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Abstract

A ranking on a graph is an assignment of positive integers to its vertices
such that any path between two vertices with the same label contains a
vertex with a larger label. The rank number of a graph is the fewest number
of labels that can be used in a ranking. The rank number of a graph is
known for many families, including the ladder graph P2 × Pn. We consider
how ”bending” a ladder affects the rank number. We prove that in certain
cases the rank number does not change, and in others the rank number differs
by only 1. We investigate the rank number of a ladder with an arbitrary
number of bends.
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1. Introduction

A coloring f : V (G) → {1, 2, . . . , k} is a k-ranking of G if f(u) = f(v) implies
every u − v path contains a vertex w such that f(w) > f(u). The rank number

of a graph, χr(G), is the minimum k such that G has a k-ranking. A k-ranking
that uses χr(G) labels will be referred to as a χr-ranking. When the value of k
is clear we will refer to a k-ranking simply as a ranking.

Research on rank numbers was sparked by its applications to the scheduling
of manufacturing systems, Cholesky factorizations of matrices and VLSI layout
[11, 14]. The optimal tree node ranking problem is identical to the problem
of generating a minimum height node separator tree for a tree graph. Node
separator trees are extensively used in VLSI layout [11]. These models are suitable
for communication networks design where information flow between nodes needs
to be monitored. Similar models are applicable in the design of management
organizational structures. A matrix application was observed by Kloks, Müller,
and Wong [10].

It was shown by Bodlaender et al. [2] that for a given bipartite graph G and a
positive integer t, deciding if χr(G) ≤ t is NP-Complete. However rank numbers
have been determined for several families of graphs including: paths, cycles, split
graphs, complete multipartite graphs, Möbius ladder graphs, caterpillars, powers
of paths and cycles, and some grid graphs [1, 2, 3, 4, 6, 7, 12], and [13].

In 2009, Novotny, Ortiz, and Narayan [12] determined the rank number of
the ladder graph Ln = P2 × Pn and showed χr (P2 × Pn) = ⌊log2 (n+ 1)⌋ +
⌊

log2
(

n+ 1−
(

2⌊log2 n⌋−1
))⌋

+ 1 = ⌊log2(n+ 1)⌋+
⌊

log2

(

2(n+1)
3

)⌋

+ 1.

This result was also shown by Chang, Kuo, and Lin [4]. We consider how
the rank number behaves if the ladder has one or more ‘bends’. It turns out that
in many cases the rank number does not change, and in others it differs by only
1. In this paper we determine rank numbers for the two extreme cases of bent
ladders: the first where there is a single bend (L-shaped) and in the other the
number of bends is maximized (similar to a staircase).

2. Preliminaries

We begin by recalling a definition of Ghoshal, Laskar, and Pillone [6].

Definition 1. A k-ranking is minimal if decreasing any label violates the ranking
property.

The operation of a reduction was introduced by Ghoshal, Laskar, and Pillone [6].

Definition 2. Given a graph G and a set S ⊆ V (G) the reduction of G is a
graph G∗

S such that V (G∗
S) = V (G)−S and for vertices u and v, {u, v} ∈ E(G∗

S)
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if and only if there exists a u − v path in G with all internal vertices belonging
to S.

We present a generalization of Lemma 5 in [12] that will be used for bent lad-
ders and staircase ladders. A 1-bridge is a set of two adjacent vertices x and y

along with four edges that connect two graphs together as shown in Figure 1.
Recall that a vertex separating set of a connected graph G is a set of vertices
whose removal disconnects G. A graph is k-connected if any vertex separating
set contains at least k vertices.

Lemma 3. Let G be the union of two 2-connected graphs H1 and H2 that are

connected by a 1-bridge, where χr (H1) = χr (H2). Then χr (G) ≥ χr (H1) + 2.

Figure 1. A 1-bridge.

Proof. Assume that χr (H1) = χr (H2). Let the two added vertices be labeled
x and y. We consider cases for different minimal rankings of G. We will show in
each case there is a vertex with a label greater than or equal to χr (H1) + 2.

Case (i). There exists a vertex in each copy of Ls labeled χr (H1). Since the
highest two labels are unique in the ranking, we have χr (G) ≥ χr (H1) + 2.

Case (ii). There exists a vertex in each copy of Ls labeled χr (H1) + 1.
Since the vertex with the highest label must be unique it follows that χr (G) ≥
χr (H1) + 2.

Case (iii). There exists a vertex u in one copy of H1 labeled χr (H1) and one
vertex v in the other copy of H1 labeled χr (H1) + 1. Without loss of generality
assume v is in the copy of H1 on the right side. Since the ranking of G is minimal
the vertices in the copy of H1 on the left side include labels 1, 2, . . . , χr (H1) and
vertices in the copy of H1 on the right side include labels 1, 2, . . . , χr (H1) − 1,
χr (H1)+ 1. Let w and z be the two vertices in G labeled χr (H1)− 1. Note that
there are two edge disjoint paths from w to x and two edge disjoint paths from z

to x. Hence there must be a path from w to z that avoids both u and v. Hence
either x or y must be labeled at least χr (H1) + 2.
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We define Ln to be critical if χr (Ln) = χr (Ln−1) + 1 for n ≥ 2. It was shown
by Novotny, Ortiz, and Narayan [12] that a ladder Ln is critical if and only if
n = 2k − 1, or 2k + 2k−1 − 1 for any k ≥ 1.

Lemma 4. Let k ≥ 2 and n = 2k−2 or 2k+2k−1−2. Then χr(Ln)−χr(Ln
2
) = 1.

Proof. Recall that χr (P2 × Pn) = ⌊log2(n+ 1)⌋+
⌊

log2

(

2(n+1)
3

)⌋

+ 1.

Case (i). n = 2k − 2.

χr(Ln)− χr(Ln
2
) =

(

⌊

log2(2
k − 2 + 1)

⌋

+
⌊

log2

(

2(2k−2+1)
3

)⌋)

−
(

⌊

log2(2
k−1 − 1 + 1)

⌋

+
⌊

log2

(

2(2k−1−1+1)
3

)⌋)

=
⌊

log2(2
k − 1)

⌋

−
⌊

log2(2
k−1)

⌋

+
⌊

log2

(

2(2k−2+1)
3

)⌋

−
⌊

log2

(

2(2k−1−1+1)
3

)⌋

=
⌊

log2

(

2k+1−2
3

)⌋

−
⌊

log2

(

2k

3

)⌋

.

Since there is only one power of 2 between 2k+1−2
3 and 2k

3 ,
⌊

log2

(

2k+1−2
3

)⌋

−
⌊

log2

(

2k

3

)⌋

= 1.

Case (ii). n = 2k + 2k−1 − 2.

χr(Ln)− χr

(

Ln
2

)

=
(

⌊

log2(2
k + 2k−1 − 2 + 1)

⌋

+
⌊

log2

(

2(2k+2k−1−2+1)
3

)⌋)

−
(

⌊

log2(2
k−1 + 2k−2 − 1 + 1)

⌋

+
⌊

log2

(

2(2k−1+2k−2−1+1)
3

)⌋)

=
⌊

log2(2
k + 2k−1 − 2 + 1)

⌋

−
⌊

log2(2
k−1 + 2k−2 − 1 + 1)

⌋

+
⌊

log2

(

2(2k+2k−1−2+1)
3

)⌋

−
⌊

log2

(

2(2k−1+2k−2−1+1)
3

)⌋

=
⌊

log2(2
k + 2k−1 − 2 + 1)

⌋

−
⌊

log2(2
k−1 + 2k−2 − 1 + 1)

⌋

+
⌊

log2

(

3·2k−2)
3

)⌋

−
⌊

log2

(

3·2k−1)
3

)⌋

= 1 + (k − 1)− (k − 1) = 1.

3. Bent Ladders

We define a bent ladder BLn(a, b) to be the union of La and Lb that are joined at
a right angle with a single L2, so that n = a+ b+2. We note that b is implicitly
determined by n. An example of a bent ladder is shown in Figure 2.

Theorem 5. Let BLn(a, b) be the bent ladder composed of La, Lb, and L2 where

n = a+ b+ 2.

Then χr (BLn(a, b)) =







χr (Ln)− 1 if n = 2k − 1 for some k ∈ Z+

and a ≡ 2 or 3 (mod 4),
χr (Ln) otherwise.
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Figure 2. The bent ladder BLn(a).

We use a series of lemmas to prove the result.

Lemma 6. χr (BLn) ≤ χr (Ln) for all n.

Proof. It was shown in [12] that there exists a χr-ranking of Ln where the label
1 is placed on alternating vertices. We consider such a labeling here. Label the
vertices in La as they are in the first a rungs of Ln. Label the vertices of Lb as
they are in the last b rungs of Ln. The remaining four vertices are labeled as
shown in Figure 2. The remaining two rungs at the bend will have two vertices
labeled 1. Let d, e be the other two labels. Without loss of generality assume
d < e and e is on the rung adjacent to a vertex in La. Let c be the label on the
rung of Lb adjacent to the vertex on the joining L2 that is not labeled 1.

Now we show that the labeling f of BLn is a ranking. It may be helpful to
refer to Figure 3. We consider two vertices x and y where f(x) = f(y). If x and
y are both in La or both in Lb then the ranking condition must be met. Finally
consider the case where x ∈ V (La) and y ∈ V (Lb). There are two x, y paths in
Ln one passing through d and another passing through e. Hence e > d > f(x).
Since d or e will be on the path from x to y in BLn the ranking property is met.
Hence the labeling f of BLn is a ranking.

Figure 3. Transforming a ladder into a single bent ladder

We give the following definition that will be used in the next lemma. Given a
vertex x we say that x has path access to i if there exists a path from x to a
vertex labeled i that avoids any vertex with a label larger than i.
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Lemma 7. Let k ≥ 2 and n = 2k − 2 or 2k + 2k−1 − 2. Then in any χr-ranking

of Ln, the highest two labels occur diagonally opposite in the central two rungs,

and there is a vertex labeled 1 on each end of the ladder that has path access to

each of the labels i = 2, . . . , χr(Ln).

Proof. The lemma is true for all χr-rankings of L2 and L4. Suppose the lemma
holds for Ln. Consider L2n+2. Not placing the labels χr(Ln)+1 and χr(Ln)+2 on
the center two rungs will leave the ladder Ln

2
to be labeled with only χr(Ln)− 2

labels which is impossible by Lemma 4.

We define a sequence {gn} that will be used in the following lemma. Let
hi = α + 1 where 2α is the highest power of 2 that divides i. Then replace each
t ≥ 2 in {hn} with the terms 2t− 2 and 2t− 1 in either order. Finally add 1 to
each of the terms to get the sequence {gn}.

Lemma 8. Let f be minimal χr-ranking of L2k+2k−1−2 where vi,j is the vertex

in the i-th row and j-th column. Then f(vi,j) = 1 if i+ j is even and f(vi,j) = gj
if i+ j is odd.

Proof. This lemma is true for all χr-rankings of L4. Suppose the lemma holds for
Ln. Consider L2n+2. Note that if n = 2k +2k−1 − 2 then 2n+2 = 2k+1 +2k − 2.
By Lemma 8 the highest two labels must lie on opposite corners of the center two
rungs. The remaining structure follows by induction.

We illustrate an example of a labeling in Figure 4.

Figure 4. Note that labels within an oval may be interchanged.

We next define a sequence {wn} that will be used in the upcoming Lemma. Let
zi = α + 1 where 2α is the highest power of 2 that divides i. Then replace each
t ≥ 1 in {zn} with the terms 2t and 2t+ 1 in either order to obtain {wn}.

Lemma 9. Let h be a χr-ranking of L2k−2. Let vi,j be the vertex in the i-th row

and j-th column. Then if i + j is odd then h(vi,j) = wj. If j ≡ 1 (mod 4) and

i = 1 or j ≡ 2 (mod 4) and i = 2 then h(vi,j) = 1. If j ≡ 3 (mod 4) and i = 1
or j ≡ 0 (mod 4) and i = 2 then h(vi,j) = 1 or 2.
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Proof. Observe that the lemma holds for L2. Then note that if n = 2k − 2 then
2n+2 = 2k+1−2. Suppose the lemma holds for Ln. Consider L2n+2. By Lemma
8 the highest two labels must lie on opposite corners of the center two rungs. The
remaining structure follows by induction.

We illustrate an example of a labeling in Figure 5.

Figure 5. An example of a labeling.

Lemma 10. χr (Ln)− 1 ≤ χr (BLn) ≤ χr (Ln) for all n.

Proof. Contract the three vertices x,y, and z at the bend in BLn into a single
vertex labeled with m = max{x, y, z}, and note that this gives a valid ranking of
Ln−1. See Figure 6.

Hence χr (BLn) ≥ χr (Ln−1). By Lemma 6, χr (Ln−1)≤ χr (BLn) ≤ χr (Ln).
Noting that χr (Ln) = χr (Ln−1) or χr (Ln−1) + 1 gives the desired result.

Figure 6. A valid ranking of Ln−1.

The combination of Lemmas 6 and 10 gives the rank numbers for all BLn where
Ln is not a critical ladder. We consider the following case involving the non-
critical ladder L10.

Example 11. Let n = 10. Recall that χr (L9) = χr (L10) = 5. By Lemma
6 we have χr (BL10) ≤ χr (L10) = 5. Lemma 10 implies that the labels in



316 P. Richter, E. Leven, A. Tran, B. Ek, J. Jacob and D.A. Narayan

any k-ranking of BL10 can be used to form a k-ranking of L9. Then we have
5 = χr (L9) ≤ χr (BL10) ≤ χr (L10) = 5. Hence χr (BL10) = 5.

However we see in this next example that this approach cannot be extended to
critical ladders.

Example 12. Let n = 11. Recall that χr (L10) = 5 and χr (L11) = 6. Lemmas
6 and 10 give that 5 = χr (L10) ≤ χr (BL10) ≤ χr (L11) = 6. Hence 5 ≤
χr (BL10) ≤ 6.

As a result we must consider cases of χr (BLn) where Ln is a critical ladder
separately. We address these cases in the next three lemmas.

Lemma 13. For k ≥ 2, χr

(

BL2k+2k−1−1

)

= χr

(

L2k+2k−1−1

)

.

Proof. It was shown in [12] that χr (L2j+2j−1−1) = 2j + 1. We proceed by in-
duction on k. For the base case k = 2, it is easy to verify that χr (BL5) =
χr (L5) = 5. Assume that χr (BL2j+2j−1−1) = χr (L2j+2j−1−1) for some j. Con-
sider BL2j+1+2j−1 as one copy of BL2j+2j−1−1 and one copy of L2j+2j−1−1 joined
by a 1-bridge. By induction we have that χr (BL2j+2j−1−1) = χr (L2j+2j−1−1)
= 2j + 1. Application of the bridge lemma gives that χr (BL2j+1+2j−1) =
χr (L2j+1+2j−1) = 2(j + 1) + 1.

In our next two lemmas we investigate χr

(

BL2k−1

)

. Let BL2k−1 be composed of
ladders La and Lb joined by a L2. We make the following observations which will
be helpful in the proofs of Lemmas 14 and 15. We have that a+ b = 2k − 3 ≡ 1
(mod 4). In Lemma 14 we consider the case where a ≡ 0 (mod 4) (which implies
that b ≡ 1 (mod 4)). In Lemma 15 we consider the case where a ≡ 2 (mod 4)
(which implies that b ≡ 3 (mod 4)).

Lemma 14. Let k ≥ 3. Consider BL2k−1 as two ladders, La and Lb, joined by

an L2. If a ≡ 0 (mod 4) or a ≡ 1 (mod 4), then χr

(

BL2k−1

)

= χr

(

L2k−1

)

.

Proof. Recall that χr (L2j−1) = 2j [12]. We proceed by induction on k. For
the base case k = 3, there is only one bent ladder where a ≡ 0 (mod 4) or
a ≡ 1 (mod 4). This is precisely the case where a = 1 and b = 4. Since
this graph is composed of two copies of L3 joined by a 1-bridge, we have that
χr (BL7) = χr (L7) = 6. Assume that χr (BL2j−1) = χr (L2j−1) for some j.
Consider BL2j+1−1 as one copy of BL2j−1 and one copy of L2j−1 joined by an
L1. By induction we have that χr (BL2j−1) = χr (L2j−1) = 2j. Application of
the Lemma 4 gives that χr (BL2j+1−1) = χr (L2j+1−1) = 2(j + 1).

Lemma 15. Consider BL2k−1 as two ladders, La and Lb, joined by an L2. If

a ≡ 2 (mod 4) or a ≡ 3 (mod 4), then χr

(

BL2k−1

)

= χr

(

L2k−1

)

− 1.
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Proof. Without loss of generality suppose that a ≡ 2 (mod 4). By Lemma 10,
χr

(

BL2k−1

)

= χr

(

L2k−1

)

or χr

(

L2k−1

)

− 1. We exhibit an explicit ranking
using χr

(

L2k−1

)

− 1 = χr

(

L2k−2

)

labels. Rank L2k−2 with χr labels choosing
all vertices marked with a star to be 1. Then at the a-th rung of L2k−2, relabel
the vertex labeled 1 with 2. If the vertices of the (a − 1) rung are 1 and 3 this
gives a ranking. Otherwise if the vertices of the (a − 1) rung are 1 and 2 then
the the vertices of the (a− 2) rung are 1 and 3; exchanging the labels 2 and 3 on
these 2 rungs gives a ranking. Expand the vertex labeled 2 at the a-th rung into
three vertices x,y, and z as follows, where x = 1, y = 2, z = 1. Note that this is
a ranking of BL2k−1 using χr

(

L2k−1

)

− 1 labels.

Proof of Theorem 5. Note that the theorem holds for n = 2, 3, and 4. We
proceed by induction on j for all values of n in the interval 2j + 2j−1 − 1 ≤ n ≤
2j+1 + 2j − 1. Suppose n = 2j + 2j−1 − 1. By Lemma 13, χr (BLn) = χr (Ln).
Suppose 2j + 2j−1 ≤ n ≤ 2j+1 − 2. Since χr

(

L2k+2k−1−1

)

= χr (L2j+1−2) by
Lemma 6 we have χr (BLn) ≤ χr (Ln) = χr (L2j+2j−1−1). Hence χr (BLn) =
χr (L2j+2j−1−1) = χr (Ln). If n = 2j+1 − 1 then by Lemmas 14 and 15 the
claim holds. If 2j+1 ≤ n ≤ 2j+1+ 2j − 2 then contracting the three vertices
x,y, and z at the bend of BLn gives a ranking of Ln−1. Note that in this case,
χr (Ln) = χr (Ln−1). Hence χr (BLn) ≥ χr (Ln−1) = χr (Ln). Finally by Lemma
6, χr (BLn) = χr (Ln). This completes the inductive step.

Corollary 16. For all n 6= 2k − 1, χr (BLn) = χr (Ln) regardless of where the

ladder is bent.

4. Staircase Ladders

In this section we investigate ladders with a maximum number of bends. We
call these graphs staircase ladders. We define a staircase ladder SLn to be a
graph with n− 1 subgraphs S1, S2, . . . , Sn−1 each of which are isomorphic to C4.
The staircase ladder is placed on a grid with the vertices of the subgraphs as
follows: v(S1) = {(0, 0), (0, 1), (1, 1), (1, 0)}, v(S2) = {(1, 0), (1, 1), (2, 1), (2, 0)},
v(S3) = {(1, 1), (1, 2), (2, 2), (2, 1)}, v(S4) = {(2, 2), (2, 3), (3, 3), (3, 2)}. For 0 ≤
j ≤

⌈

n−1
2

⌉

, v(s2j+1) = {(j, j), (j, j+1), (j+1, j+1), (j+1, j)}. For 0 ≤ j ≤
⌊

n−1
2

⌋

,
v(s2j) = {(j + 1, j), (j + 1, j + 1), (j + 2, j + 1), (j + 2, j)}.

The graph of SL8 is shown in Figure 7. The staircase ladders SLn has n−1
induced subgraphs isomorphic to C4 (squares).

Theorem 17. We have

χr(SLn) =

{

χr(Ln+1) if n = 2k + 2k−1 − 2 for some k ≥ 3,
χr(Ln) otherwise.

We use a series of lemmas to establish the result.
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Figure 7. The graph SL8.

Lemma 18. For all n ≥ 1, χr(SL2n+2) ≥ χr(SLn) + 2.

Proof. This follows from Lemma 4.

Lemma 19. For all j ≥ 2, χr (SL2j−2) ≥ χr(L2j−2).

Proof. It is clear that the result holds for j = 2. Suppose the statement holds
for j − 1. By Lemma 18, χr (SL2j−2) ≥ χr(SL2j−1−2) + 2 ≥ χr(L2j−1−2) + 2 =
χr (L2j−2). Hence the lemma holds for all j.

Lemma 20. For all n ≥ 1, χr(SLn) ≤ χr

(

P 2
n+1

)

+ 1 = χr (Ln+1).

Proof. Consider the following labeling of SLn. Label all vertices of degree 2 with
1, except for the bottom left and top right corners. The reduction of this graph is
P 2
n+1. Labeling the remaining vertices using the labels {2, 3, . . . , χr

(

P 2
n+1

)

+1 =
χr (Ln+1)} gives the desired result.

We recall the labeling h of Ln defined in Lemma 9. For a staircase graph SLn let
v1,j be the j-th vertex of the path along the top of the staircase and let v2,j be the
j-th vertex along the bottom of the staircase graph. We then label the vertices
of the staircase using a labeling σ where σ(v1,j) = h(v1,j) and σ(v2,j) = h(v2,j)
and σ(v2,2i+1) = 1 for all 1 < i <

⌊

n
2

⌋

. An example of a staircase labeled with σ

is given in Figure 8.

Lemma 21. For all j ≥ 2, χr (SL2j−2) = χr(L2j−2), χr (SL2j−1) = χr (SL2j−2)
+1 = χr(L2j−1). Furthermore in a χr-ranking of χr (SL2j−2) the corner vertices

with label 1 have path access to all labels in the set {1, 2, . . . , χr (SL2j−2) + 1},
and every χr-ranking of χr (SL2j−2) has the recursive structure defined by σ.

Proof. Note that the lemma is true for all χr-rankings of χr (SL2) and χr (SL6).
Suppose the lemma holds for SL2j−2, for all k ≥ 3. Consider SL2j+1−2 as the
union of two copies of SL2j−2 connected by four central vertices, label the vertex
of degree 4 as χr (SL2j−2) + 1, and label the other two vertices 1 if they are
adjacent to a vertex labeled 2, or 1 or 2 otherwise. Note that this is a ranking
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Figure 8. Note that labels within an oval may be interchanged.

of SL2j+1−2 using χr (SL2j−2)+2 labels having the recursive structure described
above. Note that the vertices labeled 1 on the ends have path access to all
labels {1, 2, . . . , χr (SL2j−2) + 2}. Hence χr (SL2j+1−2) ≤ χr (SL2j−2) + 2 =
χr (L2j−2) = χr (L2j+1−2). By Lemma 19, χr (SL2j+1−2) = χr (L2j+1−2).

Let r = χr (SL2j−2). We next prove that there does not exist a χr-ranking of
SL2j+1−2 with a different structure that the one given above. Consider SL2j+1−2

as the union of two copies of SL2j−1 sharing a single vertex a, plus an extra
vertex d. See Figure 9.

Figure 9. Joining of two staircase ladder graphs.

If either copy of SL2k−2 uses r labels then a and d must have labels greater than
r. Hence we will only consider the case where one of the top two labels is in each
copy. If a is neither r + 1 nor r + 2, and these labels occur once in the left and
right copies of SL2j−1. Note that the label r must be unique. Note that a = r,
otherwise there will exist a ranking of SL2j−1 that uses r labels.

First we consider the case where one of the vertices b or c is labeled using
r+1 or r+2. Then SL2j−2 can be ranked with r labels, which is a contradiction.

Next we consider the case where neither b or c is labeled r + 1. Then
since the removal of r, r + 1, and r + 2 do not disconnect the graph, there
is a path between vertices labeled r − 1 from each copy of SL2j−1. To show
χr (SL2j+1−1) = χr (SL2j+1−2)+1, suppose χr (SL2j+1−1) = χr (SL2j+1−2). Con-
sider SL2j+1−1 as a copy of SL2j+1−2 connected to an extra rung, L1. The extra
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rung is connected to a corner vertex of SL2j+1−2 labeled 1 with path access
to {1, 2, . . . , χr (SL2j+1−2)} which is a contradiction. Hence χr (SL2j+1−1) ≥
χr (SL2j+1−2) + 1 = χr (L2j+1−2) + 1 = χr (L2j+1−1) = χr (L2j+1). By Lemma
20, χr (SL2j+1−1) = χr (L2j+1) = χr (SL2j+1−1). This completes the inductive
step.

Lemma 22. For j ≥ 3, χr (SL2j+2j−1−2) = χr (L2j+2j−1−1).

Proof. We first show that χr (SL10) ≥ 7. Let SL′
4 be the graph consisting of

SL4 along with a pendant edge as shown in Figure 10.

Figure 10. SL4 with a pendant edge.

Figure 11. SL4, SL5, and SL6.

By inspection we can see that χr (SL
′
4) = 5. Since SL10 is a 2-connected

graph and is the union of two copies of SL′
4 plus two additional vertices we

have that χr (SL10) ≥ 7 by Lemma 3. Let j ≥ 2 and suppose that the claim
holds for j. Then χr (SL2j+1+2j−2) ≥ χr (SL2j+2j−1−2) + 2 by Lemma 18. So
χr (SL2j+2j−1−2) ≥ χr (SL2j+2j−1−2) + 2 = χr (L2j+2j−1−1). By Lemma 20,
χr (SL2j+1+2j−2) = χr (L2j+2j−1−1) and the claim holds. The result clearly holds
for 1 ≤ n ≤ 3 since SLn = Ln. We next consider the cases 4 ≤ n ≤ 6. It is known
that χr(L4) = 4 and χr(L5) = 5 [12]. Since L4 is a subgraph of SL4 we have that
χr(SL4) ≥ 4. The labeling in Figure 11 (a) gives the reverse inequality. Since
SL5 contains the subgraph SL′

4 (as shown in Figures 11 (a) and (b)) it follows
that χr(SL5) ≥ 5. The labeling shown in Figure 11 (c) shows that χr(SL6) ≤ 5.
Hence 5 = χr(SL5) = χr(L5).
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Let n ≥ 7. The proof proceeds by induction on j for values of n in the interval
[2j − 1, 2j+1 − 1) for j ≥ 3.

2k − 1 ≤ n ≤ 2k + 2k+1 − 3. Note that χr (Ln) = χr (Ln+1). By Lemma
20, we have χr (SL2j−1) ≤ χr (SLn) ≤ χr (Ln+1). By Lemma 21, χr (SL2j−1) =
χr (L2j−1) = χr (Ln+1). Hence χr (SLn) = χr (Ln). If n = 2k + 2k−1 − 2 then
χr (SLn+1) by Lemma 22. If 2k+2k+1−1 ≤ n ≤ 2k+1−2, then χr (SL2j+2j−1−2) =
χr (L2j+2j−1−1) ≤ χr (SLn) ≤ χr (L2j+1−2) = χr (SL2j+1−2) by Lemmas 21 and
22. But since χr (L2j+2j−1−1) = χr (L2j+1−2), χr (L2j+2j−1−2) = χr (L2j+1−2).
Hence χr (SLn) = χr (Ln) as desired. This completes the inductive step.

5. Ladders with Multiple Bends

With ladders with a single bend, the direction of the bend is not important, as
they will result in isomorphic graphs. However for ladders with multiple bends
both the directions and the locations of the bends can have an impact on the
rank number. We will use the notation BLm

n to denote a bent ladder of length n

with m bends.
It was shown by Novotny, Ortiz, and Narayan [12] that a ladder can be

optimally ranked so that there is an pattern of alternating ones (see Figure 11(a)).
In some cases the labelling pattern from a ladder graph can be adapted to fit a
bent ladder, as is the case in Figure 11 (b). However if the bends are in a different
direction and in different places, the rank number can increase. We will define a
‘bad bend’ when the alternating labeling is forced to label a vertex of degree 4
with a 1. A bend is defined to be a ‘good bend’ otherwise. We describe this in
the next example.

Example 23. We start with the ladder P2 × P10. It was shown by Novotny,
Ortiz, and Narayan [12] that χr (P2 × P10) = 6.

The labeling shows that the rank number of the graphs in Figures 12 (a) and (b)
is less than or equal to 6. However the graph shown in Figure 12 (c) has a bad
bend and a rank number of at least 7. To see this note that a 6-ranking would
force the two circled vertices to be labeled 5 and 6 and labeling the remaining
vertices with 1, 2, 3, and 4 does not permit a ranking.

The following two lemmas can serve as the base cases for generalizing the
upper bound for the rank number of a ladder with an arbitrary number of bends.
In Lemma 24 we consider a ladder with only good bends, and in Lemma 25 we
consider a ladder with one bad bend.

Lemma 24. Let BL2
n be a ladder with two good bends. Then χr

(

BL2
n

)

≤ χr (Ln)
for all n.
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Figure 12. One ladder with two bent ladders.

Proof. Consider a χr-ranking of Ln+1 labeled with alternating ones. We label
the vertices in La as they are in the first a rungs of Ln+1. Label the vertices of
Lb as they are in the rungs from a+ 3 ≤ m ≤ a+ 2 + b and label the vertices in
Lc as they are in the last c rungs of Ln+1. The remaining vertices can be labeled
as shown in Figure 13. The first graph shows the case when the length of the
middle ladder is odd and the second graph shows where the length of the middle
ladder is even. Let c and f be the vertices on the ends of Lb that are not labeled
1.

Figure 13. Ladder graphs with the central ladder having an odd or even length.

The two configurations of a ladder with two bends are shown below in Figure 14.
We consider two vertices x and y where f(x) = f(y). If x and y are both in La,
Lb, and Lc then the ranking condition must be met. If x ∈ V (La) and y ∈ V (Lb),
then the paths between them must go through either d or e. If x ∈ V (La) and
y ∈ V (Lc) then the path must go through d or e and g or h. Finally, if x ∈ V (Lb)
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and y ∈ V (Lc) then the path between them must go through g or h.

Figure 14. A double bent ladder with the central ladder having odd or even length.

Here M = max(d, e) and m = min(d, e).

Lemma 25. Let BL2
n be a ladder with one good bend and one bad bend. Then

χr

(

BL2
n

)

≤ χr (Ln+1) for all n.

Proof. Consider a χr-ranking of Ln+1 labeled with alternating ones. We label
the vertices in La as they are in the first a rungs of Ln+1. Label the vertices of
Lb as they are in the rungs from a+ 3 ≤ m ≤ a+ 2 + b and label the vertices in
Lc as they are in the last c rungs of Ln+1. The remaining vertices can be labeled
as shown in Figure 15. The first graph shows the case when the length of the
middle ladder is odd and the second graph shows where the length of the middle
ladder is even. Let c and f be the vertices on the ends of Lb that are not labeled
1. Without loss of generality, we assume the bend between Lb and Lc is the bad
bend.

Figure 15. Ladder graphs with the central ladder having an odd or even length.

The two configurations of a ladder with two bends are shown in Figure 16. We
consider two vertices x and y where f(x) = f(y). If x and y are both in La, Lb,
and Lc then the ranking condition must be met. if x ∈ V (La) and y ∈ V (Lb),
then the paths between them must go through either d or e. If x ∈ V (La) and
y ∈ V (Lc) then the path must go through d or e, and g or h and k. Finally, if
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x ∈ V (Lb) and y ∈ V (Lc) then the path between them must go through g or h

and k.

Figure 16. A double bent ladder with the central ladder having odd or even length.

Here M = max(d, e) and m = min(d, e).

We next explore the ladders with t > 2 bends. We note that after the first bend
there are two choices for each additional bend so number of cases to consider
grows exponentially. However present some general results when all of the bends
are good bends.

Lemma 26. Let BLt
n be a ladder with t good bends. Then χr

(

BLt
n

)

≤ χr (Ln)
for all n.

Proof. We will proceed by induction on t. The base case of t = 1 is trivial.
Assume the hypothesis is true t = j. Consider a χr-ranking of BL

j
n. Suppose

that χr

(

BL
j
n

)

≤ χr (Ln). Label the vertices in La as they are in the first

a rungs of BL
j
n and label the vertices of χr

(

BL
j
b

)

as they are in the last b

rungs of BLn. The remaining vertices are labeled as shown in Figure 17 (a).
Consider the labeling of BLt+1

b shown in Figure 17 (b) where M = max(r, s) and
m = min(r, s). To see that this is labeling a ranking consider two vertices x and y

where f(x) = f(y). If x and y are both in La or BL
j
b then the ranking condition

holds. If x ∈ La and y ∈ BL
j
b then any path between them must pass through

either m or M , and hence is a ranking. Then χr

(

BLt+1
n

)

≤ χr (Ln). The proof
then follows by induction.

Lemma 27. Let BLt
n be a ladder with t good bends. Then χr (Ln−t) ≤ χr

(

BLt
n

)

≤ χr (Ln) for all n.

Proof. Consider a χr-ranking of BLt
n. By Lemma 10, χr

(

BL1
n

)

≥ χr (Ln−1).
Assume the formula holds for χr

(

BLt
n

)

. Then we construct BLt+1
n as shown in

Figure 18. Let M = max{x, y, z}. Then the labeling is a ranking of BLt
n−1. Thus

χr

(

BLt+1
n

)

≥ χr

(

BLt
n−1

)

, and since χr

(

BLt
n−1

)

≥ χr (Ln−1−t), χr

(

BLt+1
n

)

≥
χr (Ln−1−t). The proof then follows by induction on t.
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Figure 17. Adding an additional good bend to a ladder with multiple bends.

Figure 18. Unbending a ladder.

We can apply the result involving the rank number of a ladder, to obtain new
results for some ladders with multiple good bends.

Theorem 28. Let t ≤ 2j−1 − 1. Then

χr

(

BLt
n

)

=

{

2j when 2j + t− 1 ≤ n ≤ 2j + 2j−1 − 2,
2j + 1 when 2j + 2j−1 + t− 1 ≤ n ≤ 2j+1 − 2.

Proof. Let 2j + t− 1 ≤ n ≤ 2j + 2j−1 − 2.

It was shown in [12] we have that χr (Ln) = 2j whenever 2j − 1 ≤ n ≤
2j+2j−1−2. Then as long as 2j+t−1 ≤ 2j+2j−1−2 we have χr (Ln−t) = χr (Ln).

χr (L2j−1) = χr (L2j+2j−1−2) = 2j. However we need to stay in this range
when we subtract t. Hence we have t ≤ 2j−1 − 1. This inequality insures that
our upper bounds are at least as big as our lower bounds. For the sake of com-
pleteness, we include the details.

Note that t ≤ 2j−1 − 1

⇔ 2j−1 + t ≤ 2j−1 + 2j−1 − 1 = 2 · 2j−1 − 1 = 2j − 1

⇔ 2j + 2j−1 + t ≤ 2j+1 − 1

⇔ 2j + 2j−1 + t− 1 ≤ 2j+1 − 2.

For the second set of bounds, t ≤ 2j−1 − 1

⇔ t+ 1 ≤ 2j−1

⇔ 2t+ 2 ≤ 2j

⇔ 2j+1 + 2t+ 2 ≤ 2j+1 + 2j
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⇔ 2j + t+ 1 ≤ 2j + 2j−1

⇔ 2j + t− 1 ≤ 2j + 2j−1 − 2.

We next consider the inclusion of bad bends in a ladder.

Lemma 29. Let q be the number of bad bends. Then χr (BLm
n ) ≤ χr (Ln+q) for

all n and m.

Proof. Consider a χr-ranking of BLm
n labeled with alternating ones. There are

two possible ways to extend BLm
n to BLm+1

n , where the (m+1)-st bend is either
good or bad. If the bend is good then label the vertices in La as they appear
in the first a rungs of BLm

n . Then label the vertices of BLm
b as they appear in

the last b rungs of BLm
n . If the bend is bad then label the vertices in La as they

appear in the first a rungs of BLm
n+1. Then label the vertices of BLm

b as they
appear in the last b rungs of BLm

n+1. For both cases the remaining vertices can
be labeled as shown in Figure 19.

Figure 19. Labelings for a ladder graph with multiple bends.

Figure 20. Adding an additional bend to a ladder with multiple bends,

where M = max(d, e) and m = min(d, e).

We illustrate the bending of the ladder in Figure 20. We consider two vertices
x and y where f(x) = f(y). If x and y are both in V (La) or both in V (BLm

b )
then it is clear that the labeling is a ranking. If x ∈ V (La) and y ∈ V (BLm

b ),
then the paths between them must go through r or s as before, meeting the
ranking condition. We will have one of two cases (i) χr

(

BLm+1
n

)

≤ χr (BLm
n ) ≤

χr (Ln+q) or (ii) χr

(

BLm+1
n

)

≤ χr (BLm
n ) ≤ χr (Ln+q+1). In either case we have

χr

(

BLm+1
n

)

≤ χr

(

Ln+q′
)

where q′ is the number of bad bends that are added.
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Lemma 30. χr (BLm
n ) ≤ χr

(

L
n+⌊m

2 ⌋

)

for all m and n.

Proof. The number of bad bends in a ladder with m bends is bounded by
⌊

m
2

⌋

.
Since for every x ≥ y, χr (Lx) ≥ χr (Ly) we have that χr (BLm

n ) ≤ χr (Ln+q) ≤

χr

(

L
n+⌊m

2 ⌋

)

for all n and m.

It turns out that bending the ladder has a relatively small impact on the number.
We show that the rank number can increase by at most one.

Figure 21.
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Theorem 31. For any ladder with multiple bends, the rank number is either

χr (Ln) or χr (Ln) + 1.

Proof. Let f be a χr-ranking Ln. Let G be the graph obtained by subdividing
each horizontal edge of the ladder Ln. Then we construct another ranking f ′ of
G by letting f ′(v) = 1 for all of the new vertices v, and let f ′(v) = f(v)+1 for all
vertices that appear in Ln and G. We can make bends by drawing G on a grid
and “making turns” using the new vertices. The edges along the inside corners
can be contracted keeping the largest label to obtain a ranking of the desired
bent ladder. These steps are illustrated in Figure 21 (a)–(d).
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