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Abstract

The niche graph of a digraph D is the (simple undirected) graph which
has the same vertex set as D and has an edge between two distinct vertices
z and y if and only if Njj(z) N N (y) # 0 or Ny (z) N Np(y) # 0, where
N7 (x) (resp. Np(z)) is the set of out-neighbors (resp. in-neighbors) of z in
D. A digraph D = (V, A) is called a semiorder (or a unit interval order) if
there exist a real-valued function f : V' — R on the set V' and a positive real
number § € R such that (z,y) € A if and only if f(z) > f(y) + 4. A digraph
D = (V, A) is called an interval order if there exists an assignment .J of a
closed real interval J(z) C R to each vertex x € V such that (z,y) € A if
and only if min J(x) > max J(y).

Kim and Roberts characterized the competition graphs of semiorders and
interval orders in 2002, and Sano characterized the competition-common
enemy graphs of semiorders and interval orders in 2010. In this note, we
give characterizations of the niche graphs of semiorders and interval orders.
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1. INTRODUCTION

Cohen [2] introduced the notion of competition graphs in 1968 in connection
with a problem in ecology. The competition graph C(D) of a digraph D is the
(simple undirected) graph which has the same vertex set as D and has an edge
between two distinct vertices  and y if and only if N (z) N N7 (y) # 0, where
Np(z) ={v e V(D) | (x,v) € A(D)} is the set of out-neighbors of z in D. (For
a digraph D, we denote the vertex set and the arc set of D by V(D) and A(D),
respectively.) It has been one of the important research problems in the study of
competition graphs to characterize the competition graphs of digraphs satisfying
some specified conditions.

A digraph D = (V, A) is called a semiorder (or a unit interval order) if
there exist a real-valued function f : V — R on the set V' and a positive real
number § € R such that (x,y) € A if and only if f(z) > f(y) + . A digraph
D = (V, A) is called an interval order if there exists an assignment J of a closed
real interval J(z) C R to each vertex x € V such that (z,y) € A if and only if
min J(z) > max J(y). We call J an interval assignment of D. (See [3] for details
on interval orders.)

A complete graph is a graph which has an edge between every pair of vertices.
We denote the complete graph with n vertices by K,,. An edgeless graph is a graph
which has no edges. We denote the edgeless graph with n vertices by I,. The
(disjoint) union of two graphs G and H is the graph G U H whose vertex set is
the disjoint union of the vertex sets of G and H and whose edge set is the disjoint
union of the edge sets of G and H.

Kim and Roberts characterized the competition graphs of semiorders and
interval orders as follows.

Theorem 1 [4]. Let G be a graph. Then the following are equivalent.
(a) G is the competition graph of a semiorder,

(b) G is the competition graph of an interval order,

(c) G = K, UI, where if r > 2 then ¢ > 1.

Scott [6] introduced the competition-common enemy graphs of digraphs in 1987
as a variant of competition graphs. The competition-common enemy graph of
a digraph D is the graph which has the same vertex set as D and has an edge
between two distinct vertices z and y if and only if both N (z) "N/ (y) # 0 and
Np(z) "Ny (y) # 0 hold, where N (z) = {v € V(D) | (v,x) € A(D)} is the set
of in-neighbors of x in D.

Sano characterized the competition-common enemy graphs of semiorders and
interval orders as follows.

Theorem 2 [5]. Let G be a graph. Then the following are equivalent.
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(a) G is the competition-common enemy graph of a semiorder,
(b) G is the competition-common enemy graph of an interval order,
(¢c) G =K, U, where if r > 2 then ¢ > 2.

Niche graphs are another variant of competition graphs, which were introduced
by Cable, Jones, Lundgren and Seager [1]. The niche graph of a digraph D is the
graph which has the same vertex set as D and has an edge between two distinct
vertices x and y if and only if N () N N (y) # 0 or Ny (x) N Ny (y) # 0.

In this note, we characterize the niche graphs of semiorders and interval
orders. As a consequence, it turns out that the class of the niche graphs of
interval orders is larger than the class of the niche graphs of semiorders. In fact,
the graph P3U I (the union of a path with three vertices and an isolated vertex)
is the niche graph of an interval order, but P3 U I; is not the niche graph of a
semiorder.

2. MAIN RESuULTS

To state our main results, we first recall basic terminology in graph theory. The
vertex set and the edge set of a graph G are denoted by V(G) and E(G), respec-

tively. The complement of a graph G is the graph G defined by V(G) = V(G)
and E(G) = {vv' | v,v' € V(G),v # v/, v’ ¢ E(G)}. For positive integers m and
n, the complete bipartite graph K, is the graph defined by V (K, ,) = X UY,
where |X| = m and |Y| = n, and E(K,, ) = {zy | z € X,y € Y}. We can
observe that K, , = K,, U K,.

The niche graphs of semiorders are characterized as follows.

Theorem 3. A graph G is the niche graph of a semiorder if and only if G is one
of the following graphs.

(i) an edgeless graph I,

(ii) the union of two complete graphs K, U K,,

(iii) the union of two complete graphs and an edgeless graph K, U K, U I,
)

the complement of the union of a complete bipartite graph and an edgeless
graph K, , U I,

where m, n, and q are positive integers.

(iv

Proof. First, we show the “only if” part. Let G be the niche graph of a semiorder
D. Then there exist a function f : V(D) — R and a positive real number 6 € Rxq
such that A(D) = {(z,y) | x,y € V(D), f(z) > f(y) +}. Let r; and o be real
numbers defined by

r1 = mingcy(p) f(z) and 7y = maxgey(p) f(2).
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We consider the following three cases: Case 1. r{+6 > 19, Case 2. 11+ < 19 <
r1 + 20, Case 3. 11 + 20 < ro.

Case 1. Consider the case where r1 + § > ro. In this case, we can observe
that D has no arcs. Therefore G is an edgeless graph.

Case 2. Consider the case where r;1 +0 < ro < r1 + 2. Note that r <
ro — 3 <ry+0 <re. Let Vi, Vo, and V3 be subsets of V(D) defined by

Vi={v e V(D) |r; < f(v) <rqe—4d},
Vo={v e V(D) |re—06< f(v) <r +4},
Vs={v e V(D) |r +d< f(v) <ra}.

Then it follows that V(G) = Vi U Vo U Vs and V; NV; = 0 if ¢ # j. Note that
V1 # () since there exists a vertex x € V(D) such that f(x) = 71, and that V3 # ()
since there exists a vertex z € V(D) such that f(x) = ro. The set V; forms a
clique in G since any vertex in V; has a common in-neighbor which belongs to
V3 in D. The set V3 forms a clique in G since any vertex in V3 has a common
out-neighbor which belongs to V7 in D. Any vertex in V; and any vertex in V3
are not adjacent in G since any vertex in Vi has no out-neighbor in D and any
vertex in V3 has no in-neighbor in D. Furthermore, any vertex in the set V5 is an
isolated vertex in (G since it has neither an in-neighbor nor an out-neighbor in D.
That is, the set V5 induces an edgeless graph if V5 # (). Thus, G is the union of
two complete graphs, or GG is the union of two complete graphs and an edgeless
graph.

Case 3. Consider the case where r; + 20 < r9. Note that r1 < r +6 <
ro —d < rg. Let V1, Vi, and V3 be subsets of V(D) defined by

Vi={v e V(D) |r < f(v) <ri + 6},
Vo={v e V(D) |ri+6 < f(v) <rqg—4d},
Va={v e V(D) |ra—96 < f(v) <rg}.
Then it follows that V(G) = Vi U Vo U Vs and V; NV; = 0 if ¢ # j. Note that
Vi # (0 and V3 # (). The set VoU V3 forms a clique in G since any vertex in Vo U V3
has a common out-neighbor which belongs to V; in D. The set V3 U V5, forms a
clique in G since any vertex in V; U V5 has a common in-neighbor which belongs
to V3 in D. Any vertex in V] and any vertex in V3 are not adjacent in G since any
vertex in V7 has no out-neighbor in D and any vertex in V3 has no in-neighbor
in D. Therefore, G = Ky, ,, U I, where m = |Vi|, n = |V3|, and ¢ = |V5|. Thus,
G is the union of two complete graphs if Vo = (), and G is the complement of the
union of a complete bipartite graph and an edgeless graph if Vo # ().
Second, we show the “if” part.
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Case (i). Let G be an edgeless graph. We define a function f : V(G) — R
by f(z) =1 for all z € V(G), and let 6 = 1. Then f and ¢ gives a semiorder
D = (V,A) where V = V(G) and A = (), and the niche graph of the semiorder D
is the graph G.

Cases (ii) and (iii). Let G be the union of two complete graphs K and K’
and an edgeless graph I, where I may possibly be the graph with no vertices. We
define a function f: V(G) = R by f(z) =1ifx € V(K), f(z) =4 ifz € V(K'),
fx)=2if x € V(I), and let § = 2. Then f and § gives a semiorder D = (V, A)
where V = V(G) and A = {(z,y) | x € V(K'),y € V(K)}, and the niche graph
of the semiorder D is the graph G.

Case (iv). Let G = Ky, , UI;. Let X and Y be the partite sets of the
complete bipartite graph K,, , and let Z be the vertex set of the edgeless graph
I,. Then (X,Y,Z) is a tripartition of the vertex set of G and E(G) = {vv' |
v, € V(G),v # v} \{zy | * € X,y € Y}. Now, we define a function f :
V(G) = Rby f(z) =1ifz e X, f(2) =3ifze Z, flyy =5ify ey, and
let 6 = 1. Then f and ¢ gives a semiorder D = (V, A) where V = V(G) and
A={(y,z) |lre X,ye Y}U{(z,z) |z € X,2€ Z}U{(y,2) | z € Z,y € Y}, and
the niche graph of the semiorder D is the graph G. Hence the theorem holds. m

The next theorem characterizes the niche graphs of interval orders.

Theorem 4. A graph G is the niche graph of an interval order if and only if G
is one of the following graphs:
(i) an edgeless graph I,
) the union of two complete graphs K, U K,
(iii) the union of two complete graphs and an edgeless graph K,, U K, U I,
) the complement of the union of a complete bipartite graph and an edgeless
graph K, , U I,
(v) the union of an edgeless graph and the complement of the union of a complete
bipartite graph and an edge less graph I, U K, ,, U Iy,
where m, n, q, and r are positive integers.

Proof. For positive integers m and n and non-negative integers g and r, let
L(m,n,q,7) = Ky, Ul UL.

We remark that I'(m,n,0,0) = K,, U K,,, I'(m,n,0,7) = K, U K,, U I, and
I'(m,n,q,0) = Kp Ul

First, we show the “only if” part. Let G be the niche graph of an interval
order D. Then there exists an interval assignment J of D. Let r; and ry be real
numbers defined by

1 = mingey (p) max J(r) and T2 = MaX,cy(p) min J(z).
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If r1 > 79, then we can observe that D has no arcs and therefore G is an edgeless
graph. Now, we consider the case where r; < ra. Note that |[V(G)| > 2 since
r1 and 79 are attained by different vertices. Let Vi, Vs, V3, and V4 be subsets of
V(D) defined by

Vi={veV
Vo={veV
Vs={veV
Vi={veV

D) | min J(v) <7 <maxJ(v) <},
D) |r1 < minJ(v), max J(v) < ra},
D) |r <minJ(v) <ry <maxJ(v)},
D) | min J(v) <ry,7re < max.J(v)}.

—~~ I~ —~

Then it follows that V(G) = ViUV, UV3UVy and V; NV, = 0 if ¢ # j. Note
that V4 # () since there exists a vertex x € V(D) such that max J(z) = r1, and
that V3 # () since there exists a vertex x € V(D) such that min J(z) = ro. The
set Vo U V3 forms a clique in G since any vertex in Vo U V3 has a common out-
neighbor which belongs to V; in D. The set Vi U Vs forms a clique in G since
any vertex in V4 U V4 has a common in-neighbor which belongs to V3 in D. Any
vertex in V; and any vertex in V3 are not adjacent in G since any vertex in V; has
no out-neighbor in D and any vertex in V3 has no in-neighbor in D. Therefore,
the set V1 U V5 U V3 induces the graph K, ,, U I; where m = |Vi|, n = |V3|, and
q = |Va|. Furthermore, any vertex in the set Vj is an isolated vertex in G since it
has neither an in-neighbor nor an out-neighbor in D. That is, the set V; induces
an edgeless graph. Thus G is the graph I'(m,n,q,r) with m = |Vi|, n = |V3],
q = [Val, and r = [V4.
Second, we show the “if” part.

Case (i). Let G be an edgeless graph. We define an interval assignment J
by J(z) = [1,2] for all z € V(G), where [a,b] denotes the closed real interval
{r € R|a <r <b}. Then J gives an interval order D = (V, A) where V = V(G)
and A = (), and the niche graph of the semiorder D is the graph G.

Cases (ii)—~(v). Let G be the graph I'(m,n,q,r) for some positive inte-
gers m and n and non-negative integers ¢ and r. Then, there exists a par-
tition (U, Usa, Us,Uy) of the vertex set of G such that E(G) = {vv' | v,v €
UyuUsUUs, v # U’}\{u1U3 | u; € Uy, uz € Ug}. Note that {‘U1|, |U3|} = {m,n},
|Ua| = ¢q, and |Us| = r. Now, we define an interval assignment J as follows:
J(x)=[1,2]ifx € Uy; J(x) = [3,4] if x € Uy; J(x) = [5,6] if x € Us; J(z) = [1, 6]
if x € Uy. Then J gives an interval order D = (V, A) where V = V(G) and
A=A{(z,y) |z € U,yecUj;(i,7) € {(3,2),(3,1),(2,1)}}, and the niche graph of
the interval order D is the graph G. Hence the theorem holds. [
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