Km ∪ Kn, Γ(m,n, 0, r) = Km ∪ Kn ∪ Ir, and
Γ(m,n, q, 0) = Km,n ∪ Iq.

First, we show the “only if” part. Let G be the niche graph of an interval
order D. Then there exists an interval assignment J of D. Let r1 and r2 be real
numbers defined by

r1 = minx∈V (D)max J(x) and r2 = maxx∈V (D)min J(x).
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If r1 ≥ r2, then we can observe that D has no arcs and therefore G is an edgeless
graph. Now, we consider the case where r1 < r2. Note that |V (G)| ≥ 2 since
r1 and r2 are attained by different vertices. Let V1, V2, V3, and V4 be subsets of
V (D) defined by

V1={v ∈ V (D) | min J(v) ≤ r1 ≤ max J(v) < r2},

V2={v ∈ V (D) | r1 < min J(v),max J(v) < r2},

V3={v ∈ V (D) | r1 < min J(v) ≤ r2 ≤ max J(v)},

V4={v ∈ V (D) | min J(v) ≤ r1, r2 ≤ max J(v)}.

Then it follows that V (G) = V1 ∪ V2 ∪ V3 ∪ V4 and Vi ∩ Vj = ∅ if i 6= j. Note
that V1 6= ∅ since there exists a vertex x ∈ V (D) such that max J(x) = r1, and
that V3 6= ∅ since there exists a vertex x ∈ V (D) such that min J(x) = r2. The
set V2 ∪ V3 forms a clique in G since any vertex in V2 ∪ V3 has a common out-
neighbor which belongs to V1 in D. The set V1 ∪ V2 forms a clique in G since
any vertex in V1 ∪ V2 has a common in-neighbor which belongs to V3 in D. Any
vertex in V1 and any vertex in V3 are not adjacent in G since any vertex in V1 has
no out-neighbor in D and any vertex in V3 has no in-neighbor in D. Therefore,
the set V1 ∪ V2 ∪ V3 induces the graph Km,n ∪ Iq where m = |V1|, n = |V3|, and
q = |V2|. Furthermore, any vertex in the set V4 is an isolated vertex in G since it
has neither an in-neighbor nor an out-neighbor in D. That is, the set V4 induces
an edgeless graph. Thus G is the graph Γ(m,n, q, r) with m = |V1|, n = |V3|,
q = |V2|, and r = |V4|.

Second, we show the “if” part.

Case (i). Let G be an edgeless graph. We define an interval assignment J

by J(x) = [1, 2] for all x ∈ V (G), where [a, b] denotes the closed real interval
{r ∈ R | a ≤ r ≤ b}. Then J gives an interval order D = (V,A) where V = V (G)
and A = ∅, and the niche graph of the semiorder D is the graph G.

Cases (ii)–(v). Let G be the graph Γ(m,n, q, r) for some positive inte-
gers m and n and non-negative integers q and r. Then, there exists a par-
tition (U1, U2, U3, U4) of the vertex set of G such that E(G) = {vv′ | v, v′ ∈
U1∪U2∪U3, v 6= v′}\{u1u3 | u1 ∈ U1, u3 ∈ U3}. Note that {|U1|, |U3|} = {m,n},
|U2| = q, and |U4| = r. Now, we define an interval assignment J as follows:
J(x) = [1, 2] if x ∈ U1; J(x) = [3, 4] if x ∈ U2; J(x) = [5, 6] if x ∈ U3; J(x) = [1, 6]
if x ∈ U4. Then J gives an interval order D = (V,A) where V = V (G) and
A = {(x, y) | x ∈ Ui, y ∈ Uj , (i, j) ∈ {(3, 2), (3, 1), (2, 1)}}, and the niche graph of
the interval order D is the graph G. Hence the theorem holds.
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