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Abstract

An edge-colored cycle is rainbow if its edges are colored with distinct col-
ors. A Gallai (multi)graph is a simple, complete, edge-colored (multi)graph
lacking rainbow triangles. As has been previously shown for Gallai graphs,
we show that Gallai multigraphs admit a simple iterative construction. We
then use this structure to prove Ramsey-type results within Gallai color-
ings. Moreover, we show that Gallai multigraphs give rise to a surprising
and highly structured decomposition into directed trees.
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1. Introduction

We assume throughout that all multigraphs are simple (no loops), complete (each
pair of vertices is connected by at least one edge), finite, and edge-colored. We
treat graphs as a special type of multigraph in which no pair of vertices is con-
nected by more than one edge. Define uv to be the set of colors present on edges
between vertices u and v. Call an edge-colored cycle rainbow if its edges are
colored distinctly.

Tibor Gallai [10] showed that colored complete graphs lacking rainbow tri-
angles can be disconnected by the removal of two colors and as a corollary, gave
an elegant iterative construction of all such graphs. For this reason, we call a
(multi)graph lacking rainbow triangles Gallai. Gyárfás and Simonyi [12] consid-
ered the problem of finding monochromatic stars and spanning trees in Gallai
graphs while Ball, Pultr, and Vojtĕchovský [2] characterized Gallai graphs in
which each triangle contains precisely two colors. Mubayi and Diwan [3] also
studied Gallai graphs but from the perspective of edge density in the different
colors.

It follows from a simple inductive argument that Gallai multigraphs lack
rainbow n-cycles for all n. Precious little progress has been made toward un-
derstanding edge-colored graphs lacking rainbow n-cycles for a fixed n. Ball et
al. [2] gave algebraic results about the sequence (n : G lacks rainbow n-cycles)
as a monoid, and Vojtĕchovský [13] extended the work of Alexeev [1] to find the
densest arithmetic progression contained in this sequence. In the other direction,
Frieze and Krivelevich [5] showed that there is a constant c such that any edge-
coloring of Kn in which no color appears more than cn times contains rainbow
cycles of length k for all 3 ≤ k ≤ n. We hope that a deeper study of Gallai
multigraphs might shed some light on rainbow Cn-free colorings.

We show in Section 2 that Gallai multigraphs have practically the same iter-
ative construction as Gallai graphs, with the only difference being an additional
criterion for multiedge creation. The key observation powering this construc-
tion is that, like Gallai graphs, any Gallai multigraph can be disconnected by
the removal of at most two colors and thus can be decomposed into components
connected by at most two colors. We also provide a characterization of Gallai
multigraphs that are maximal in the sense of edge addition.

After extending the previously known decomposition of Gallai graphs to the
multigraph case, we use this structure in Section 3 to aid in considering the
Ramsey problem within Gallai multigraphs. In particular, we prove Ramsey-type
results for finding small monochromatic paths and cycles in Gallai multigraphs.
A survey of this type of problem can be found in [8] with an updated version
maintained at [9].

In Section 4, we explore an alternative and surprising decomposition of Gallai
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multigraphs into highly structured directed trees. To do this, we first describe the
structure of a Gallai multigraph G by defining a sequence Mn(G) = (Vn, En,An)
of edge-colored mixed graphs. We then show that the final iteration of this
sequence applied to a subgraph H of G breaks into weak components that are
rooted trees.

We close with Section 5 by suggesting possible extensions of the ideas con-
tained in this work.

1.1. Basic notation

We denote vertices using lowercase letters such as u, v, and w, sets of vertices
using uppercase letters from the end of the alphabet such as U, V , and W , and
colors using uppercase letters from the beginning of the alphabet such as A,B,
and C. Given two sets of vertices, U and V , we write UV for the set of edges
connecting vertices of U to vertices of V . This notation will also be used with
singletons, u and v, to refer to the edges connecting u and v. We extend our
notation uv and denote the set of colors present in a set of edges, say UV , by
writing UV when there is no risk of ambiguity. Otherwise we refer explicitly to
the coloring at hand, i.e. ρ[UV ]. If UV = {A}, we will often shorten notation by
writing UV = A.

Many of our results will be stated in terms of mixed graphs. A mixed graph

is a triple M = (V,E,A) with vertices V , undirected edges E, and directed edges
A. We say M is complete if every pair of distinct vertices is connected by exactly
one directed or undirected edge. The weak components of a directed graph are
the components of the graph that results from replacing each directed edge with
an undirected edge. For our purposes, the weak components of a mixed graph
M = (V,E,A) will be the weak components of the directed graph (V,A). Note
that this notion of component disregards undirected edges.

We use the term rooted tree to refer to a directed graph that is transitive and
whose transitive reduction forms a tree in the usual sense. If (V,A) is a rooted
tree, then its root, written 1V , is the unique vertex having the property that there
is a directed edge from 1V to every other vertex in V .

2. Constructions of Gallai Graphs and Multigraphs

Implicit in his seminal work on transitively orientable graphs, Gallai [10] proved
that every Gallai graph contains a set of at most two colors that, when removed,
disconnects the graph.

Lemma 1 [10]. If G is a Gallai graph having more than one vertex, then G can

be disconnected by the removal of two colors.
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It follows easily from Lemma 1 that the following construction yields all Gallai
graphs. Let G be the family of graphs defined inductively by:

1. The single vertex graph is in G.

2. Fix colors A and B and graphs {Gi : 1 ≤ i ≤ t} ⊆ G. For each 1 ≤ i 6= j ≤ t,
connect Gi and Gj by either A or B. The resulting graph is in G.

Theorem 2 [10]. G is the family of all Gallai graphs.

Lemma 1 is the key to Gallai’s construction. Notice that the task of disconnecting
a Gallai multigraph by the removal of colors becomes inherently more difficult
with the addition of multiedges. Nonetheless, as we show in Lemma 3, the removal
of two colors still suffices to disconnect any Gallai multigraph.

Lemma 3. If M is a Gallai multigraph having more than two vertices, then M
can be disconnected by the removal of two colors.

Once we have established Lemma 3, the following construction is easily seen to
yield all Gallai multigraphs.

Let M be the family of multigraphs defined inductively by:

1. Any multigraph with fewer than three vertices is in M .

2. Fix colors A and B and graphs {Mi : 1 ≤ i ≤ t} ⊆ M . For each 1 ≤ i 6=
j ≤ t, connect Mi and Mj by either A or B. If |Mi| = |Mj | = 1, we may
also connect Mi and Mj by both A and B. The resulting multigraph is in
M .

Theorem 4. M is the family of all Gallai multigraphs.

Proof. It is clear that the construction does not introduce rainbow triangles.
Suppose then that M is a Gallai multigraph having three or more vertices

and let A and B be colors whose removal disconnects M into {Mi : 1 ≤ i ≤ t}
for t ≥ 2.

For 1 ≤ i 6= j ≤ t, we argue that Mi and Mj must be connected by A or B
and not both. Let u1u2 be an edge in Mi colored neither A nor B. For each v in
Mj , to avoid a rainbow triangle, the colors of u1v and u2v must agree. Since these
edges span two distinct components, their colors must be A or B. By definition
each pair of vertices in Mi is connected by a path whose edge-colors fall outside
A and B. It thus follows that v is connected to all of Mi by either A or B.
Repeating this argument for every v in Mj and then reversing the roles of Mi

and Mj , we have that Mi and Mj must be connected by all A or all B. Hence, for
1 ≤ i 6= j ≤ t, Mi and Mj must be connected by a single color A or B except in
the case when |Mi| = |Mj | = 1. Since we now allow multiedges, it is also possible
that the single vertices of Mi and Mj are connected by both A and B.
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Thus M can be constructed from smaller Gallai multigraphs in line (2) of the
construction.

Proof of Lemma 3. Let G be a Gallai multigraph with at least three vertices
and fix any vertex v ∈ V (G). We argue that either

1. v and G are connected by at most two colors (and thus their removal dis-
connects G with v as one component) or

2. any colors whose removal disconnects G− v also suffice to disconnect G.

If G has only three vertices, the claim is easily checked. Suppose then that
|V (G)| ≥ 4 and that v is connected to G by at least three colors.

Case 1. G − v can be disconnected by the removal of a single color A. Let
G1, . . . , Gk be the remaining components of G− v upon removal of the color A.
By assumption, there are vertices u and w in V (G − v) and colors B and C,
distinct from A, such that B ∈ uv and C ∈ wv (it could happen that u = w).
To avoid a rainbow triangle, it must be the case that u and w fall in the same
component of G − v, say G1, and that v is connected to each of the remaining
components by only the color A. Thus the removal of edges of color A disconnects
G into components G1 + v,G2, . . . , Gk.

Case 2. G − v requires the removal of two colors, say A and B, to be
disconnected. Let G1, . . . , Gk be the components of G− v upon removal of colors
A and B. Note that each pair of distinct components is connected by a single
color A or B. If v is connected to one of these components, say G1, by no color
other than A or B, then the removal of colors A and B disconnects G with G1

as one of the components. Otherwise, v must be connected to some vertex in Gi

by a third color Ci distinct from A and B for each 1 ≤ i ≤ k. Moreover, to avoid
a rainbow triangle, it must be the case that Ci = Cj for each 1 ≤ i, j ≤ k. Let C
be this common color.

To avoid rainbow triangles, every edge incident with v must be colored A,
B, or C. Thus we may select u ∈ V (G − v) such that A ∈ vu. Without loss of
generality, we may assume u ∈ G1. Since G − v cannot be disconnected by the
removal of just the color A, there is another component, say G2, such that G1

and G2 are connected by B. Fix w ∈ G2, such that vw = C. The vertices u, v, w
now form a rainbow triangle.

It must then be the case that v and Gi are connected by just the colors A
and B for some i and thus G can be disconnected by the removal of A and B.

We call uv isolated if for every w 6∈ {u, v}, uw = vw and |uw| = 1. Notice
that if uv is isolated we can reduce the multigraph by collapsing the edge(s) uv.
Likewise, given any multigraph, we can arbitrarily introduce new isolated edges
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without introducing rainbow triangles. We therefore call a multigraph reduced if
it contains no isolated edges.

We call the (multi)edge uv maximal if no new color can be added to uv
without introducing a rainbow triangle. Here we allow the possibility that uv has
“all possible colors” and thus is maximal. Likewise, a multigraph with coloring
ρ is maximal if uv is maximal for all vertices u and v. Note that, in order for
a multigraph to be maximal, it must either be a singleton or contain at least
three vertices. With these definitions, a very similar result can be obtained for
maximal (reduced) Gallai multigraphs. Also, if a multigraph is maximal, it is
also necessarily reduced. Let M be the set of Gallai multigraphs obtained from
the following process:

1. A single vertex is a (trivially) maximal Gallai multigraph.

2. LetM1,M2, . . . ,Mt be a set of maximal Gallai multigraphs such that
∑

|Mi|
≥ 3 and let A and B be two colors. Let M be the graph obtained from

⋃
Mi

by adding all edges from Mi to Mj in either color A or color B such that if
|Mi| = |Mj | = 1, then there exists a set Mk with E(Mi,Mk) 6= E(Mj ,Mk).
Between every two sets Mi and Mj satisfying |Mi| = |Mj | = 1 so {u} = Mi

and {v} = Mj , we insert the multiedge uv in both A and B.

Theorem 5. The set M defined above is the set of all maximal (reduced) Gallai

multigraphs.

Proof. It is clear that this construction must produce a maximal Gallai multi-
graph.

Suppose then that M is a maximal Gallai multigraph with at least 3 vertices.
By Theorem 4 there exists a partition of M into M1,M2, . . . ,Mt such that there
exist two colors A and B with the following properties:

• If |Mi| = |Mj | = 1, then the multiedge between Mi and Mj has one or both
of the colors A and B.

• If |Mi| ≥ 2 or |Mj | ≥ 2, then either all edges between Mi and Mj are A, or
they are all B.

Choose such a partition with the most pieces and call such a partition a supreme

Gallai partition. Such a partition has no set Mi with |Mi| = 2 since otherwise
the multiedge within Mi can have any number of colors, making M not maximal.

Claim 6. If M is maximal, then every piece of a supreme Gallai partition is also

maximal.
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Proof. Consider a maximal Gallai partition M , and suppose some piece Mi of
a supreme Gallai partition is not maximal. Then there exist vertices u and v in
Mi such that a color A can be added to uv without producing a rainbow triangle
within Mi while simultaneously forming a rainbow triangle uvw for some w in
M−Mi. Thus uw and vw have distinct colors B and C. However, this contradicts
Theorem 4 since edges between pieces must be the same color, provided one of
the pieces has more than one vertex.

By Claim 6, all pieces M1, . . . ,Mt are maximal. By the maximality of these
pieces, we cannot add any additional edges within any piece. Furthermore, by
Theorem 4, we cannot add any more colors between any two pieces so long as one
of them has size larger than 1. Thus the only thing we must ensure is that both
colors A and B are present between every pair of pieces consisting of one vertex
each. By the properties of a supreme Gallai partition, the presence of such edges
in M would never create a rainbow triangle. Furthermore, by the maximality of
M , both colors A and B must appear between any two singleton pieces of M .

In looking at maximal Gallai multigraphs, one may wonder if a colored (non
multi)graph could possibly be a maximal Gallai multigraph. It turns out this is
not the case, as seen in the following proposition.

Proposition 7. Every maximal Gallai multigraph on at least three vertices has

at least three multiedges which form two monochromatic triangles on the same

three vertices.

Proof. Suppose there exists a maximal Gallai multigraph with no multiedge
present. Let G be the smallest such example and consider a supreme Gallai
partition of G. Since G is maximal and |G| > 1, we actually get |G| ≥ 3. Our
goal is to show that there is a Gallai partition of either G or a subgraph of G
which contains at least three parts of order 1. Certainly if this supreme Gallai
partition of G contains at least three parts of order 1, we’re done so suppose not.
Then there must exist a part H of order at least 3 and we may then consider a
supreme Gallai partition of H. Since |G| is finite, such a process must terminate
and thus, must produce three parts of order 1.

Suppose A and B are the colors used in this Gallai partition. Then, between
every pair of vertices in our parts of order 1, there must be edges of both A and
B since G is maximal. Thus, there are at least three multiedges in G forming
two monochromatic triangles.

3. Multigraph Gallai-Ramsey Numbers

Recently, there has been increasing interest in the area of Gallai-Ramsey theory.
In its general form, let grk(G : H) be defined as the smallest integer n such that
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every k-coloring of a complete graph on n vertices contains either a rainbow G
or a monochromatic H, where there exists an example on n − 1 vertices with
no such subgraph. Since these numbers are bounded from above by the classical
Ramsey number for finding a monochromatic H, they must exist.

Let the multigraph Gallai-Ramsey number mgrk(G : H) be the smallest
integer n such that every (reduced) maximal rainbow G-free multigraph on n
vertices contains a monochromatic H where there exists an example on n − 1
vertices with no such subgraph. Since every such multigraph contains a complete
graph, these numbers are bounded from above by the aforementioned Gallai-
Ramsey numbers and thus exist. By Proposition 7, it follows immediately that
mgrk(K3 : K3) = 3 whereas grk(K3 : K3) = 5k/2 when k is even (and a similar
number when k is odd, see [11]) so we already see that mgr 6= gr in this case.
In general, by the above observation, we easily get the following relationship
between mgr and gr.

Fact 8. For any graphs G and H and for any integer k,

mgrk(G : H) ≤ grk(G : H).

The general behavior of the function grk(G : H) when G = K3 was established
in [11] by Gyárfás, Sárközy, Sebő and Selkow.

Theorem 9 [11]. Let H be a fixed graph with no isolated vertices. If H is not

bipartite, then grk(K3 : H) is exponential in k. If H is bipartite but not a star,

then grk(K3 : H) is linear in k.

Note that ifH is a star, the Gallai-Ramsey number is simply a constant depending
only on the size of the star and not the number of colors. A similar result holds
for maximal multigraphs.

Corollary 10. Let H be a fixed graph with no isolated vertices. If H is not

bipartite and not K3, then mgrk(K3 : H) is exponential in k. If H is bipartite

but not a star, then mgrk(K3 : H) is linear in k.

Proof. The upper bounds follow from Theorem 9 and Fact 8. The case when
H = K3 is established by the observation above so suppose H is not bipartite
and not K3 and consider the following inductive construction. Let G2 be the
graph on three vertices consisting of an edge in each of colors 1 and 2 between
every pair of vertices. To construct Gi+1, make two copies of Gi and insert all
edges in color i+1 between these copies. It can be easily shown that this colored
multigraph is maximal, reduced and contains no monochromatic H.

Next suppose H is bipartite and not a star. Letting α(H) denote the size of
the largest independent set of vertices in H, let a = |H| − α(H). Since H is not
a star, we see that a ≥ 2. Then consider the following inductive construction.
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Again let G2 be the graph on three vertices consisting of an edge in each of colors
1 and 2 between every pair of vertices. To construct Gi+1, add a− 1 vertices to
Gi with all new edges having color i+ 1. It is easy to see that this construction
is maximal, reduced and contains no monochromatic H.

For the next two results, we will use the following construction as a sharpness
example. Let G2 contain three vertices which induce a monochromatic triangle in
each of colors 1 and 2. We then build Gi+1 from Gi by adding a new vertex with
all new edges from this vertex to Gi having color i+1. This multigraph certainly
contains no rainbow triangle and no monochromatic C4 or monochromatic path
of order at least 4. It is also easy to see that this multigraph is maximal as no
edge can be added within this structure in any color without creating a rainbow
triangle.

Next we consider mgr for a monochromatic C4. A study of this problem for
general cycles in the graph context can be found in [4, 7]. In particular, in [4],
it was shown that grk(K3 : C4) = k + 4. By Fact 8, we immediately see that
mgrk(K3 : C4) ≤ k + 4 but it turns out that this bound is not sharp as seen in
our next result.

Theorem 11. For k ≥ 3, we have mgrk(K3 : C4) = k + 2.

Proof. For the lower bound, consider the construction of Gk above. Since |Gk| =
k + 1, this shows that mgrk(K3 : C4) > k + 1.

Let M be a maximal Gallai multigraph on k + 2 vertices and suppose M
contains no monochromatic C4. By Proposition 7, there exists a set of three
vertices T which induce a monochromatic triangle in two different colors, say red
and blue. Let v be a vertex in G − T . In order to avoid a monochromatic C4,
v must have at least one edge of a color i other than red or blue to T . Then,
to avoid a rainbow triangle, v must have all edges in color i to T . Next suppose
w 6= v is another vertex in G − T . Similarly, all edges between w and T must
have color j for some j other than red and blue but also, if i = j, then there
is a monochromatic C4 using v, w and two vertices of T . Thus, each vertex of
G−T must have a unique color, distinct from red and blue, to T . Since there are
only k colors available, there must be at most k− 2 vertices outside T for a total
of at most k + 1 vertices in G, a contradiction. Thus, mgrk(K3 : C4) ≤ k + 2,
completing the proof.

Next we consider some small cases of Gallai multigraph Ramsey numbers for
paths. A study of this problem for general paths in the graph context can be
found in [4]. In particular, in [4], it was proven that gr(K3 : P4) = k + 3. By
Fact 8, this means that mgrk(K3 : P4) ≤ k+3 but it turns out this bound is also
not the best possible as seen in the following result.
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Theorem 12. For k ≥ 3, the following hold:

(1) mgrk(K3 : P4) = k + 2,

(2) mgrk(K3 : P5) = k + 3,

(3) mgrk(K3 : P6) = 2k + 2,

(4) mgrk(K3 : P7) = 2k + 3.

Proof. First suppose we are finding a monochromatic P4. For the lower bound,
consider the construction of Gk above. Since |Gk| = k + 1, this shows that
mgrk(K3 : P4) > k + 1. The upper bound follows from Theorem 11 since P4 is a
subgraph of C4.

For P5, we consider the same construction as above except redefining G2 to
have 4 vertices which induce a K4 in each of two colors. Gi+1 is then constructed
from Gi as before. This graph certainly contains no monochromatic P5 and
|Gk| = k + 2 so this shows mgrk(K3 : P5) ≥ k + 3. For the upper bound, let G
be a maximal Gallai multigraph on at least k+3 vertices and let T be a double-
triangle (say in red and blue) as implied by Proposition 7. For every v ∈ G \ T ,
if v has an edge to T that is not red or blue, say green, then all edges from v to
T must be green to avoid a rainbow triangle. Furthermore, there must not exist
another vertex in G \ T with any green edges to T to avoid creating a green P5.
Finally, there is at most one vertex in G\T with a red or blue edge to T since this
vertex would also have all other red and blue edges to T and more than one such
vertex would again create a monochromatic P5. Thus, |G| ≤ 3+(k−2)+1 = k+2,
a contradiction.

For P6 and P7, the lower bound is given by a similar construction. Start with
G2 defined to be a set of 5 or 6 respectively vertices inducing a complete graph
in both colors 1 and 2. Gi+1 is then constructed from Gi by adding two vertices
with all incident edges using color i+1. This multigraph has 2k+1 (respectively
2k + 2) vertices and certainly contains no rainbow triangle but also contains no
monochromatic P6 or P7 respectively. It remains to observe that this coloring is
also maximal.

For the upper bound for P6, let G be a maximal Gallai multigraph on at least
2k vertices and let T be a double-triangle (say in red and blue) as implied by
Proposition 7. For each vertex v ∈ G\T , if v has an edge of a new color (say green)
to T , then v must have only green edges to T to avoid a rainbow triangle. In
order to avoid producing a monochromatic P6, there can be at most two vertices
in G\T with the same colors on edges to T . There can also be at most 2 vertices
with red and blue edges to T . This means that |G| ≤ 3 + 2(k − 2) + 2 = 2k + 1,
a contradiction.

For the upper bound for P7, let G be a maximal Gallai multigraph on at least
2k+1 vertices and let T be a double-triangle (say in red and blue) as implied by
Proposition 7. First suppose there is at least one vertex in G\T with at least one
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red or blue edge to T . Then, to avoid a rainbow triangle, v must have all other
red and blue edges to T . To avoid creating a monochromatic P7, there can be at
most 3 such vertices with red or blue edges to T . As in the previous cases, there
can be at most 2 vertices in G \ (T ∪{v}) with edges of a single color (other than
red or blue) to T ∪ {v}. Thus, |G| ≤ 3 + 3 + 2(k − 2) = 2k + 2, a contradiction.

This means we may assume there is no vertex v ∈ G\T with red or blue edges
to T . Then there can be at most 3 vertices in G \ T with edges in a single color
(other than red or blue) to T to avoid creating a monochromatic P7. If there are
two colors, each with 3 vertices having all edges to T , the edges between these
sets of vertices must be in these same two colors to avoid a rainbow triangle but
this easily creates a monochromatic P7. Thus, there can be at most one color i
with 3 vertices having all edges in color i to T , all other colors having at most 2
such vertices. This implies that |G| ≤ 3+3+2(k−3) = 2k, again a contradiction.

Note that this proof does not extend immediately to an upper bound formgrk(K3

: P8) since additional argument would be needed to bound the number of vertices
all having green edges to T .

4. Decomposition of Gallai Multigraphs

We now develop an iterative decomposition of Gallai multigraphs into directed
trees.

4.1. Basic techniques: maximality and dominance

Let (G = (V,E), ρ) be a Gallai multigraph (recall that ρ is an edge coloring on G).
We will in all cases assume that distinct edges connecting the same vertices are
colored distinctly. We also think of V ⊆ N and thus having a natural ordering.
We say that (G = (V,E), ρ) is uniformly colored if for all ei, ej ∈ E, we have
ρ(ei) = ρ(ej).

Let (G = (V,E), ρ) be a maximal Gallai multigraph. For u, v ∈ V , notice
that |uv| ≥ 3 if and only if uv is isolated. Therefore, if G is reduced, |uv| = 1 or 2
for all u, v ∈ V . Furthermore, if G is not reduced, we can reach a reduced Gallai
multigraph by successively collapsing isolated edges of G.

Lemma 13. Suppose (G = (V,E), ρ) is a maximal Gallai multigraph. If u, v ∈ V
and A ∈ uv, then for all B 6∈ uv, there is w ∈ V − {u, v} and C 6∈ {A,B} such

that either A ∈ uw and C ∈ wv or C ∈ uw and A ∈ wv.

Proof. Note that if |V | = 2, then uv consists of “all possible colors” and we thus
vacuously satisfy any claim about B 6∈ uv. Assume then that |V | ≥ 3.
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Since G is maximal and B 6∈ uv, we can find w 6= u, v such that u, v, w would
form a rainbow triangle if B were to be added to uv. Thus we may find X ∈
uw and Y ∈ vw such that X,Y, and B are distinct. However, since A ∈ uv,
|{X,Y,A}| ≤ 2 and thus A = X or A = Y . Let C be the other color.

While Lemma 14 will follow from our general decomposition result, Theorem 15,
we present it separately here because of its importance in understanding the most
basic structure of a maximal reduced Gallai multigraph.

Lemma 14. The vertices of a reduced maximal Gallai multigraph that are con-

nected by two edges form uniformly colored cliques.

Proof. Let (G=(V,E), ρ) be a reduced maximal Gallai multigraph. Let u, v, w ∈
V . Suppose uv = {A,B} and vw = {C,D}. If {A,B} 6= {C,D}, then we
find a rainbow triangle no matter the colors of uw. Suppose then that uv =
vw = {A,B}. Certainly uw ⊆ {A,B}. Suppose uw = A. Since B 6∈ uw,
by Lemma 13, we may find x ∈ V − {u,w} such that, without loss of generality,
A ∈ ux and C ∈ wx. To avoid a rainbow triangle in v, x, w we must have vx = C.
But this leads to a rainbow triangle in u, x, v.

Our main result given in Theorem 15 is primarily an explanation of how each of
these uniformly colored cliques are connected, and the following relation on sets
of vertices plays a central role in this analysis. Let (G = (V , E), ρ) be a Gallai
multigraph. For U, V ⊆ V disjoint, we say that U dominates V and write U → V
if and only if |UV | > 1 and

1. U = {u}, V = {v}, and u < v or

2. |U | > 1 or |V | > 1 and for every u ∈ U and v ∈ V , uv = uV .

Given U, V ⊆ V , we write Σ(U, V ) for the map from U to the powerset of UV
defined by u 7→ uV . When U → V , Σ(U, V ) completely describes the relationship
between U and V and we call it the signature of U → V .

Note that if U → V and V → U , then every pair of vertices between U and
V are connected by the same multiple colors. As we will see, our analysis will
not encounter this situation because we will quickly deal only with cases when
the vertices of U and V are connected by single edges. We also note the fact that
if U → V , then for every v ∈ V , we have U → v.

Given a reduced maximal Gallai multigraph (G = (V , E), ρ), we will de-
scribe its structure through a sequence of edge-colored mixed graphs Mn(G) =
(Vn, En,An) defined as follows:

1. V0 := V ,

2. A0 := {(u, v) ∈ V2 : u → v}, and
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3. E0 := {{u, v} ∈ [V ]2 : |ρ[uv]| = 1},

and for n ≥ 1

(1′) Vn is the partition of V induced by the weak components of Mn−1(G),

(2′) An := {(U, V ) ∈ V2
n : U → V }, and

(3′) En := {{U, V } ∈ [Vn]
2 : |ρ[UV ]| = 1}.

For each n, ρ induces a list edge-coloring, ρ′, of En ∪ An by ρ′(e) = ρ[UV ]
where e = (U, V ) or e = {U, V }. Likewise, Σ induces a partition of An by
(U1, V1) ∼Σ (U2, V2) if and only if Σ(U1, V1) = Σ(U2, V2). Note that (U1, V1) ∼Σ

(U2, V2) if and only if U1 = U2 and ρ[uV1] = ρ[uV2] for all u ∈ U1.

Figure (1) shows an example of this sequence for a particular Gallai multi-
graph. For readability, we show only those edges in Mn(G) that contribute to the
formation of directed edges in Mn+1(G). The hash marks on the directed edges
in M1(G) indicate whether the signatures agree or disagree. Notice that vertex
8 is bold. In the notation to be introduced immediately proceeding Lemma 18,
this particular vertex will be identified as 1V (G) and has the property of being
connected to the rest of G by two colors, E and F .

Figure 1. Sequence of Mn(G) for a Gallai multigraph.
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4.2. Decomposition of maximal Gallai multigraphs

We may now state our main result.

Theorem 15. Let G be a reduced maximal Gallai multigraph, H an induced

subgraph of G, and Mn(H) = (Vn, En,An) the sequence described above. Then

(1) Mn(H) is complete,

(2) |ρ′(e)| =

{
1 if e ∈ En,
2 if e ∈ An,

(3) the weak components of Mn(H) form rooted trees, and

(4) if (U, V ), (V,W ) ∈ An, then (U, V ) ∼Σ (U,W )
for all n ≥ 0.

For convenience, if Mk(H) has properties (1)–(4) for all k ≤ n, we will say that
H has the tree property for n.

4.3. Proof of Theorem 15

Throughout this section, we assume (G = (V , E), ρ) is a reduced maximal Gallai
multigraph and H an induced subgraph of G.

Lemma 16. Suppose U, V,W ⊆ V disjoint, U → V , and {A,B} = UV .

(1) If UW = C /∈ {A,B}, then VW = C.

(2) If VW = C /∈ {A,B}, then either C ∈ UW or U → W and Σ(U, V ) =
Σ(U,W ). If we also know that U → W,W → U, or |UW | = 1 and we know

that U always dominates with the same colors (i.e., whenever U → U ′, then

UU ′ = {A,B}), then either UW = C or U → W and Σ(U, V ) = Σ(U,W ).

(2’) If W is a single vertex, we need only require C ∈ VW in (2).

Proof. (1) Fix v ∈ V and w ∈ W . Since U → V , we may select uA, uB ∈ U
such that A ∈ uAv and B ∈ uBv. Observe that the triangle w, uA, v forces
vw ⊆ {A,C} while w, uB, v forces vw ⊆ {B,C}. Thus vw = C. Since v and w
were arbitrary, VW = C.

(2) Fix u ∈ U,w ∈ W, v ∈ V . Since UV = {A,B}, we are in one of the
following cases: uv = A, uv = B, or uv = {A,B}. If uv = {A,B}, then the fact
that vw = C forces uw = C and thus C ∈ UW . If uv = A, then uw ⊆ {A,C}
and thus if C 6∈ UW , then uw = A. Likewise, if uv = B, then either C ∈ uw or
uw = B. We thus have either C ∈ UW or U → W and Σ(U, V ) = Σ(U,W ).

Suppose we also know that we are in one of the following cases:

(i) U → W and UW = {A,B},

(ii) W → U , or
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(iii) |UW | = 1.

Again, if C 6∈ UW , then we must be in case (i). We would like to conclude that
if C ∈ UW , then we are in case (iii) and thus UW = C. Suppose W → U .
To avoid a rainbow triangle, UW ⊆ {A,B,C}. In particular, since |UW | ≥ 2,
A ∈ UW or B ∈ UW . Assume A ∈ UW and fix w ∈ W such that A ∈ wU . We
may then choose u ∈ U and v ∈ V such that B ∈ uv but now u, v, w is a rainbow
triangle. Thus W 6→ U and UW = C.

(2′) Let W = {w} and V = {v}. Note that we are very nearly in the original
setup of part (2). In particular, we still have U → V , UV = {A,B}, and each pair
of vertices between V and W is connected by the color C. The only place where
this relaxation might affect the proof in (2) is at the beginning where we consider
uv = {A,B}. We now know only that C ∈ VW but it follows immediately that
VW = C and the proof follows as before.

Lemma 17. H has the tree property for 0.

Proof. It is clear that M0(H) is complete. The rest of the claim is essentially a
restatement of lemma 14. By the definition of dominance between single vertices,
each complete, uniformly colored clique from Lemma 14 becomes a linear ordered
set of vertices and thus a rooted tree. In this context, property (4) of Theorem 15
is simply the observation that these cliques are uniformly colored.

Before proceeding, we introduce some convenient notation. Elements of Vn are
by definition subsets of V (H). We will however at times want to speak of their
structure as rooted trees. For U ∈ Vn, we write Υ(U) to refer to the set of
elements of Vn−1 contained in U and 1U to refer to the root of Υ(U). Notice that
1U ∈ Vn−1 has its own tree structure and thus we may refer to 11U , 111U , etc. We
may continue this recursion until we reach a single vertex. We write 1U to refer
to this single vertex. Similarly, for u ∈ V (H), we write [u]n to refer to the unique
U ∈ Vn containing u. Lastly, we point out how this notation fits together. For
U ∈ Vn, [1U ]n = U , [1U ]n−1 = 1U , [1U ]n−2 = 11U , . . . , and [1U ]0 = 1U .

We also associate a set of colors with each member of Vn as follows. For
u ∈ V0, û := ∪u→vuv and for U ∈ Vn with n > 0, Û := 1̂U . Lemma 18
demonstrates the importance of this notation.

Lemma 18. Suppose H has the tree property for n and (U, V ) ∈ An+1. Then U
always dominates with the same two colors Û , i.e.

(i) UV = Û and

(ii) |Û | = 2.

Proof. It is clear that |Û | = 2 since Û is defined inductively and dominance
between two vertices must be with exactly two colors. Likewise, (i) certainly
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holds for U, V ∈ V0. Since H has the tree property for n and U → V , |U ′V | = 1
for all U ′ ∈ Υ(U) and |UV | ≥ 2. Suppose we find C ∈ UV − Û . Then fix
UC ∈ Υ(U) such that UCV = C. If UC = 1U , then for each U ′ ∈ Υ(U) − {1U},
we may apply part (1) of Lemma 16 with 1U → U ′, 1UU ′ = Û , and 1UV = C 6∈ Û
to conclude that U ′V = C. We thus have UV = C, a contradiction.

Suppose then that 1U 6= UC and thus 1U → UC . By induction, 1UUC = Û .
We may now apply part (2) of Lemma 16 with 1U → UC , 1UUC = Û , and UC1V =
C 6∈ Û to get that either C ∈ 1U1V or 1U → 1V . The former has already been
ruled out while the latter contradicts the assumption that 1U and 1V were in
different components of Vn.

The following lemma is useful because it allows us to locate a vertex in U that is
connected to the rest of U by only the colors contained in Û .

Lemma 19. If H has the tree property for n and U ∈ Vn+1, then 1UU = Û .

Proof. By Lemma 18, |Û | = 0 or 2. Note that |Û | = 0 if and only if U = {1U}.
In this case, 1UU = Û = ∅. We now proceed with the assumption that |Û | = 2
and thus |U | ≥ 2. For n = 0, U is a nontrivial uniformly colored clique, in which
case Û is by definition 1UU .

For n ≥ 1, by induction 1U11U = 1̂U = Û . But since 11U = 1U , we have

1U1U = Û and thus Û ⊆ 1UU . By Lemma 18, 1UU ′ = Û for every U ′ ∈
Υ(U) − {1U}. Finally, given that 1U ∈ 1U , we have 1UU ′ ⊆ 1UU ′ = Û . Thus
1UU = Û .

Lemmas 20 and 21 will be used in situations where a tree is connected to another
tree or vertex by a color not present in the dominating colors of the first tree.

Lemma 20. Suppose H has the tree property for n, U, V ∈ Vn+1 distinct, and

V ′ ∈ Υ(V ) such that C ∈ UV ′ − Û . Then UV ′ = C.

Proof. Suppose that U ′ ∈ Υ(U)− {1U} such that U ′V ′ = C. Applying part (2)
of Lemma 16 with 1U → U ′ and U ′V ′ = C 6∈ 1UU ′, we get that 1UV ′ = C or
1U → V ′. Since 1U and V ′ are in different components of Vn+1, we must be in
the case 1UV ′ = C.

For each U ′ ∈ Υ(U)−{1U} we may apply part (1) of Lemma 16 with 1U → U ′

and 1UV ′ = C 6∈ 1UU ′ to get that U ′V ′ = C and thus UV ′ = C.

Lemma 21. Suppose H has the tree property for n, U ∈ Vn+1, and v ∈ V such

that 1Uv = C 6∈ Û . Then Uv = C.

Proof. First observe that v 6∈ U since by Lemma 19, 1UU = Û . Next let k be
maximal such that [1U ]kv = C. If k = n+1, we are done. Suppose k < n+1 and
select u ∈ [1U ]k+1 − [1U ]k. We may apply (1) of Lemma 16 with [1U ]k → u and
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[1U ]kv = C 6∈ [1U ]ku to get that uv = C. Thus [1U ]k+1v = C, which violates the
maximality of k.

Note that in Lemma 21 we do not require that v be in V (H) but rather in the
larger set V .

Lemma 22. For n ≥ 0, suppose H has the tree property for n and U, V ∈ Vn+1

such that UV ⊆ Û = V̂ = {A,B} Then the following statements are equivalent.

(1) U → V ,

(2) there is x ∈ V − (U ∪ V ) such that U → x and V x = C 6∈ {A,B}, and

(3) V 6→ U and UV = {A,B}.

Furthermore, when the statements are true, Σ(U, V ) = Σ(U, x).

Proof. (1 ⇒ 2) We may assume 1U1V = A. Since G is maximal and B 6∈ 1U1V ,
there is x ∈ V and C 6∈ {A,B} such that A ∈ 1Ux and C ∈ x1V or C ∈ 1Ux
and A ∈ x1V . Notice that if C ∈ 1Ux, since C 6∈ Û , |1Ux| = 1 and thus
C = 1Ux. Likewise, if C ∈ 1V x, then C = 1V x. Furthermore, in either case,
since C 6∈ 1UU = 1V V , we must conclude that x ∈ V − (U ∪ V ).

Suppose we are in the latter case, i.e. C = 1Ux and A ∈ x1V . By Lemma 21,
Ux = C. We may then apply part (1) of Lemma 16 with U → V and Ux = C 6∈
UV to get that V x = C, which contradicts our assumption that A ∈ 1V x.

We must then be in the former case, i.e. A ∈ 1Ux and C = x1V and, again
by Lemma 21, V x = C. Note that if we can show that C 6∈ Ux, we may then
apply part (2) of Lemma 16 with U → V and xV = C 6∈ UV to get that U → x
and that Σ(U, V ) = Σ(U, x), which is exactly what we would like to prove.

To this end, suppose C ∈ Ux and let k be minimal such that C ∈ [1U ]kx.
If k = 0, we have that C ∈ 1Ux and it again follows that Ux = C, which is a
contradiction. Thus k > 0. Fix u ∈ [1U ]k such that C ∈ ux. Since k is minimal,

u ∈ [1U ]k − [1U ]k−1 and thus [1U ]k−1 → u. Recall that [̂1U ]i = Û for all i ≤ n
and thus [1U ]k−1u = {A,B}.

We may now apply part (2′) of Lemma 16 with [1U ]k−1 → u and C ∈ ux to
get that either C ∈ [1U ]k−1x or [1U ]k−1 → x and Σ([1U ]k−1, x) = Σ([1U ]k−1, u).
By the minimality of k, we must be in the latter case. Then we may apply part
(2) of Lemma 16 with [1U ]k−1 → x and C = xV to get that either C ∈ [1U ]k−1V
or [1U ]k−1 → V . Both of theses cases contradict the assumption that 1UV = A.
Thus C 6∈ Ux.

(2 ⇒ 3) We may apply part (2) of Lemma 16 with U → x and xV = C 6∈ Ux
to get that either C ∈ UV or U → V and Σ(U, x) = Σ(U, V ). Since C 6∈ UV ⊆
{A,B}, we are left in the case U → V and thus UV = Û = {A,B} and V 6→ U .
We note here that we are using our earlier observation about dominance that
except in trivial cases U → V implies V 6→ U .
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(3 ⇒ 1). Again we may assume 1U1V = A. As argued in (1 ⇒ 2), we may
find x ∈ V − (U ∪ V ) such that either A ∈ 1Ux and V x = C or Ux = C and
A ∈ 1V x for some C 6∈ {A,B}.

Suppose we are in the latter case. Since V 6→ U and UV = {A,B}, there
must be UA, UB ∈ Υ(U) and V ′ ∈ Υ(V ) such that UAV ′ = A and UBV ′ = B.
Then x, UA, V

′ forces xV ′ ⊆ {A,C} while xUBV
′ forces xV ′ ⊆ {B,C}. Thus

xV ′ = C and C ∈ V x.

We may then let k be minimal such that C ∈ [1V ]kx. If k = 0, then C ∈ 1V x
and by Lemma 21 V x = C, which contradicts our assumption that A ∈ 1V x.
Therefore k > 0. As before, we select v ∈ [1V ]k − [1V ]k−1 such that C ∈ vx.
We now apply part (2′) of Lemma 16 with [1V ]k−1 → v and C ∈ xv to get that
either C ∈ [1V ]k−1x or [1V ]k−1 → x. By the minimality of k, we must be in
the latter case and we may apply part (2) of Lemma 16 with [1V ]k−1 → x and
C = 1Ux (recall our assumption that Ux = C) to get that either C ∈ 1U [1V ]k−1

or [1V ]k−1 → 1U . Both of these cases contradict the assumption that 1U1V = A.

We therefore may assume that A ∈ 1Ux and V x = C. It is either the case
that U → V or U 6→ V . If we suppose that U 6→ V , then we are in the case just
handled with the roles of U and V reversed. Since that assumption leads to a
contradiction, we have that U → V .

We have now developed sufficient technical tools to address the main points of
Theorem 15.

Lemma 23. If H has the tree property for n, then Mn+1(H) is complete.

Proof. Let U, V ∈ Vn+1. If |UV | = 1, then {U, V } ∈ En+1. Suppose then that
|UV | > 1. Notice that if Û = ∅, then U is a single vertex and thus V → U and
(V, U) ∈ An+1.

We may therefore assume |Û | = |V̂ | = 2 and consider the following cases.

Case 1. Û 6= V̂ and |UV | > 2. We may then select CU , CV ∈ UV distinct
such that CU 6∈ Û and CV 6∈ V̂ and U ′ ∈ Υ(U), V ′ ∈ Υ(V ) such that CV ∈ U ′V
and CU ∈ UV ′. By Lemma 20, U ′V = CV and UV ′ = CU and thus CV = U ′V ′ =
CU , a contradiction.

Case 2. Û 6= V̂ and |UV | = 2. Without loss of generality, we may assume
there is C ∈ UV − Û . Let UV = {C,D}. Select VC ∈ Υ(V ) such that C ∈ UVC .
By Lemma 20, UVC = C. Now select VD ∈ Υ(V ) such that D ∈ UVD. Observe
that if C ∈ UVD, then D 6∈ UVD = C. Thus UVD = D. Since UV = {C,D}
and every element of Υ(V ) is of the type VC or VD, we have accounted for every
element of Υ(V ) and thus V → U , i.e. (V, U) ∈ An+1.

Case 3. Û = V̂ = {A,B} and C ∈ UV − {A,B}. Fix UC ∈ Υ(U) such that
C ∈ UCV . By Lemma 20, UCV = C and thus for every V ′ ∈ Υ(V ), C ∈ UV ′.
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Applying Lemma 20 again, gives us that UV ′ = C and thus UV = C. Thus
{U, V } ∈ En+1.

Case 4. UV = Û = V̂ . If V 6→ U , apply (3 ⇒ 1) from Lemma 22 to get that
U → V .

Lemma 24. Suppose H has the tree property for n. The weak components of

Mn+1(H) are transitive, and if (U, V ), (V,W ) ∈ An+1, then (U, V ) ∼Σ (U,W ).

Proof. Let U, V,W ∈ Vn+1 such that U → V and V → W . By Lemma 18,
|Û | = |V̂ | = 2. We consider two cases: Û 6= V̂ and Û = V̂ .

Suppose Û 6= V̂ and let A ∈ Û − V̂ . Fix UA ∈ Υ(U) such that UAV = A and
V1, V2 ∈ Υ(V ) such that V1W 6= V2W . Fix W ′ ∈ Υ(W ). We have that UA, V1,W

′

forces UAW ′ ⊆ {A, V1W ′} while UA, V2,W
′ forces UAW ′ ⊆ {A, V2W ′} and thus

UAW ′ = A. Since W ′ was arbitrary, UAW = A. Note that since |UAW | = 1, we
have ruled out the possibility that W → U . By Lemma 23, we will be done if we
can show that |UW | > 1. Observe that we could also choose UB ∈ Υ(U) such
that UBV = B 6= A. If it happens that B 6∈ V̂ , by the same reasoning as above
UBW = B so that {A,B} ⊆ UW and thus U → W and Σ(U, V ) = Σ(U,W ).

Suppose then that Û = {A,B} and V̂ = {B,C}. We can now find UA, UB ∈
Υ(U) such that UAW = A and UBW ⊆ {B,C}. Therefore |UW | > 1 and by
Lemma 23 we have that U → W . By Lemma 18, UW = Û = {A,B} and thus
UBW = B. Therefore, Σ(U, V ) = Σ(U,W ).

We now consider the case Û = V̂ = {A,B}. Note that UW ⊆ {A,B} since
we may otherwise easily form a rainbow triangle. We now have the setup for
(1 ⇒ 2) of Lemma 22 with U → V and have x ∈ V − (U ∪ V ) such that U → x,
Σ(U, V ) = Σ(U, x), and xV = C 6∈ {A,B}. Applying part (1) of Lemma 16 to
V → W and V x = C 6∈ VW , we have that xW = C. Now apply part (2) of
Lemma 16 with U → x and xW = C 6∈ Ux to get that either C ∈ UW or U → W
and Σ(U,W ) = Σ(U, x) = Σ(U, V ). We have already ruled out the former while
the latter is what we sought to prove.

Lemma 25. Suppose H has the tree property for n. The weak components of

Mn+1(H) form rooted trees.

Proof. After Lemma 24, we need only show that for U1, U2, V ∈ Vn+1 distinct,
if U1 → V and U2 → V , then either U1 → U2 or U2 → U1. By Lemma 23, it
suffices to show |U1U2| > 1.

Suppose |U1U2| = 1. Observe that if |U1V ∪ U2V ∪ U1U2| > 2, then we
must find a rainbow triangle in U1, U2, V . Thus we may assume U1U2 = A ∈
Û1 = Û2 = {A,B}. As in the proof of Lemma 22, since Û1 = Û2, we may select
x ∈ V − (U1 ∪ U2) such that U1x = C 6∈ {A,B} and A ∈ 1U2

x (or with the roles
of U1 and U2 reversed). We may then apply part (1) of Lemma 16 with U1 → V
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and U1x = C 6∈ U1V to get that V x = C and apply part (2) of Lemma 16 with
U2 → V and V x = C 6∈ U2V to get that either C ∈ U2x or U2 → x.

First we consider the case C ∈ U2x. As before, let k be minimal such that
C ∈ [1U2

]kx. If k = 0, by Lemma 21, U2x = C, which contradicts our assumption
that A ∈ 1U2

x. Thus k > 0 and we may select u ∈ [1U2
]k − [1U2

]k−1 such that
C ∈ ux. We may apply part (2′) of Lemma 16 with [1U2

]k−1 → u and x to get
that either C ∈ [1U2

]k−1x or [1U2
]k−1 → x. By the minimality of k, we must

be in the latter case. Note that B ∈ [1U2
]k−1x = Û2 = {A,B}. Thus by our

assumptions that U1U2 = A and U1x = C, we may locate a rainbow triangle in
U1, [1U2

]k−1, x.
We turn now to the second case, U2 → x. We may apply part (2) of Lemma 16

with U2 → x and xU1 = C 6∈ U2x to get that either C ∈ U1U2 or U2 → U1, which
both contradict our assumption that U1U2 = A. Thus U1 → U2 or U2 → U1.

Taking Lemmas 18, 23, 24, and 25 together we have proved Theorem 15.

4.4. Alternative proof of Lemma 3

We now point out how it follows from Theorem 15 that every Gallai multigraph
having more than two vertices can be disconnected by the removal of two colors.

Proof. We first observe that it suffices to prove the claim for reduced Gallai
multigraphs. Let G be a Gallai multigraph with more than two vertices. If G is
not reduced, then we may form a smaller Gallai multigraph G′ by collapsing an
isolated edge in G. If removing the colors A and B disconnects G′, then it also
disconnects G. We may continue collapsing isolated edges until we reach either
a single vertex or a non-trivial reduced Gallai multigraph. In the former case,
prior to collapsing the final edge, we had two vertices connected by at most two
colors. Thus these two colors suffice to disconnect G.

We will thus be done if we can establish the claim for reduced Gallai multi-
graphs, and, in turn, it suffices to establish the claim for reduced maximal Gallai
multigraphs. Suppose then that G is a reduced maximal Gallai multigraph. By
Theorem 15, the sequence Mn(G) terminates at either a single vertex or a non-
trivial Gallai graph. In the latter case, we are done by Lemma 1.

Suppose then that Mn(G) terminates at a single vertex. It then follows from
Theorem 15 and Lemma 18 that 1V (G) is connected to G by two colors and thus
the removal of these colors disconnects G.

5. Related Future Work

One may ask if the assumption that the multigraph is complete is necessary for
these results. The definitions of maximal and reduced may have to be adjusted,



A Decomposition of Gallai Multigraphs 351

but perhaps similar structure and results can be provided for non-complete Gallai
multigraphs. Unfortunately, a complete bipartite graph with as many multiedges
as desired will never contain a rainbow triangle (or any odd cycle) so one would
have to add other restrictions.

Another avenue for possible extension is to consider forbidding rainbow
graphs other than the triangle. It has been noted in [8] that consideration of
a rainbow C4 appears to be a very difficult problem but, in following the ap-
proach of [6], one might consider a triangle with pendant edges or other similar
structures. Since we are considering multigraphs, we wonder if anything fun-
damentally different might happen if the forbidden rainbow structure is itself a
multigraph.

Certainly a consideration of other graphs H in the search for mgrk(K3 : H)
would also be of interest.
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