Note

A NOTE ON FACE COLORING ENTIRE WEIGHTINGS OF PLANE GRAPHS ${ }^{1}$

Stanislav Jendrol' and Peter Šugerek
Institute of Mathematics, Faculty of Science, Pavol Jozef Šafárik University, Jesenná 5, 04001 Košice, Slovakia
e-mail: stanislav.jendrol@upjs.sk
peter.sugerek@student.upjs.sk

Abstract

Given a weighting of all elements of a 2 -connected plane graph $G=$ (V, E, F), let $f(\alpha)$ denote the sum of the weights of the edges and vertices incident with the face α and also the weight of α. Such an entire weighting is a proper face colouring provided that $f(\alpha) \neq f(\beta)$ for every two faces α and β sharing an edge. We show that for every 2 -connected plane graph there is a proper face-colouring entire weighting with weights 1 through 4. For some families we improved 4 to 3 .

Keywords: entire weighting, plane graph, face colouring.
2010 Mathematics Subject Classification: 05C10, 05C15.

1. Introduction

In the last years several papers appeared that study various colourings defined by weightings (labellings) of elements of the graph. First such a colouring was introduced by Karoński, Łuczak and Thomason [14]. Let G be a graph. Given a weighting of the edge set of G, let $f(v)$ denote the sum of the weights of the edges incident to v for each $v \in V(G)$. A weighting is irregular if the resulting vertex weighting f is injective, and the minimum k such that this can be done with weights 1 to k is the irregularity strength of the graph, see [9, 11]. A weaker condition is to require $f(u) \neq f(v)$ only when u and v are adjacent; we call such a weighting a proper vertex-colouring edge-weighting, since the resulting f is a proper vertex colouring.

Karoński et al. posed the following conjecture.

[^0]Conjecture 1 ([14], 2004). Every connected graph with at least three vertices has a proper vertex-colouring edge-weighting from $\{1,2,3\}$.

Conjecture 1 is true for 3 -colourable graphs [14]. Regardless of chromatic number, there is a fixed bound k such that colours 1 to k always suffice.

In [1] it was shown that $k=30$ suffices. This was reduced to 16 in [2] and to 13 in [16]. Currently, the best known result is $k=5$ by Kalkowski, Karoński and Pfender [13].

If each vertex is also given a weight forming total weighting, the sum at a vertex includes the weight of the vertex, and the vertex weighting f is injective then we obtain the total vertex irregular weighting first introduced by Bača, Jendrol', Miller and Ryan [5] in 2007. The minimum k such that this can be done with weights 1 to k is the total vertex irregularity strength. A weaker condition, to require $f(u) \neq f(v)$ only when u and v are adjacent, leads to a proper vertex-colouring total-weighting. Using this definition and motivated by the above mentioned papers, Przybyło and Woźniak [15] posed the following 1, 2-conjecture.

Conjecture 2 ([15], 2010). Every connected graph has a proper vertex-colouring total-weighting from $\{1,2\}$.

Przybyło and Woźniak [15] showed that 1,2-conjecture is true for 3-colourable graphs; that colours 1 throught 11 always suffice for a proper total vertex irregularity weighting and that colours 1 through $1+\lfloor\chi(G) / 2\rfloor$ suffice. The breakthrough by Kalkowski [12] is that every graph has a proper vertex-colouring total-weighting with vertex weights in $\{1,2\}$ and the edge weights in $\{1,2,3\}$.

Motivated by the above mentioned conjectures, papers [7, 8] and mainly by the paper of Wang and Zhu [17] we introduce in this note a concept of the entire weighting for 2 -connected plane graphs. If each element of a plane graph $G=(V, E, F)$ is given a weight forming entire weighting, then let $f(\alpha)$ of the face $\alpha \in F(G)$ denote the sum of the weights of the edges and the weights of the vertices incident with α and the weight of α. A weighting is the face irregular entire weighting if the resulting face-weighting f is injective, and the minimum k such that this can be done with weights 1 through k is the entire face irregularity strength, see Bača et al. [4]. A weaker requirement is that $f(\alpha) \neq f(\beta)$ only when faces α and β share an edge (i.e. are adjacent). Call such a weighting the proper face-colouring entire k-weighting provided that it is done with weights 1 to k.

In this note we discuss the problem of finding the minimum k such that for every 2-connected plane graph G there exists a proper face-colouring entire k-weighting. We show that $k \leq 4$ in general and that for some families of 2 connected plane graphs $k \leq 3$. At the end we state a conjecture concerning this minimum k.

2. Results

Let $G=(V, E, F)$ be a 2-connected plane graph with $V=V(G), E=E(G)$ and $F=F(G)$ denoting the vertex set, the edge set and the face set, respectively. For a face α let $V(\alpha)$ and $E(\alpha)$ be the set of vertices and the set of edges incident with the face α. For an integer k let $w: V(G) \cup E(G) \cup F(G) \rightarrow\{1,2, \ldots, k\}$ be an integer weighting. Let $f(\alpha)=w(\alpha)+\sum_{u v \in E(\alpha)} w(u v)+\sum_{v \in V(\alpha)} w(v)$ be the colour of the face α. The weighting w is called a proper face-colouring entire k-weighting, if $f(\alpha) \neq f(\beta)$ for adjacent faces α, β.

Let $G^{*}=\left(F^{*}, E^{*}, V^{*}\right)$ be the dual of a 2-connected plane graph G. One of main results of this note is the following theorem.

Theorem 3. For every 2-connected plane graph $G=(V, E, F)$ there is a proper face-colouring entire χ^{*}-weighting, where $\chi\left(G^{*}\right)=\chi^{*}$ denotes the chromatic number of the dual G^{*} of G.

Proof. It is easy to see that there exists a proper face colouring $\varphi: F(G) \rightarrow$ $\left\{1,2, \ldots, \chi^{*}\right\}$. Because of the Four Colour Theorem, $\chi^{*} \leq 4$, see [3]. Now we associate the following weighting w with elements of G : put $w(v)=2$ for every vertex $v \in V(G), w(e)=2$ for every edge $e \in E(G)$ and $w(\alpha)=\varphi(\alpha)$ for every face $\alpha \in F(G)$.

Next we have to show that for every two faces α and β sharing an edge $f(\alpha) \neq f(\beta)$. To this end suppose that α is an i-gon and β is a j-gon, $j \geq i \geq 2$. If $i<j$, then $f(\alpha)=\varphi(\alpha)+4 i \leq 4(i+1)<4 j+\varphi(\beta)=f(\beta)$. If $i=j$, because $\varphi(\alpha) \neq \varphi(\beta)$, we immediately have $f(\alpha) \neq f(\beta)$.

Corollary 4. Every 2 -connected plane graph has a proper face-colouring entire 4-weighting.

Grötzsch [10] (see also [6]) proved that every triangle-free planar graph is 3-colorable. This implies:

Theorem 5. Every 2-connected plane graph G whose dual G^{*} is triangle-free has a proper face-colouring entire 3-weighting.

Theorem 6. Every 2 -connected plane graph all faces of which are m-gons, $m \in$ $\{3,4,5\}$, has a proper face-colouring entire 3-weighting.

Proof. Let $G=(V, E, F)$ be a 2-connected plane graph and let $G^{*}=\left(F^{*}, E^{*}, V^{*}\right)$ be the dual of G. By Kalkowski [12] there is a proper vertex-colouring totalweighting from $\{1,2,3\}$. Let w^{*} be this weighting and let $f^{*}\left(\alpha^{*}\right)=w^{*}\left(\alpha^{*}\right)+$ $\sum_{e \in E(\alpha)} w^{*}\left(e^{*}\right)$.

Define an entire weighting w of G from $\{1,2,3\}$ as follows: $w(v)=2$ for every $v \in V(G), w(\alpha)=w^{*}\left(\alpha^{*}\right)$ for every face $\alpha \in F(G)$ and $w(e)=w^{*}\left(e^{*}\right)$ for
every edge $e \in E(G)$. Then the colour $f(\alpha)$ of the face $\alpha \in F(G)$ is defined as $f(\alpha)=w(\alpha)+\sum_{e \in E(G)} w(e)+\sum_{v \in V(G)} w(v)=w^{*}\left(\alpha^{*}\right)+\sum_{e \in E(G)} w^{*}\left(e^{*}\right)+2 m$ $=f^{*}\left(\alpha^{*}\right)+2 m$. But $f^{*}\left(\alpha^{*}\right) \neq f^{*}\left(\beta^{*}\right)$ if $\alpha^{*} \beta^{*}$ is an edge of G^{*}. This implies $f(\alpha) \neq f(\beta)$ for adjacent faces α and β because in this case $f^{*}\left(\alpha^{*}\right) \neq f^{*}\left(\beta^{*}\right)$.

An Eulerian plane graph G is a connected one each vertex of which has an even degree. It is well known that chromatic number $\chi\left(G^{*}\right)=2$. Using Theorem 3 and this fact we obtain:

Theorem 7. Every 2-connected Eulerian plane graph has a proper face-colouring entire 2-weighting.
We expect that any 2 -connected plane graph has a proper face-colouring entire 3 -weighting. But unfortunately at this moment, we are not able to prove it. We can prove the following:
Theorem 8. Every 2-connected cubic plane graph has a proper face-colouring entire 3 -weighting.

Proof. Let $G=(V, E, F)$ be a 2-connected cubic plane graph. Proof consists of two main parts. In the first part we associate each face α with colours $f(\alpha)=w(\alpha)+\sum_{e \in E(\alpha)} w(e)+\sum_{v \in V(\alpha)} w(v)$ using weighting w as in the proof of Theorem 3. This weighting w uses labels from $\{1,2,3,4\}$ and has property that $f(\alpha) \neq f(\beta)$ whenever α and β share an edge in common. Note that the weights 4 are used only on some faces.

In the second part this weighting will be locally changed keeping the colours of faces fixed. The main aim is to delete (lowered) label 4 from faces of G. We proceed as follows: For every face α which $w(\alpha)=4$ we choose a vertex $z \in V(\alpha)$ and two edges e_{1} and e_{2} incident with α and with z. Next we locally change the weighting w to the new weighting \widetilde{w} so that $\widetilde{w}(\alpha)=w(\alpha)-1=3$, $\widetilde{w}(z)=w(z)-1=1, \widetilde{w}\left(e_{i}\right)=w\left(e_{i}\right)+1=3, i=1,2$, for all quadruples α, z, e_{1}, e_{2} with $w(\alpha)=4$. For all other elements x of G we put $\widetilde{w}(x)=w(x)$. It is easy to see that $\widetilde{w}(y) \leq 3$ for all elements y of G and that the colours of all faces of G are not changed.

We even strongly believe that the following is true.
Conjecture 9. Every 2-connected plane graph has a proper face-colouring entire 2 -weighting.

References

[1] L. Addario-Berry, K. Dalal, C. McDiarmid, B.A. Reed and A. Thomason, Vertexcolouring edge-weightings, Combinatorica 27 (2007) 1-12.
doi:10.1007/s00493-007-0041-6
[2] L. Addario-Berry, K. Dalal and B.A. Reed, Degree constrainted subgraphs, Discrete Appl. Math. 156 (2008) 1168-1174. doi:10.1016/j.dam.2007.05.059
[3] K. Appel and W. Haken, Every planar map is four-colorable, I. Discharging, Illinois J. Math. 21 (1977) 429-490.
[4] M. Bača, S. Jendrol', K.M. Kathiresan and K. Muthugurupackiam, Entire labeling of plane graph, (submitted).
[5] M. Bača, S. Jendrol', M. Miller and J. Ryan, On irregular total labellings, Discrete Math. 307 (2007) 1378-1388. doi:10.1016/j.disc.2005.11.075
[6] J.A. Bondy and U.S.R. Murty, Graph Theory (Springer-Verlag, Heidelberg, 2008).
[7] A.J. Dong and G.H. Wang, Neighbor sum distinguishing colorings of some graphs, Discrete Math. Algorithms Appl. (2012) 4(4) 1250047. doi:10.1142/S1793830912500474
[8] E. Flandrin, J.F. Saclé, A. Marczyk, J. Przybyło and M. Woźniak, Neighbor sum distinguishing index, Graphs Combin. 29 (2013) 1329-1336. doi:10.1007/s00373-012-1191-x
[9] A. Frieze, R.J. Gould, M. Karoński and F. Pfender, On graph irregularity strenght, J. Graph Theory 41 (2002) 120-137. doi:10.1002/jgt. 10056
[10] H. Grötzsch, Zur Theorie der discreten Gebilde. VII. Ein Dreifarbensatz für dreikreisfreie Netze auf der Kugel., Wiss. Z. Martin-Luther-Univ. Halle-Wittenberg, Math.Mat. Reihe 8 (1958/1959) 109-120.
[11] G. Chartrand, M.S. Jacobson, L. Lehel, O.R. Oellermann, S. Ruiz and F. Saba, Irregular networks, Congr. Numer. 64 (1988) 187-192.
[12] M. Kalkowski, A note on 1, 2-conjecture, Electron. J. Combin. (to appear).
[13] M. Kalkowski, M. Karoński and F. Pfender, Vertex-coloring edge-weightings: towards the 1-2-3-conjecture, J. Combin. Theory (B) 100 (2010) 347-349. doi:10.1016/j.jctb.2009.06.002
[14] M. Karoński, T. Luczak and A. Thomason, Edge weights and vertex colours, J. Combin. Theory (B) 91 (2004) 151-157. doi:10.1016/j.jctb.2003.12.001
[15] J. Przybyło and M. Woźniak, On 1, 2 conjecture, Discrete Math. Theor. Comput. Sci. 12 (2010) 101-108.
[16] T. Wang and Q. Yu, On vertex-coloring 13-edge-weighting, Front. Math. China 3 (2008) 1-7.
doi:10.1007/s11464-008-0041-x
[17] W. Wang and X. Zhu, Entire colouring of plane graphs, J. Combin. Theory (B) 101 (2011) 490-501.
doi:10.1016/j.jctb.2011.02.006

Received 13 July 2012
Revised 28 March 2013
Accepted 28 March 2013

[^0]: ${ }^{1}$ This work was supported by the Slovak Science and Technology Assistance Agency under the contract No. APVV-0023-10 and by Slovak VEGA grant No. 1/0652/12.

