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Abstract

A graph is called traceable if it contains a Hamilton path, i.e., a path
containing all its vertices. Let G be a graph on n vertices. We say that an
induced subgraph of G is o

−1-heavy if it contains two nonadjacent vertices
which satisfy an Ore-type degree condition for traceability, i.e., with degree
sum at least n−1 in G. A block-chain is a graph whose block graph is a path,
i.e., it is either a P1, P2, or a 2-connected graph, or a graph with at least one
cut vertex and exactly two end-blocks. Obviously, every traceable graph is
a block-chain, but the reverse does not hold. In this paper we characterize
all the pairs of connected o

−1-heavy graphs that guarantee traceability of
block-chains. Our main result is a common extension of earlier work on
degree sum conditions, forbidden subgraph conditions and heavy subgraph
conditions for traceability.
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1. Introduction

We use Bondy and Murty [2] for terminology and notation not defined here and
consider finite simple graphs only.

Let G be a graph. If a subgraph G′ of G contains all edges xy ∈ E(G) with
x, y ∈ V (G′), then G′ is called an induced subgraph of G. For a given graph H, we
say that G is H-free if G does not contain an induced subgraph isomorphic to H.
For a family H of graphs, G is called H-free if G is H-free for every H ∈ H. Note
that if H1 is an induced subgraph of H2, then an H1-free graph is also H2-free.

The graph K1,3 is called a claw ; its only vertex with degree 3 is called the
center of the claw, and the other vertices are called the end-vertices of the claw.

If a graph is P2-free, then it is an empty graph (contains no edges). To avoid
the discussion of this trivial case, in the following, we throughout assume that
our forbidden subgraphs have at least three vertices.

Some graphs that we will use in this paper are shown in Figure 1.

K1,3 (Claw)

K1,4

v1 v2 v3 vi−1 vi

Pi

C3

v1

vi−1

vi

Zi W (Wounded) N (Net) E (Eiffel) N1,1,3

Figure 1. Graphs K1,3,K1,4, Pi, C3, Zi,W,N,E and N1,1,3.

A graph is called traceable if it contains a Hamilton path, i.e., a path containing all
its vertices. If a graph is connected and P3-free, then it is a complete graph and
it is trivially traceable. In fact, it is not difficult to show that P3 is the only single
subgraph H such that every connected H-free graph is traceable. Moving to the
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more interesting case of pairs of subgraphs, the following theorem on forbidden
pairs for traceability is well-known.

Theorem 1 (Duffus, Gould and Jacobson [6]). If G is a connected {K1,3, N}-free
graph, then G is traceable.

Obviously, if H is an induced subgraph of N , then the pair {K1,3, H} is also a
forbidden pair that guarantees the traceability of every connected graph. In fact,
Faudree and Gould proved that these are precisely all the forbidden pairs with
this property.

Theorem 2 (Faudree and Gould [7]). The only connected graph S such that

every connected S-free graph is traceable is P3. Let R and S be connected graphs

with R,S 6= P3 and let G be a connected graph. Then G being {R,S}-free implies

G is traceable if and only if (up to symmetry) R = K1,3 and S is an induced

subgraph of N.

Forbidding pairs of graphs as induced subgraphs might impose such a strong con-
dition on the graphs under consideration that hamiltonian properties are almost
trivially obtained. As an example, consider the graph Z1 obtained from a claw
by adding one edge between two end vertices of the claw. Then one easily shows
that, apart from paths and cycles, connected {K1,3, Z1}-free graphs are only a
matching away from complete graphs, i.e., their complements consist of isolated
vertices and isolated edges. This is one of the motivations to relax forbidden
subgraph conditions to conditions in which the subgraphs are allowed, but what
additional conditions are imposed on these subgraphs if they are not forbidden.
Early examples of this approach in the context of hamiltonicity and pancyclicity
date back to the early 1990s [1, 4]. The idea to put a minimum degree bound
on one or two of the end-vertices of an induced claw has been explored in [3].
Here we follow the ideas and terminology of [5] by putting an Ore-type degree
sum condition on at least one pair of nonadjacent vertices in certain induced sub-
graphs. These degree sum conditions arise from one of the earliest papers in this
area, in which Ore proved that a graph G on n ≥ 3 vertices is hamiltonian if the
degree sum of any two nonadjacent vertices of G is at least n. Ore’s result implies
that a graph on n vertices is traceable if the degree sum of any two nonadjacent
vertices is at least n−1. A natural way to find common extensions of such degree
sum conditions and forbidden subgraph conditions for traceability is to impose
that certain pairs of vertices of induced subgraphs have degree sum at least n−1.
This motivates the following concepts and terminology.

Let G be a graph on n vertices and let G′ be an induced subgraph of G. We
say that G′ is o−1-heavy if there are (at least) two nonadjacent vertices of G′ with
degree sum at least n−1 in G. For a given graph H, the graph G is H-o−1-heavy
if every induced subgraph of G isomorphic to H is o−1-heavy. For a family H
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of graphs, G is called H-o−1-heavy if G is H-o−1-heavy for every H ∈ H. Note
that an H-free graph is also H-o−1-heavy; and if H1 is an induced subgraph of
H2, then an H1-o−1-heavy graph is also H2-o−1-heavy. Hence the family of H-
o−1-heavy graphs is richer than the family of H-free graphs if H contains a pair
of nonadjacent vertices, and the family of H ′-o−1-heavy graphs is richer than the
family of H-o−1-heavy graphs if H ′ properly contains H as an induced subgraph.

In this paper, instead of K1,3-free and K1,3-o−1-heavy, we use the terms
claw-free and claw-o−1-heavy, respectively.

For connected H-o−1-heavy graphs, unfortunately only a small graph and a
pair of small graphs can guarantee their traceability, as was shown recently in
[11].

Theorem 3 (Li and Zhang [11]). The only connected graph S such that every

connected S-o−1-heavy graph is traceable is P3. Let R and S be connected graphs

with R,S 6= P3 and let G be a connected graph. Then G being {R,S}-o−1-heavy

implies G is traceable if and only if (up to symmetry) R = K1,3 and S = C3.

Note that, since C3 is a clique, a graph is C3-o−1-heavy if and only if it is C3-free.
For claw-o−1-heavy and H-free graphs, in [11] the following stronger statement
has been proved.

Theorem 4 (Li and Zhang [11]). Let H 6= P3 be a connected graph and let G be

a connected claw-o−1-heavy graph. Then G being H-free implies G is traceable if

and only if H = C3, Z1 or P4.

In this paper, we are going to improve the above results by excluding graphs
that are more or less trivially non-traceable. Therefore, we focus on graphs that
satisfy a simple and easy to verify necessary condition for traceability. Adopting
the terminology of [8], we say that a graph is a block-chain if it is nonseparable
(2-connected or P1 or P2) or it has at least one cut vertex and has exactly two
end-blocks. Note that every traceable graph is necessarily a block-chain, but
that the reverse does not hold. Also note that it is easy to check by a polynomial
algorithm whether a given graph is a block-chain or not.

In the ‘only-if’ part of the proof of Theorem 3 many graphs are used that are
not block-chains (and are therefore trivially non-traceable). A natural extension
is to consider forbidden subgraph and o−1-heavy subgraph conditions for a block-
chain to be traceable. Very recently, in [9] we characterized all the pairs of
forbidden subgraphs with this property.

Theorem 5 (Li, Broersma and Zhang [9]). The only connected graph S such

that every S-free block-chain is traceable is P3. Let R and S be connected graphs

with R,S 6= P3 and let G be a block-chain. Then G being {R,S}-free implies G is

traceable if and only if (up to symmetry) R = K1,3 and S is an induced subgraph

of N1,1,3, or R = K1,4 and S = P4.
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In this paper we characterize the pairs of connected graphs R and S other than
P3 guaranteeing that every {R,S}-o−1-heavy block-chain is traceable. First note
that we can easily obtain that the statement ‘every H-o−1-heavy block-chain is
traceable’ only holds if H = P3. This can be deduced from Theorems 3 and 5.
For o−1-heavy pairs of subgraphs, we will prove the following common extension
of Theorems 2 and 3.

Theorem 6. Let R and S be connected graphs with R,S 6= P3 and let G be a

block-chain. Then G being {R,S}-o−1-heavy implies G is traceable, if and only

if (up to symmetry) R = K1,3 and S is an induced subgraph of W or N .

In Section 2, we prove the ‘only if’ part of Theorem 6. For the ‘if’ part of Theorem
6, it suffices to prove the following two statements.

Theorem 7. If G is a {K1,3,W}-o−1-heavy block-chain, then G is traceable.

Theorem 8. If G is a {K1,3, N}-o−1-heavy block-chain, then G is traceable.

We prove Theorems 7 and 8 in Sections 4 and 5, respectively.

2. The ‘only if’ Part of Theorem 6

Let R and S be two graphs other than P3 such that every {R,S}-o−1-heavy block-
chain is traceable. By Theorem 5, we have that (up to symmetry) R = K1,3 and
S is an induced subgraph of N1,1,3, or R = K1,4 and S = P4.

In Figure 2, we sketched some families of block-chains that are not trace-
able. All members of these families have exactly two cut vertices, two end-blocks
consisting of K2s, and one 2-connected non-end-block, so all these graphs are
obviously block-chains. Since all the graphs of these families have exactly two
vertices with degree 1, it is easy to verify that they do not admit a Hamilton path
(between these two vertices, because all the other vertices ought to be internal
vertices of any Hamilton path). We leave the details for the reader.

Noting that members of G4 are {K1,4, P4}-o−1-heavy, we get that {R,S} 6=
{K1,4, P4}. Thus R = K1,3 and S is an induced subgraph of N1,1,3.

Note that all members of G1, G2 and G3 are claw-o−1-heavy. So S must
be a common induced subgraph of all members of G1, G2 and G3 that is not
o−1-heavy. Note that all members of G1 are P6-o−1-heavy, all members of G2

are Z3-o−1-heavy, and all members of G3 are E-o−1-heavy. The only remaining
possibility is that S is an induced subgraph of W or N . This completes the proof
of the ‘only if’ part of the statement of Theorem 6.
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Figure 2. Some families of block-chains that are not traceable.

3. Preliminaries

In the next two sections we will prove Theorems 7 and 8, respectively. Before
we do so, in this section we introduce some additional terminology and notation,
and we will prove some useful lemmas.

We adopt the following terminology, notation and lemma from [10].

Throughout this paper, k and ℓ will always denote positive integers. If k ≤ ℓ,
we use [xk, xℓ] to denote the set {xk, xk+1, . . . , xℓ}. If [xk, xℓ] is a nonempty subset
of the vertex set of a graph G, we use G[xk, xℓ] instead of G[[xk, xℓ]], to denote
the subgraph induced by [xk, xℓ] in G.

Let P be a path and x, y ∈ V (P ). We use P [x, y] to denote the subpath of
P from x to y (inclusive).

Let G be a graph and {x1, x2} and {y1, y2} be two pairs of vertices in V (G)
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with x1 6= x2 and y1 6= y2. We define an ({x1, x2}, {y1, y2})-disjoint path pair, or
briefly an (x1x2, y1y2)-pair, as a union of two vertex-disjoint paths P and Q such
that

(1) the origins of P and Q are in {x1, x2}, and

(2) the termini of P and Q are in {y1, y2}.

If G is a graph on n ≥ 2 vertices, x ∈ V (G), and a graph G′ is obtained from G
by adding a new vertex y and a pair of edges yx, yz, where z 6= x is an arbitrary
vertex of G, then we say that G′ is a 1-extension of G at x to y. Similarly, if
x1, x2 ∈ V (G), x1 6= x2, then the graph G′ obtained from G by adding two new
vertices y1, y2 and the edges y1x1, y2x2 and y1y2 is called the 2-extension of G at

(x1, x2) to (y1, y2). We also call G′ a 1-extension (at x to y) or 2-extension (at
(x1, x2) to (y1, y2)) of G if it contains a spanning subgraph that is a 1-extension
(at x to y) or 2-extension (at (x1, x2) to (y1, y2)) of G.

Let G be a graph and let u, v, w ∈ V (G) be distinct vertices of G. We say
that G is (u, v, w)-composed (or briefly composed) if G has a spanning subgraph
D (called the carrier of G) such that there is an ordering v−k, . . . , v0, . . . , vℓ
(k, ℓ ≥ 1) of V (D) (=V (G)) and a sequence of graphs D1, . . . , Dr (r ≥ 1) such
that

(1) u = v−k, v = v0, w = vℓ,

(2) D1 is a triangle with V (D1) = {v−1, v0, v1},

(3) V (Di) = [v−ki , vℓi ] for some ki, ℓi, 1 ≤ ki ≤ k, 1 ≤ ℓi ≤ ℓ, and Di+1,
i = 1, . . . , r − 1, satisfies one of the following:

(a) Di+1 is a 1-extension of Di at v−ki to v−ki−1 or at vℓi to vℓi+1, or

(b) Di+1 is a 2-extension of Di at (v−ki , vℓi) to (v−ki−1, vℓi+1),

(4) Dr = D.

The ordering v−k, . . . , v0, . . . , vℓ will be called a canonical ordering and the se-
quence D1, . . . , Dr a canonical sequence of D (and also of G). Note that a com-
posed graph G can have several carriers, canonical orderings and canonical se-
quences. Clearly, a composed graph G and any of its carriers D are 2-connected,
for any canonical ordering; moreover, P = v−k · · · v0 · · · vℓ is a Hamilton path in
D (called a canonical path), and if D1, . . . , Dr is a canonical sequence, then any
Di is (v−ki , v0, vℓi)-composed, i = 1, . . . , r. Note that a (u, v, w)-composed graph
is also (w, v, u)-composed.

The following lemma on composed graphs will be needed in our proofs. A
proof of the lemma can be found in [10].

Lemma 9. Let G be a composed graph and let D and v−k, . . . , v0, . . . , vℓ be a

carrier and a canonical ordering of G. Then

(1) D has a Hamilton (v0, v−k)-path, and
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(2) for every vs ∈ V (G) \ {v−k}, D has a spanning (v0vℓ, vsv−k)-pair.

Let G be a graph on n vertices. A sequence of vertices v1v2 · · · vk such that for
all i ∈ [1, k − 1], either vivi+1 ∈ E(G) or d(vi) + d(vi+1) ≥ n − 1, is called an
o−1-path of G.

The following useful lemma on o−1-paths is proved in [11], and the reader
can find an analogous cycle version of the lemma in [10]. Its elementary proof is
similar to the proof of the aforementioned result of Ore, and that forms the basis
for the well-known Bondy-Chvátal closure for hamiltonicity.

Lemma 10. Let G be a graph and let P ′ be an o−1-path in G. Then there is a

path P in G such that V (P ′) ⊂ V (P ).

Let G be a graph on n vertices. In the following, we denote E−1(G) = {uv :
uv ∈ E(G) or d(u) + d(v) ≥ n − 1}. Let D be an (x1x2, y1y2)-pair of G. If
x1x2 ∈ E−1(G) or y1y2 ∈ E−1(G), then using Lemma 10, it is easy to see that G
contains a path P with V (D) ⊂ V (P ).

Let G be a graph on n vertices, P be a path of G, x1, x, x2 ∈ V (P ) be three
distinct vertices appearing in the given order along P , and set X = V (P [x1, x2]).
We say that the pair (x1, x2) is x-good on P , if for some j ∈ {1, 2} there is a
vertex x′ ∈ X \ {xj} such that

(1) there is an (x, x3−j)-path Q with V (Q) = X \ {xj},

(2) there is an (xx3−j , x
′xj)-pair D with V (D) = X, and

(3) d(xj) + d(x′) ≥ n− 1.

In this case, we say that Q and D are a path and disjoint path pair associated

with x, respectively. We present and prove one final useful lemma in this section.

Lemma 11. Let G be a graph, and P be a path of G. Let x, y ∈ V (P ) and let

R be an (x, y)-path in G which is internally-disjoint with P . If there are vertices

x1, x2, y1, y2 ∈ V (P ) \ {x, y} such that

(1) x1, x, x2, y1, y, y2 appear in this order along P (where possibly x2 = y1),

(2) (x1, x2) is x-good on P , and

(3) (y1, y2) is y-good on P ,

then there is a path P ′ in G such that V (P ) ∪ V (R) ⊂ V (P ′).

Proof. Assume the contrary. Let Q1 and D1 be a path and disjoint path pair
associated with x, and let Q2 and D2 be a path and disjoint path pair associated
with y. Let R′ = P [x2, y1], R1 = P [v1, x1] and R2 = P [y2, vp], where v1 is the
origin and vp is the terminus of P .

Using the definition of x-good, we distinguish two main cases and a number
of subcases.
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Case 1. Q1 is an (x, x1)-path, D1 is an (xx1, x
′x2)-pair, and d(x2) + d(x′) ≥

n− 1.

Case 1.1. Q2 is a (y, y2)-path, D2 is a (yy2, y
′y1)-pair, and d(y1) + d(y′) ≥

n−1. In this subcase the path T = R1∪R2∪R∪R′∪Q1∪D2 is a (v1vp, x2y
′)-pair

which contains all the vertices of V (P )∪V (R), and T ′ = R1∪R2∪R∪R′∪Q2∪D1

is a (v1vp, x
′y1)-pair which contains all the vertices of V (P ) ∪ V (R). Thus by

Lemma 10, d(x2) + d(y′) < n − 1 and d(x′) + d(y1) < n − 1, a contradiction to
d(x2) + d(x′) ≥ n− 1 and d(y1) + d(y′) ≥ n− 1.

Case 1.2. Q2 is a (y, y1)-path, D2 is a (yy1, y
′y2)-pair, and d(y2) + d(y′) ≥

n− 1.

Case 1.2.1. The (xx1, x
′x2)-pair D1 is formed by an (x, x2)-path and an

(x1, x
′)-path. In this subcase, the path T = R1 ∪ R2 ∪ R ∪ R′ ∪ Q1 ∪ Q2 is a

(v1vp, x2y2)-pair which contains all the vertices of V (P ) ∪ V (R), and the path
T ′ = R1∪R2∪R∪R′∪D1∪D2 is a (v1vp, x

′y′)-pair which contains all the vertices
of V (P )∪ V (R). By Lemma 10, d(x2) + d(y2) < n− 1 and d(x′) + d(y′) < n− 1,
a contradiction.

Case 1.2.2. The (xx1, x
′x2)-pair D1 is formed by an (x, x′)-path and an

(x1, x2)-path.

Case 1.2.2.1 The (yy1, y
′y2)-pair D2 is formed by a (y, y2)-path and a (y1, y

′)-
path. This subcase can be proved similarly as Case 1.2.1.

Case 1.2.2.2. The (yy1, y
′y2)-pairD2 is formed by a (y, y′)-path and a (y1, y2)-

path. In this subcase, the path T = R1∪R2∪R∪R′∪Q1∪D2 is a (v1vp, x2y
′)-pair

which contains all the vertices of V (P )∪V (R), and the path T ′ = R1 ∪R2 ∪R∪
R′∪D1∪Q1 is a (v1vp, x

′y2)-pair which contains all the vertices of V (P )∪V (R).
By Lemma 10, d(x2) + d(y′) < n− 1 and d(x′) + d(y2) < n− 1, a contradiction.

Case 2. Q1 is an (x, x2)-path, D1 is an (xx2, x
′x1)-pair, and d(x1) + d(x′) ≥

n− 1.

Case 2.1. Q2 is a (y, y2)-path, D2 is a (yy2, y
′y1)-pair, and d(y1) + d(y′) ≥

n− 1. This case can be proved similarly as Case 1.2.

Case 2.2. Q2 is a (y, y1)-path, D2 is a (yy1, y
′y2)-pair, and d(y2) + d(y′) ≥

n−1. In this subcase the path T = R1∪R2∪R∪R′∪D1∪Q2 is a (v1vp, x1y
′)-pair

which contains all the vertices of V (P )∪V (R), and T ′ = R1∪R2∪R∪R′∪Q1∪D2

is a (v1vp, x
′y2)-pair which contains all the vertices of V (P ) ∪ V (R). By Lemma

10, d(x1) + d(y′) < n− 1 and d(x′) + d(y2) < n− 1, a contradiction.
This completes the proof of Lemma 11.

Let G be a graph with at least one cut vertex and exactly two end-blocks, and
let P be a path of G. If the two end-vertices of P are inner vertices (not a cut
vertex of G) of two distinct end-blocks of G, then we call P a penetrating path

of G. If G is a nonseparable graph, then every path of G is considered to be a
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penetrating path. Note that a penetrating path of a block-chain G contains all
the cut vertices of G, and that a path of a block-chain G is a penetrating path if
and only if for every end-block of G the path contains at least one inner vertex
of the end-block.

4. Proof of Theorem 7

Proof. Suppose G is a {K1,3,W}-o−1-heavy block-chain on n vertices. It suffices
to prove that G is traceable. We proceed by contradiction.

Clearly, G contains a penetrating path. Let P be a longest penetrating path
of G. We use p to denote the number of vertices of P . Assume that G is not
traceable. Then V (G) \ V (P ) 6= ∅. Let H be a component of G − V (P ). If
NP (H) consists of only one vertex x, then G[H ∪ {x}] contains an end-block of
G, contradicting that P is a penetrating path of G. Thus we assume that H has
at least two neighbors on P . Let R be a path with two end-vertices on P , all
internal vertices in H, and of length at least 2; subject to this, we choose R as
short as possible. Suppose without loss of generality, that P = v1v2 · · · vp and
R = z0z1z2 · · · zr+1, where z0 = vs and zr+1 = vt, s < t.

It is easy to see that N(v1) ⊂ V (P ) and N(vp) ⊂ V (P ). Thus we have
2 ≤ s < t ≤ p − 1. We are going to prove ten claims in order to reach a
contradiction in all cases.

Claim 1. Let x ∈ V (H) and y ∈ {vs−1, vs+1, vt−1, vt+1}. Then xy /∈ E−1(G).

Proof. Without loss of generality, assume y = vs−1 and xy ∈ E−1(G). Let Q′

be an (x, z1)-path in H. Then Q = P [v1, vs−1]vs−1xQ
′z1vsP [vs, vp] is an o−1-

path containing all the vertices of V (P ) ∪ V (Q′). By Lemma 10, there is a path
containing all the vertices of V (P ) ∪ V (Q′), which is a longer penetrating path
than P , a contradiction.

Claim 2. vs−1vs+1 ∈ E−1(G), vt−1vt+1 ∈ E−1(G).

Proof. If vs−1vs+1 /∈E(G), then using Claim 1, the graph induced by {vs, z1, vs−1,
vs+1} is a claw, where d(z1)+d(vs±1) < n−1. Since G is a claw-o−1-heavy graph,
we have that d(vs−1) + d(vs+1) ≥ n− 1.

The second assertion can be proved similarly.

Claim 3. vs−1vt−1 /∈ E−1(G), vs+1vt+1 /∈ E−1(G), vsvt±1 /∈ E−1(G) and
vs±1vt /∈ E−1(G).

Proof. If vs−1vt−1 ∈ E−1(G), thenQ = P [v1, vs−1]vs−1vt−1P [vt−1, vs]vsRvtP [vt,
vp] is an o−1-path containing all the vertices of V (P ) ∪ V (R). Using Lemma 10,
we reach a contradiction.
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If vsvt−1 ∈ E−1(G), then Q = P [v1, vs−1]vs−1vs+1P [vs+1, vt−1]vt−1vsRvtP [vt,
vp] is an o−1-path containing all the vertices of V (P )∪V (R), again a contradiction.

If vsvt+1 ∈ E−1(G), thenQ = P [v1, vs−1]vs−1vs+1P [vs+1, vt]vtRvsvt+1P [vt+1,
vp] is an o−1-path containing all the vertices of V (P ) ∪ V (R), again a contradic-
tion.

The other assertions can be proved similarly.

Claim 4. Either vs−1vs+1 ∈ E(G) or vt−1vt+1 ∈ E(G).

Proof. Assume the contrary. By Claim 2, we have d(vs−1) + d(vs+1) ≥ n − 1
and d(vt−1) + d(vt+1) ≥ n − 1. By Claim 3, we have d(vs−1) + d(vt−1) < n − 1
and d(vs+1) + d(vt+1) < n− 1, a contradiction.

Now, we distinguish two cases. We deal with the case that r = 1 and vsvt ∈ E(G)
later, but first deal with the case that r ≥ 2, or r = 1 and vsvt /∈ E(G).

Case 1. r ≥ 2, or r = 1 and vsvt /∈ E(G). By Claim 4, without loss of gen-
erality, we assume that vs−1vs+1 ∈ E(G). Thus G[vs−1, vs+1] is (vs−1, vs, vs+1)-
composed.

Claim 5. vsz2 /∈ E−1(G).

Proof. By the choice of the path R, we have vsz2 /∈ E(G). Now we are going to
prove that d(vs) + d(z2) < n− 1. In order to show this, we first prove a number
of subclaims.

Claim 5.1. Every neighbor of vs is in V (P ) ∪ V (H), every neighbor of z2 is in

V (P ) ∪ V (H).

Proof. Assume the contrary. Let z′ ∈ V (H ′) be a neighbor of vs, where H ′

is a component of G − V (P ) other than H. Then we have z′z1 /∈ E(G) and
NG−P (z

′) ∩NG−P (z1) = ∅.

By Claim 1, we have vs−1z1 /∈ E−1(G), and similarly, vs−1z
′ /∈ E−1(G). Thus

the graph induced by {vs, vs−1, z1, z
′} is a claw with d(vs−1) + d(z1) < n− 1 and

d(vs−1) + d(z′) < n− 1. Thus we get that d(z1) + d(z′) ≥ n− 1.

Since NG−P (z1) ∩ NG−P (z
′) = ∅, and z, z′ are both not adjacent to v1 and

vp, there exists some i with 2 ≤ i ≤ p − 2 such that z1vi, z
′vi+1 ∈ E(G). Thus

Q = P [v1, vi]viz1z
′vi+1P [vi+1, vp] is an o−1-path containing all the vertices of

V (P )∪{z1, z
′}. By Lemma 10, there exists a penetrating path containing all the

vertices of V (P ) ∪ {z1, z
′}, a contradiction.

If z2 = vt, the second assertion can be proved similarly; and if z2 6= vt, the
assertion is obvious.



298 B. Li, H. Broersma and S. Zhang

Let h = |V (H)|, and k = |NH(vs)|. Then we have dH(vs)+dH(z2) ≤ h+k. Since
z1 ∈ NH(vs), we have k ≥ 1. Let NH(vs) = {y1, y2, . . . , yk}, where y1 = z1.

Claim 5.2. yiyj ∈ E−1(G) for all 1 ≤ i < j ≤ k.

Proof. If yiyj /∈ E(G), then by Claim 1, the graph induced by {vs, vs−1, yi, yj}
is a claw, where d(yi) + d(vs−1) < n − 1 and d(yj) + d(vs−1) < n − 1. Thus we
have d(yi) + d(yj) ≥ n− 1.

Now, let Q′ be the o−1-path Q′ = z2y1y2 · · · ykvs. It is clear that R[z2, vt] and Q′

are internally-disjoint, and Q′ contains at least k vertices of H. In the following,
we use P ′ to denote the path P [v1, vs−1]vs−1vs+1P [vs+1, vp] if z2 6= vt, and to
denote the o−1-path P [v1, vs−1]vs−1vs+1P [vs+1, vt−1]vt−1vt+1P [vt+1, vp] if z2 = vt.

Claim 5.3. If vsvi ∈ E(G) for some i with 2 ≤ i ≤ p− 1, then z2vi−1, z2vi+1 /∈
E(G).

Proof. If vsvi ∈ E(G) for some i with 2 ≤ i ≤ p − 1 and z2vi−1 ∈ E(G), then
Q = P ′[v1, vi−1]vi−1z2Q

′vsviP
′[vi, vp] is an o−1-path containing all vertices of

V (P ) ∪ V (Q′). By Lemma 10, we have a contradiction.
Similarly, we can prove the assertion for z2vi+1.

By Claim 3, we have vsvt−1 /∈ E(G). Let vℓ be the last vertex in P [vs+1, vt−1]
such that vsvℓ ∈ E(G).

Claim 5.4. t− ℓ ≥ k + 1, and for every vertex vi ∈ [vℓ+1, vℓ+k], z2vi /∈ E(G).

Proof. If t− ℓ ≤ k, then Q = P [v1, vs−1] vs−1vs+1P [vs+1, vℓ] vℓvsQ
′ z2R[z2, vt]vt

P [vt, vp] is an o−1-path containing all the vertices of V (P ) ∪ V (Q′) ∪ V (R) \
[vℓ+1, vt−1], which yields a longer penetrating path than P . Using Lemma 10, we
have a contradiction.

If z2vi /∈ E(G) for some vi ∈ [vℓ+1, vℓ+k], thenQ =P ′[v1, vℓ]vℓvsQ
′z2viP

′[vi, vp]
is an o−1-path containing all the vertices of V (P ) ∪ V (Q′) \ [vℓ+1, vi−1], which
again yields a longer penetrating path than P , a contradiction.

Claim 5.5. d[vs+1,vt−1](vs) + d[vs+1,vt−1](z2) ≤ t− s− k − 1,
d[v1,vs−1](vs) + d[v1,vs−1](z2) ≤ s− 2; d[vt+1,vp](vs) + d[vt+1,vp](z2) ≤ p− t− 1.

Proof. Note that vsvt−1 /∈ E(G) and z2vs+1 /∈ E(G). If vs has d neighbors in
[vs+1, vt−2], then by Claims 5.3. and 5.4 has at most t−s−2−d−k+1 neighbors
in [vs+2, vt−1].

Note that z2vs−1 /∈ E(G) and vsv1 /∈ E(G). If vs has d neighbors in [v2, vs−1],
then by Claim 5.3, z2 has at most s− 2− d neighbors in [v1, vs−2].

Similarly, note that vsvt+1 /∈ E(G) and z2vp /∈ E(G). If z2 has d neighbors in
[vt+1, vp−1], then by Claim 5.3, vs has at most p− t−1−d neighbors in [vt+2, vp].
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Now we can complete the proof of Claim 5. Note that vs and z2 are possibly
adjacent to vt, but they cannot be adjacent to vs. By Claim 5.3, we have dP (vs)+
dP (z2) ≤ p− k− 2. Recall that dH(vs) + dH(z2) ≤ h+ k. By Claim 5.1, we have
that d(vs) + d(z2) ≤ p+ h− 2 < n− 1.

Recall that G[vs−1, vs+1] is (vs−1, vs, vs+1)-composed. Now we prove the following
claims.

Claim 6. If G[vs−k, vs+ℓ] is (vs−k, vs, vs+ℓ)-composed with canonical path P [vs−k,
vs+ℓ], then s− k ≥ 2 and s+ ℓ ≤ t− 3.

Proof. Let D1, D2, . . . , Dr be a canonical sequence of G[vs−k, vs+ℓ] correspond-
ing to the canonical path P [vs−k, vs+ℓ]. If s− k = 1, then by Lemma 9, there is
a Hamilton (vs, vs+ℓ)-path Q′ of G[vs−k, vs+ℓ]. Thus Q = z1vsQ

′vs+ℓP [vs+ℓ, vp]
is a path containing all the vertices of V (P ) ∪ {z1}, a contradiction.

If s+ℓ ≥ t−2, then consider the graph Di, where i is the smallest integer such
that vt−2 ∈ V (Di). Let V (Di) = [vs−k′ , vt−2]. By Lemma 9, there exists a Hamil-
ton (vs−k′ , vs)-path Q′ of G[vs−k′ , vt−2]. Thus Q = P [v1, vs−k′ ]vs−k′Q

′vsRvtvt−1

vt+1P [vt+1, vp] is an o−1-path containing all the vertices of V (P )∪V (R), yielding
another contradiction.

Claim 7. If G[vs−k, vs+ℓ] is (vs−k, vs, vs+ℓ)-composed with canonical path P [vs−k,
vs+ℓ], where s − k ≥ 2 and s + ℓ ≤ t − 3, and any two nonadjacent vertices in

[vs−k−1, vs+ℓ+1] have degree sum less than n−1, then one of the following is true,

(1) G[vs−k−1, vs+ℓ] is a 1-extension of G[vs−k, vs+ℓ] at vs−k to vs−k−1;

(2) G[vs−k, vs+ℓ+1] is a 1-extension of G[vs−k, vs+ℓ] at vs+ℓ to vs+ℓ+1; or

(3) G[vs−k−1, vs+ℓ+1] is a 2-extension of G[vs−k, vs+ℓ] at (vs−k, vs+ℓ) to (vs−k−1,
vs+ℓ+1).

Thus in all cases we obtain a composed graph larger than G[vs−k, vs+ℓ].

Proof. Assume the contrary. This implies that vs−k−1 has only one neighbor
vs−k, and vs+ℓ+1 has only one neighbor vs+ℓ in [vs−k−1, vs+ℓ+1]. We prove a
number of subclaims in order to reach contradictions in all cases.

Claim 7.1. Let i ∈ [s− k− 1, s+ ℓ+1] \ {s} and j = 1, 2. Then vizj /∈ E−1(G).

Proof. Without loss of generality, we assume that i < s. If i = s − 1, the
assertion is true by Claims 1 and 3. So we assume that i ∈ [s− k − 1, s− 2] and
i + 1 ∈ [s − k, s − 1]. By the definition of composed subgraphs, there exists an
i′ ∈ [s+ 1, s+ ℓ] such that G[vi, vi′ ] is (vi, vs, vi′)-composed. By Lemma 9, there
exists a Hamilton (vs, vi′)-path Q′ of G[vi, vi′ ].

If zj 6= vt, then Q = P [v1, vi]vizjR[zj , vs]vsQ
′vi′P [vi′ , vp] is an o−1-path con-

taining all the vertices of V (P ) ∪ {zj}, yielding a contradiction.
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If zj = vt, then Q = P [v1, vi]vivtRvsQ
′vi′P [vi′ , vt−1]vt−1vt+1P [vt+1, vp] is an o−1-

path containing all the vertices of V (P ) ∪ V (R), yielding another contradiction.

Let G′ = G[[vs−k−1, vs+ℓ] ∪ {z1, z2}] and G′′ = G[[vs−k−1, vs+ℓ+1] ∪ {z1, z2}].

Claim 7.2. G′′ and G′ are {K1,3,W}-free.

Proof. By Claims 5 and 7.1, and the condition that any two nonadjacent vertices
in [vs−k−1, vs+ℓ+1] have degree sum less than n− 1, we have that any two nonad-
jacent vertices in G′′ have degree sum less than n − 1. Since G (and hence G′′)
is {K1,3,W}-o−1-heavy, we have that G

′′ is {K1,3,W}-free. The second assertion
follows easily.

Claim 7.3. NG′(vs) \ {z1} is a clique.

Proof. If there are two vertices x, x′ ∈ NG′(vs) \ {z1} such that xx′ /∈ E(G′),
then the graph induced by {vs, z1, x, x

′} is a claw, a contradiction.

Now, we define Ni = {x ∈ V (G′) : dG′(x, vs−k−1) = i}. Then we have N0 =
{vs−k−1}, N1 = {vs−k} and N2 = NG′(vs−k) \ {vs−k−1}.

By the definition of composed subgraphs, we have |N2| ≥ 2. If there are
two vertices x, x′ ∈ N2 such that xx′ /∈ E(G′), then the graph induced by
{vs−k, vs−k−1, x, x

′} is a claw, a contradiction. Thus we have that N2 is a clique.
We assume vs ∈ Nj , where j ≥ 2. Then z1 ∈ Nj+1 and z2 ∈ Nj+2.
If |Ni| = 1 for some i ∈ [2, j − 1], let Ni = {x}. Then x is a cut vertex of

the graph G[vs−k, vs+ℓ]. By the definition of composed subgraphs, G[vs−k, vs+ℓ]
is 2-connected. This implies |Ni| ≥ 2 for every i ∈ [2, j − 1].

Claim 7.4. For i ∈ [1, j], Ni is a clique.

Proof. We prove this claim by induction on i. For i = 1, 2, the claim is true
by the above arguments. So we assume that 3 ≤ i ≤ j, and we have that
Ni−3, Ni−2, Ni−1, Ni+1 and Ni+2 are nonempty, and that |Ni−1| ≥ 2.

Let x be a vertex in Ni that has a neighbor y in Ni+1. We claim that for
every x′ ∈ Ni, xx

′ ∈ E(G). Suppose that xx′ /∈ E(G). If x and x′ have a common
neighbor in Ni−1, denote it by w; then let v be a neighbor of w in Ni−2, and the
graph induced by {w, v, x, x′} is a claw, a contradiction. Thus we have that x and
x′ have no common neighbors in Ni−1. Now, let w be a neighbor of x in Ni−1, and
let w′ be a neighbor of x′ in Ni−1. Then xw′, x′w /∈ E(G). Let v be a neighbor of
w in Ni−2, and let u be a neighbor of v in Ni−3. If w′v /∈ E(G), then the graph
induced by {w, v, w′, x} is a claw, a contradiction. Thus we have w′v ∈ E(G),
and then the graph induced by {w′, v, u, w, x, y} is a W , a contradiction. Thus
as we claimed, x is adjacent to every other vertex in Ni.
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Now, we claim that for every two distinct vertices x′ and x′′ in Ni other than
x, x′x′′ ∈ E(G). Supposed that x′x′′ /∈ E(G). If x′y ∈ E(G), then similarly
as before, we can prove that x′ is adjacent to any other vertices in Ni; then
x′x′′ ∈ E(G). Thus we assume that x′y /∈ E(G), and similarly, x′′y /∈ E(G).
Then the graph induced by {x, x′, x′′, y} is a claw, a contradiction. This implies
that Ni is a clique.

If there exists some vertex x ∈ Nj other than vs, then we have vsx ∈ E(G) by
Claim 7.4. Let w be a neighbor of vs inNj−1, and let v be a neighbor of w inNj−2.
Then wx ∈ E(G) by Claim 7.3. Thus the graph induced by {x,w, v, vs, z1, z2} is
a W , a contradiction. So we assume Nj consists of only one vertex vs.

If there exists some vertex x ∈ Nj+1 other than z1, then vs is a cut vertex
of the graph G[vs−k, vs+ℓ], a contradiction. So we assume that all vertices in
[u−k, uℓ] are in

⋃j
i=1Ni.

Let vs+ℓ ∈ Ni, where i ∈ [2, j − 1]. If vs+ℓ has a neighbor in Ni+1, then let y
be a neighbor of vs+ℓ in Ni+1, and let w be a neighbor of vs+ℓ in Ni−1. Then the
graph induced by {vs+ℓ, w, y, vs+ℓ+1} is a claw, a contradiction. So we have that
vs+ℓ has no neighbors in Ni+1.

Let z be a vertex in Ni+2, let y be a neighbor of z in Ni+1, let x be a neighbor
of y in Ni, and let w be a neighbor of x in Ni−1. Thus x 6= vs+ℓ. If wvs+ℓ /∈ E(G),
then the graph induced by {x,w, vs+ℓ, y} is a claw, a contradiction. So we have
that wvs+ℓ ∈ E(G) and the graph induced by {w, vs+ℓ, vs+ℓ+1, x, y, z} is a W , a
contradiction. This final contradiction completes the proof of Claim 7.

Using Claim 7, we can consider a largest composed subgraph, in the following
sense. We choose k, ℓ such that:

(1) G[vs−k, vs+ℓ] is (vs−k, vs, vs+ℓ)-composed with canonical path P [vs−k, vs+ℓ],

(2) any two nonadjacent vertices in [vs−k, vs+ℓ] have degree sum less than n− 1
and

(3) k + ℓ is as large as possible.

Claim 8. (vs−k−1, vs+ℓ) or (vs−k, vs+ℓ+1) or (vs−k−1, vs+ℓ+1) is vs-good on P .

Proof. By Claim 7, we have that there exists a vertex vi ∈ [vs−k+1, vs+ℓ] such
that d(vs−k−1) + d(vi) ≥ n − 1, or there exists a vertex vi ∈ [vs−k, vs+ℓ−1] such
that d(vs+ℓ+1) + d(vi) ≥ n− 1, or d(vs−k−1) + d(vs+ℓ+1) ≥ n− 1.

Suppose first that there exists a vertex vi ∈ [vs−k+1, vs+ℓ] such that d(vs−k−1)+
d(vi) ≥ n − 1. Since G[vs−k, vs+ℓ] is (vs−k, vs, vs+ℓ)-composed, by Lemma 9,
there exists a (vs, vs+ℓ)-path Q such that V (Q) = [vs−k, vs+ℓ], and there ex-
ists a (vsvs+ℓ, vivs−k)-pair D′ such that V (D′) = [vs−k, vs+ℓ], and D = D′ ∪
{vs−kvs−k−1} is a (vsvs+ℓ, vivs−k−1)-pair such that V (D) = [vs−k−1, vs+ℓ]. Thus
(vs−k−1, vs+ℓ) is vs-good on P .
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If there exists a vertex vi ∈ [vs−k, vs+ℓ−1] such that d(vs+ℓ+1)+ d(vi) ≥ n− 1, we
can prove the result similarly.

Now suppose that d(vs−k−1) + d(vs+ℓ+1) ≥ n − 1. Since G[vs−k, vs+ℓ] is
(vs−k, vs, vs+ℓ)-composed, by Lemma 9, there exists a (vs, vs+ℓ)-path Q′ such that
V (Q′) = [vs−k, vs+ℓ], and there exists a (vs, vs−k)-path Q′′ such that V (Q′′) =
[vs−k, vs+ℓ]. Then Q = Q′vs+ℓvs+ℓ+1 is a (vs, vs+ℓ+1)-path such that V (Q) =
[vs−k, vs+ℓ+1], and the two path Q′′ vs−k vs−k−1 and vs+ℓ+1 form a (vs vs−k−1,
vs+ℓ+1vs−k−1)-pair such that V (D) = [vs+ℓ+1, vs−k−1]. Thus (vs+ℓ+1, vs−k−1) is
vs-good on P .

Claim 9. There exist some k′ and ℓ′ such that (vt−k′ , vt+ℓ′) is vt-good on P ,

where s+ ℓ+ 1 ≤ t− k′ and t+ ℓ′ ≤ p.

Proof. By Claim 6, we have s+ ℓ ≥ t− 3.
If vt−1vt+1 /∈ E(G), then by Claim 2, d(vt−1) + d(vt+1) ≥ n − 1. Then

Q = vtvt−1 is a (vt, vt−1)-path, and the two paths vtvt+1 and vt−1 form a
(vtvt−1, vt−1vt+1)-pair. Thus we have that (vt−1, vt+1) is vt-good on P .

Now we assume that vt−1vt+1∈E(G), and thenG[vt−1, vt+1] is (vt−1, vt, vt+1)-
composed.

Claim 9.1. If G[vt−k′ , vt+ℓ′ ] is (vt−k′ , vt, vt+ℓ′)-composed with canonical path

P [vt−k′ , vt+ℓ′ ], then t− k′ ≥ s+ ℓ+ 2 and t+ ℓ′ ≤ p− 1.

Proof. Let D1, D2, . . . , Dr be a canonical sequence of G[vt−k′ , vt+ℓ′ ] correspond-
ing to the canonical path P [vt−k′ , vt+ℓ′ ]. Similarly as in the proof of Claim 6,
we have that t + ℓ′ ≤ p − 1. Suppose now that t − k′ ≤ s + ℓ + 1. Consider
the graph Di, where i is the smallest integer such that vs+ℓ+1 ∈ V (Di). Let
V (Di) = [vs+ℓ+1, vt+ℓ′′ ]. By Lemma 9, there exists a Hamilton (vs, vs−k)-path Q′

of G[vs−k, vs+ℓ] and there exists a Hamilton path Q′′ of G[vs+ℓ+1, vt+ℓ′′ ]. Thus
Q = P [v1, vs−k]vs−kQ

′vsRvtQ
′′vt+ℓ′′P [vt+ℓ′′ , vp] is a path containing all the ver-

tices of V (P ) ∪ V (R), a contradiction.

Similar to Claim 7, we have another claim that provides a tool for considering a
largest composed subgraph.

Claim 9.2. If G[vt−k′ , vt+ℓ′ ] is (vt−k′ , vt, vt+ℓ′)-composed with canonical path

P [vt−k′ , vt+ℓ′ ], where t−k′ ≥ s+ ℓ+2 and t+ ℓ ≤ p−1, and any two nonadjacent

vertices in [vt−k′−1, vt+ℓ′+1] have degree sum less than n − 1, then one of the

following is true:

(1) G[vt−k′−1, vt+ℓ′ ] is a 1-extension of G[vt−k′ , vt+ℓ′ ] at vt−k′ to vt−k′−1,

(2) G[vt−k′ , vt+ℓ′+1] is a 1-extension of G[vt−k′ , vt+ℓ′ ] at v(t+ ℓ)] to vt+ℓ+1 or

(3) G[vt−k′−1, vt+ℓ′+1] is a 2-extension of G[vt−k′ , vt+ℓ′ ] at (vt−k′ , vt+ℓ′) to
(vt−k′−1, vt+ℓ′+1).
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Hence in all cases we obtain a composed graph larger than G[vt−k′ , vt+ℓ′ ].

Now we choose k′, ℓ′ such that:

(1) G[vt−k′ , vt+ℓ′ ] is (vt−k′ , vt, vt+ℓ′)-composed with canonical path P [vt−k′ , vt+ℓ′ ];

(2) any two nonadjacent vertices in [vt−k′ , vt+ℓ′ ] have degree sum less than n−1;
and

(3) k′ + ℓ′ is as large as possible.

Similar to Claim 8, we have that (vt−k′−1, vt+ℓ′) or (vt−k′ , vt+ℓ′+1) or (vt−k′−1,
vt+ℓ′+1) is vt-good on P .

Using Claims 8 and 9, by Lemma 11, we get that there exists a path containing
all the vertices of V (P ) ∪ V (R), a contradiction. This completes the proof for
Case 1.

Case 2. r = 1 and vsvt ∈ E(G). Recall that vsvs+1 ∈ E(G) and vsvt−1 /∈
E(G). Let vs+k be the first vertex in [vs+1, vt−1] such that vsvs+k /∈ E(G). Then
s+ 2 ≤ s+ k ≤ t− 1.

Claim 10. Let vi ∈ [vs+1, vs+k] and x ∈ {z1, vt, vt+1}. Then vix /∈ E−1(G).

Proof. By Claims 1 and 3, we have that vs+1z1, vs+1vt, vs+1vt+1 /∈ E−1(G).
Thus we assume that vi ∈ [vs+2, vs+k]. Then vsvi ∈ E(G). If viz1 ∈ E(G), then
Q = P [v1, vs−1]vs−1 vs+1P [vs+1, vi−1]vi−1vsz1viP [vi, vp] is an o−1-path containing
all the vertices of V (P )∪V (R), yielding a contradiction using Lemma 10. If vivt ∈
E(G), then Q = P [v1, vs−1]vs−1vs+1 P [vs+1, vi−1]vi−1vsz1vtviP [vi, vt−1]vt−1vt+1

P [vt+1, vp] is an o−1-path containing all the vertices of V (P )∪V (R), yielding an-
other contradiction. If vivt+1 ∈ E(G), then Q = P [v1, vs−1]vs−1vs+1P [vs+1, vi−1]
vi−1vsz1vtP [vt, vi]vivt+1P [vt+1, vp] is an o−1-path containing all the vertices of
V (P ) ∪ V (R), yielding the last contradiction.

Using Claims 1, 3 and 10, the subgraph induced by {z1, vt, vt+1, vs, vs+k−1, vs+k}
is a W that is not o−1-heavy, our final contradiction, completing the proof of
Theorem 7.

5. Proof of Theorem 8

The proof is modelled along the same lines as the proof of Theorem 7.

Proof. Suppose G is a {K1,3, N}-o−1-heavy block-chain on n vertices. It suffices
to prove that G is traceable. We proceed by contradiction.

Clearly, G contains a penetrating path. As in the previous section, we choose
a longest penetrating path P = v1v2 · · · vp, a component H of G − V (P ), and
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a path R = z0z1z2 · · · zr+1, where z0 = vs and zr+1 = vt, s < t with two end-
vertices on P and all internal vertices in H, and of length at least 2, but as short
as possible subject to these conditions.

Similarly as in Section 4, we get the following claims. We omit the details.

Claim 1. Let x ∈ V (H) and y ∈ {vs−1, vs+1, vt−1, vt+1}. Then xy /∈ E−1(G).

Claim 2. vs−1vs+1 ∈ E−1(G), vt−1vt+1 ∈ E−1(G).

Claim 3. vs−1vt−1 /∈ E−1(G), vs+1vt+1 /∈ E−1(G), vsvt±1 /∈ E−1(G) and
vs±1vt /∈ E−1(G).

Claim 4. Either vs−1vs+1 ∈ E(G) or vt−1vt+1 ∈ E(G).

By Claim 4, without loss of generality, we assume that vs−1vs+1 ∈ E(G). Thus
G[vs−1, vs+1] is (vs−1, vs, vs+1)-composed.

Claim 5. If G[vs−k, vs+ℓ] is (vs−k, vs, vs+ℓ)-composed with canonical path P [vs−k,
vs+ℓ], then s− k ≥ 2 and s+ ℓ ≤ t− 3.

The proof of Claim 5 is similar to that of Claim 6 in Section 4.
Now we prove the following claim.

Claim 6. If G[vs−k, vs+ℓ] is (vs−k, vs, vs+ℓ)-composed with canonical path P [vs−k,
vs+ℓ], where s − k ≥ 2 and s + ℓ ≤ t − 3, and any two nonadjacent vertices in

[vs−k−1, vs+ℓ+1] have degree sum less than n−1, then one of the following is true:

(1) G[vs−k−1, vs+ℓ] is a 1-extension of G[vs−k, vs+ℓ] at vs−k to vs−k−1;

(2) G[vs−k, vs+ℓ+1] is a 1-extension of G[vs−k, vs+ℓ] at vs+ℓ to vs+ℓ+1; or

(3) G[vs−k−1, vs+ℓ+1] is a 2-extension of G[vs−k, vs+ℓ] at (vs−k, vs+ℓ) to (vs−k−1,
vs+ℓ+1).

Thus in all cases we obtain a composed graph larger than G[vs−k, vs+ℓ].

Proof. Assume the contrary. This implies that vs−k−1 has only one neighbor
vs−k, and vs+ℓ+1 has only one neighbor vs+ℓ, in [vs−k−1, vs+ℓ+1]. We need a
number of subclaims.

Claim 6.1. For i ∈ [s− k − 1, s+ ℓ+ 1] \ {s}, viz1 /∈ E−1(G).

This claim can be proved in a similar way as Claim 7.1 in Section 4. We omit
the details.
Let G′ = G[[vs−k−1, vs+ℓ] ∪ {z1}] and G′′ = G[[vs−k−1, vs+ℓ+1] ∪ {z1}].

Similar to Claims 7.2 and 7.3 in Section 4, we obtain the following statements.

Claim 6.2. G′′ and G′ are {K1,3, N}-free.

Claim 6.3. NG′(vs) \ {z1} is a clique.

Now, we define Ni = {x ∈ V (G′) : dG′(x, vs−k−1) = i}. Then we have N0 =
{vs−k−1}, N1 = {vs−k} and N2 = NG′(vs−k) \ {vs−k−1}.
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By the definition of composed graphs, we have |N2| ≥ 2. If there are two vertices
x, x′ ∈ N2 such that xx′ /∈ E(G′), then the graph induced by {vs−k, vs−k−1, x, x

′}
is a claw, a contradiction. Thus we have that N2 is a clique.

We assume vs ∈ Nj , where j ≥ 2. Then z1 ∈ Nj+1.

If |Ni| = 1 for some i ∈ [2, j − 1], then let Ni = {x}; then x is a cut vertex
of the graph G[vs−k, vs+ℓ]. By the definition of composed graphs, G[vs−k, vs+ℓ] is
2-connected. This implies |Ni| ≥ 2 for every i ∈ [2, j − 1].

Claim 6.4. For i ∈ [1, j], Ni is a clique.

Proof. We prove this claim by induction on i. For i = 1, 2, the claim is true
by the above arguments. So we assume that 3 ≤ i ≤ j, and we have that
Ni−3, Ni−2, Ni−1 and Ni+1 are nonempty, and that |Ni−1| ≥ 2.

Let x and x′ be two distinct vertices in Ni. We claim that xx′ ∈ E(G).
Suppose that xx′ /∈ E(G). If x and x′ have a common neighbor in Ni−1, denote it
by w; then let v be a neighbor of w in Ni−2, and the graph induced by {w, v, x, x′}
is a claw, a contradiction. Thus we have that x and x′ have no common neighbors
in Ni−1. Now, let w be a neighbor of x in Ni−1, and let w′ be a neighbor of x′ in
Ni−1. Then xw′, x′w /∈ E(G). Let v be a neighbor of w in Ni−2, and let u be a
neighbor of v in Ni−3. If w

′v /∈ E(G), then the graph induced by {w, v, w′, x} is
a claw, a contradiction. Thus we have w′v ∈ E(G), and then the graph induced
by {v, u, w, x, w′, x′} is an N , a contradiction. This implies that Ni is a clique.

If there exists some vertex y ∈ Nj+1 other than z1, then we have yvs /∈ E(G) by
Claim 6.3. Let x be a neighbor of y in Nj , let w be a neighbor of vs in Nj−1,
and let v be a neighbor of w in Nj−2. Then xvs ∈ E(G) by Claim 6.4, and
xw ∈ E(G) by Claim 6.3. Thus the graph induced by {w, v, x, y, vs, z1} is an N ,
a contradiction. So we assume that all vertices in [vs−k, vs+ℓ] are in

⋃j
i=1Ni.

If vs+ℓ ∈ Nj , then let w be a neighbor of vs in Nj−1, and let v be a neighbor
of w in Nj−2. Then the graph induced by {w, v, vs+ℓ, vs+ℓ+1, vs, z1} is an N , a
contradiction. Thus we have that vs+ℓ /∈ Nj and thus j ≥ 3.

Let vs+ℓ ∈ Ni, where i ∈ [2, j − 1]. If vs+ℓ has a neighbor in Ni+1, then let y
be a neighbor of vs+ℓ in Ni+1, and let w be a neighbor of vs+ℓ in Ni−1. Then the
graph induced by {vs+ℓ, w, y, vs+ℓ+1} is a claw, a contradiction. Thus we have
that vs+ℓ has no neighbors in Ni+1.

Let y be a vertex in Ni+1, and let x be a neighbor of y in Ni. Then x 6= vs+ℓ.
Let w be a neighbor of x in Ni−1, and let v be a neighbor of w in Ni−2. If
wvs+ℓ /∈ E(G), then the graph induced by {x,w, vs+ℓ, y} is a claw, a contradiction.
So we have that wvs+ℓ ∈ E(G) and the graph induced by {w, v, vs+ℓ, vs+ℓ+1, x, y}
is an N , a contradiction.

This completes the proof of Claim 6.
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Using Claim 6, we consider a largest composed subgraph, in the following sense.
We choose k, ℓ such that:

(1) G[vs−k, vs+ℓ] is (vs−k, vs, vs+ℓ)-composed with canonical path P [vs−k, vs+ℓ],

(2) any two nonadjacent vertices in [vs−k, vs+ℓ] have degree sum less than n− 1
and

(3) k + ℓ is as large as possible.

Similar to Claims 8 and 9 in Section 4, we obtain the following claims. We omit
the details.

Claim 7. (vs−k−1, vs+ℓ) or (vs−k, vs+ℓ+1) or (vs−k−1, vs+ℓ+1) is vs-good on P .

Claim 8. There exist some k′ and ℓ′ such that (vt−k′ , vt+ℓ′) is vt-good on P ,

where s+ ℓ+ 1 ≤ t− k′ and t+ ℓ′ ≤ p.

Using Claims 7 and 8, Lemma 11 implies that there exists a path containing all
the vertices of V (P ) ∪ V (R), our final contradiction.
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[10] B. Li, Z. Ryjáček, Y. Wang and S. Zhang, Pairs of heavy subgraphs for Hamiltonicity

of 2-connected graphs, SIAM J. Discrete Math. 26 (2012) 1088–1103.
doi:10.1137/11084786X

[11] B. Li and S. Zhang, On traceability of claw-o
−1-heavy graphs (2013).

arXiv:1303.0991v1

Received 11 April 2012
Revised 14 March 2013

Accepted 14 March 2013

http://dx.doi.org/10.1016/0095-8956\(74\)90091-4
http://dx.doi.org/10.1137/11084786X


 

Powered by TCPDF (www.tcpdf.org)

http://www.tcpdf.org

