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Abstract

An edge ordering of a graph G is an injection f : E(G) → R, the set of
real numbers. A path in G for which the edge ordering f increases along
its edge sequence is called an f -ascent ; an f -ascent is maximal if it is not
contained in a longer f -ascent. The depression of G is the smallest integer k
such that any edge ordering f has a maximal f -ascent of length at most k.
A k-kernel of a graph G is a set of vertices U ⊆ V (G) such that for any edge
ordering f of G there exists a maximal f -ascent of length at most k which
neither starts nor ends in U . Identifying a k-kernel of a graph G enables
one to construct an infinite family of graphs from G which have depression
at most k. We discuss various results related to the concept of k-kernels,
including an improved upper bound for the depression of trees.

Keywords: edge ordering of a graph, increasing path, monotone path, de-
pression.
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1. Introduction

An edge ordering of a graph G is an injection f : E(G) → R, the set of real
numbers. Denote the set of all edge orderings of G by F(G). A path λ in G
for which f ∈ F(G) increases along its edge sequence is called an f -ascent ; an
f -ascent is maximal if it is not contained in a longer f -ascent. The flatness of an
edge ordering f , denoted by h(f), is the length of a shortest maximal f -ascent
of G.

The depression of G was defined in [7] as ε(G) = maxf∈F(G) {h(f)}. The
interpretation of the depression of a graph G is that any edge ordering f has a
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maximal f -ascent of length at most ε(G), and ε(G) is the smallest integer for
which this statement is true.

Clearly, ε(G) = 1 if and only if K2 is a component of G. If a connected graph
G has a vertex v that is adjacent to u and w, where u and w are pendant vertices
or adjacent vertices of degree two, then in any edge ordering f of G, either u, v, w
or w, v, u is a maximal (2, f)-ascent, hence ε(G) = 2. In [7] it was shown that the
converse of this statement is also true, which gives the following characterization
of graphs with depression two.

Theorem 1 [7]. If G is connected, then ε(G) = 2 if and only if G has a vertex

adjacent to two pendant vertices or to two adjacent vertices of degree two.

Consider two disjoint graphs G1 and G2 and vertices vi ∈ V (Gi). The vertex-

coalescence of G1 and G2 via v1 and v2 is the graph obtained by identifying v1
and v2 to form a new vertex v, and is denoted (G1 · G2)(v1, v2 : v). In forming
G = (G1 ·G2)(v1, v2 : v), if v2 is unimportant we also say we attach G1 to G2 at

v1, and if G is the resulting graph, we say that G contains G1 as an attachment

at v1.
We see from Theorem 1 that if v is the central vertex of P3 or any vertex of

K3, and G is any connected graph containing P3 or K3 as an attachment at v,
then ε(G) = 2.

An interesting question arises from this result.

• What properties should H and v ∈ V (H) satisfy so that if we attach H to
an arbitrary graph at v, the resulting graph has depression at most k?
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Figure 1. The vertex v is a 3-kernel of G and an ε-kernel of G.

To help answer this question, a k-kernel of a graph G is defined in [14] as a
set U ⊆ V (G) such that for any edge ordering f of G there exists a maximal
(l, f)-ascent for some l ≤ k that neither starts nor ends at a vertex in U , and
k is smallest value for which this is true. For example, either vertex of P4 with
degree two forms a 3-kernel of P4 (see Figure 1). The following theorem relates
the concept of k-kernels to the question above.
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Theorem 2 [14]. Let H be an arbitrary graph and let U be a k-kernel of H.

Form a graph G by adding any set A of new vertices and arbitrary edges joining

vertices in U ∪A. Then ε(G) ≤ k.

Therefore, if {v} is a k-kernel of H and we attach H to a graph G at {v}, then by
Theorem 2 the resultant graph has depression at most k. In general, identifying
a k-kernel of a graph enables one to construct an infinite family of graphs with
depression at most k.

In Section 4.1 we define an ε-kernel of a graph and introduce some termi-
nology to aid us in our discussion of k-kernels. In Section 4.2 we characterize
ε-kernels of paths and k-kernels of cycles. We provide a sufficient condition in
Section 4.3 for a set of vertices to be an ε-kernel of a spider and use this result
to improve the upper bound for the depression of trees given in Theorem 9. In
Section 4.4 we consider graphs G for which diam(L(G)) = 2, where L(G) denotes
the line graph of G. Specifically, we describe a sufficient condition for a vertex
of a graph G with diam(L(G)) = 2 to be a k-kernel of G for k ∈ {2, 3} which in
turn identifies a large class of graphs with depression at most three. The paper
concludes with a list of some open problems in Section 5.

2. Definitions and Background

We consider simple, finite graphs G = (V (G), E(G)). For basic graph theoretic
definitions we refer the reader to the book [4] or any of its predecessors. The open
neighbourhood of a vertex v of G is the set of all vertices adjacent to v and is
denoted by NG(v), or just N(v), and its closed neighbourhood is NG[v] = N [v] =
N(v) ∪ {v}.

A branch vertex of a tree is a vertex of degree at least three. Let L(T ) and
B(T ) respectively denote the sets of all leaves and all branch vertices of the tree
T, and ℓ(T ) the minimum length of a path P between two leaves of T such that
no two consecutive vertices of P are in B(T ). For v ∈ V (T ) and l ∈ L(T ), a
(v, l)-endpath, or v-endpath if the leaf is unimportant, or endpath if neither v nor
l is important, is a path P from v to l such that each internal vertex of P has
degree two in T . A spider S(a1, a2, . . . , ar) is a tree with exactly one branch
vertex v and v-endpaths (also called legs) of lengths 1 ≤ a1 ≤ a2 ≤ · · · ≤ ar.

Given an edge ordering f of the graph G, an f -ascent λ is simply called an
ascent if the ordering is clear, and if λ has length k, it is also called a (k, f)-ascent.
If the path λ with vertex sequence v0, v1, . . . , vk or edge sequence e1, e2, . . . , ek
forms an f -ascent, we denote this fact by writing λ as v0v1 · · · vk or e1e2 · · · ek.

The height of an edge ordering f , denoted by H(f), is the length of a
longest maximal f -ascent. In [2] the altitude of G was defined as α(G) =
minf∈F(G) {H(f)}. The interpretation of the altitude of a graph G is that any
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edge ordering f ∈ F(G) has an f -ascent of length at least α(G), and α(G) is the
largest integer for which this statement is true.

The study of lengths of increasing paths was initiated by Chvátal and Komlós
[5] who posed the problem of determining the altitude of complete graphs. This
is a difficult problem and α(Kn) is known only for 1 ≤ n ≤ 8 (see [2, 5]). In [7]
the authors compare the altitude and depression for various families of graphs.
In particular, they show that ε(Kn) < α(Kn) for n ≥ 4 while ε(Pn) > α(Pn) for
n ≥ 3. The altitude of graphs was also investigated in e.g. [1, 3, 6, 8, 10, 12, 13,
15, 17, 18].

3. Known Results

Let τ(G) denote the length of a longest path in G, called the detour length in G.
If we assume that G is connected and of size at least two, then

2 ≤ ε(G), α(G) ≤ τ(G).

By taking the edge ordering f for the path Pn, n ≥ 3, to increase along its edge
sequence we see that ε(Pn) = τ(Pn) = n − 1. On the other hand, by taking the
edge ordering for the path Pn, n ≥ 3, as 1, n− 1, 2, n− 2, . . . ,

⌈

n
2

⌉

along its edge
sequence, we see that α(Pn) = 2.

It is reasonable to expect a link between the depression of a graph G and the
diameter of its line graph L(G), and indeed the following result appeared in [7].

Theorem 3 [7]. If diam(L(G)) = 2, then ε(G) ≤ 3.

The difference diam(L(G))−ε(G) can be arbitrarily large, a result that easily fol-
lows from Theorem 1. Much harder to see is that the difference ε(G)−diam(L(G))
can also be arbitrarily large as shown by Gaber-Rosenblum and Roddity in [11].

The depression of complete graphs is a direct result of Theorems 1 and 3.

Corollary 4 [7]. ε(Kn) = 3 for all n ≥ 4.

The depression of cycles is also given in [7].

Proposition 5 [7]. ε(Cn) =
⌈

n+1
2

⌉

for all n ≥ 3.

A lower bound for the depression of trees was given in [9] and it was shown that
this bound gives the exact value of ε(T ) in the case where B(T ) is independent.
The bound requires the following definition. For v ∈ B(T ) with deg v = r,
let e1(v), e2(v), . . . , er(v) be an arrangement of the edges incident with v, and
ℓi(v) the length of a shortest v-endpath that contains ei(v). We abbreviate ei(v)
and ℓi(v) to ei and ℓi, if the vertex v is clear from the context. An arrangement
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e1, . . . , er is called suitable if ℓi ≤ ℓj whenever i < j. From a suitable arrangement
e1, . . . , er of the edges incident with v, define

ρ(v) = min{ℓ1(v) + ℓ2(v), ℓ3(v) + 1}.

Theorem 6 [9]. For any tree T , ε(T ) ≥ minv∈B(T ){ρ(v)}. Moreover, if B(T ) is
independent, then ε(T ) = minv∈B(T ){ρ(v)}.

Two upper bounds for the depression of trees are given in [7]. The first is based
on ℓ(T ).

Theorem 7 [7]. For any tree T , ε(T ) ≤ ℓ(T ).

The second is an improvement on Theorem 7 and is a corollary of Theorem 6.

Corollary 8 [7]. ε(S(a1, a2, . . . , ar)) = min{a1 + a2, a3 + 1}.

An upper bound for the depression of trees related to the above result for spiders
was determined in [7], which is an obvious improvement on Theorem 7. Those
spiders obtained by removing all edges of the tree that are not edges of endpaths
are called hanging spiders of T . Let H(T ) denote the set of all hanging spiders
H = S(a1, . . . , ar), r ≥ 3, of T . If L(G) 6= ∅, then define

s(T ) = minH∈H(T ){a3 + 1}.

If L(G) = ∅, then define s(T ) = ∞.

Theorem 9 [7]. For any tree T , ε(T ) ≤ min{ℓ(T ), s(T )}.

This bound is not exact for trees, even in the case where B(T ) is independent.
An improvement on this bound is given in Section 4.3 which does give the exact
value of ε(T ) in the case where B(T ) is independent.

As mentioned previously, Theorem 1 characterizes the class of graphs with
depression two. The characterization of graphs with depression three remains an
open problem, however, trees with depression three were characterized in [14],
and graphs with depression three and no adjacent vertices of degree three or
higher were characterized in [16]. The concept of k-kernels plays an integral role
in establishing the results in [14] and [16].

4. Main Results

4.1. An ε-kernel

We define an ε-kernel of a graph G as a set U ⊆ V (G) such that for any edge
ordering f of G there exists a maximal f -ascent of length at most ε(G) that
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Figure 2. The vertex u is not an ε-kernel but is a 3-kernel.

neither starts nor ends at a vertex in U . That is, a set U is an ε-kernel of G if U
is a k-kernel of G and k = ε(G). For example, as shown in Figure 1, a vertex v
of P4 with degree two is a 3-kernel of P4, and since ε(P4) = 3 we also say that v
is an ε-kernel of P4.

As illustration of a k-kernel where k > ε(G), consider the graph G shown in
Figure 2. By Theorem 1, ε(G) = 2 and the labelling f in the figure shows that
the vertex u is not an ε-kernel of G since the only maximal f -ascent of length two
(2 3) ends at u. On the other hand, for any labelling f there exists an f -ascent
that does not start or end at u and since the longest possible path in G has length
three, we conclude that u is a 3-kernel of G.

For any two adjacent edges of a graph G, say e1 and e2, and an edge ordering
f of G, either e1e2 or e2e1 is an f -ascent of G which is contained in a maximal
f -ascent of length at most τ(G), the length of a longest path in G. Thus, for the
vertex v incident with e1 and e2, and any edge ordering f of G, there exists an f -
ascent which neither starts nor ends at v. This leads to the following observation.

Observation 10. Any vertex v ∈ V (G) with deg(v) ≥ 2 is a k-kernel of G for

some ε(G) ≤ k ≤ τ(G).

To aid us in our discussion of k-kernels we introduce the following terminology.
Let f be an edge ordering of a graph G. If an f -ascent λ neither starts nor

ends in a set A ⊂ V (G), we say that λ is an A-avoiding (maximal) f -ascent or
an a-avoiding (maximal) f -ascent if A = {a} (and λ is not contained in a longer
f -ascent).

In order to identify a set U ⊆ V (G) as a k-kernel of a graph G, we must show
that for every edge ordering f ∈ F(G) there exists a U -avoiding maximal ascent
of length at most k.

In the following sections we identify k-kernels for various classes of graphs.

4.2. Paths and cycles

In this section we identify k-kernels of paths and cycles. Since ε(Pn) = τ(Pn), it
follows that any k-kernel of Pn is necessarily an ε-kernel.

Proposition 11. Let U ⊆ V (Pn) where n ≥ 3. Then U is an ε-kernel of Pn if

and only if U is an independent set and for each u ∈ U , deg(u) = 2.
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Proof. Suppose to the contrary that U is an independent set, for each u ∈ U ,
deg(u) = 2, and U is not an ε-kernel of Pn = v1, v2, . . . , vn. Then there exists an
edge ordering of Pn, say f , such that every maximal f -ascent of length at most
ε(Pn) either starts or ends in U . Since ε(Pn) = n − 1, this means that every
maximal f -ascent of Pn starts or ends at a vertex in U . Necessarily, for some
3 ≤ k ≤ n, either v1v2 · · · vk or vkvk−1 · · · v1 is a maximal f -ascent. Without loss
of generality we assume the former. Since v1 /∈ U , it follows that vk ∈ U and
k < n. Since v1v2 · · · vk is a maximal f -ascent, f(vk−1vk) > f(vkvk+1), which
means vk+1vkvk−1 is an f -ascent that ends at vk−1. Since U is an independent
set, vk−1 and vk+1 are not in U . This implies vk+1vkvk−1 is contained in a longer
f -ascent λ. Since λ starts or ends in U , the initial vertex, say vk′ , is in U and
k′ > k + 1. By a similar argument, vk′−1vk′vk′+1 is an f -ascent contained in a
longer f -ascent, say λ′, and the end vertex k′′ of λ′ is in U , where k′′ > k′ − 1.
Since Pn is of finite length, eventually we obtain a maximal f -ascent which neither
starts nor ends in U , a contradiction.

Conversely, suppose U is an ε-kernel of Pn. Then every edge ordering f
contains a U -avoiding maximal f -ascent. Suppose that U is not an independent
set. Let vi, vi+1 ∈ U for some 2 ≤ i ≤ n − 1. Let f be the edge ordering
defined as f(vivi+1) = 1, f(vjvj+1) = j + 1 − i for each j > i, and f(vjvj+1) =
i − j + f(vn−1vn) for each j < i. Thus any maximal f -ascent of Pn starts at
either vi or vi+1, a contradiction. Suppose that U contains an end vertex of Pn.
Consider the edge ordering f defined by f(vivi+1) = i for all 1 ≤ i ≤ n − 1.
Clearly, v1v2 · · · vn is the only maximal f -ascent and by our assumption it starts
or ends in U , a contradiction.

Note that Theorem 7 is a corollary of Theorem 2 and Proposition 11. Further-
more, if we define ℓ(G) as the minimum length of a path between two end-vertices
of G which contains no adjacent vertices of degree three or more, and define
ℓ(G) = τ(G) if no such path exists, then we obtain a bound similar to Theorem 7
which applies to graphs in general.

Corollary 12. For any graph G, ε(G) ≤ ℓ(G).

Proposition 13. Let U ⊆ V (Cn) where n ≥ 3. If U is a k-kernel of Cn, then

k = n− 1. Furthermore, U is an (n− 1)-kernel of Cn if and only if |U | = 1.

Proof. By Observation 10 any single vertex v is a k-kernel of Cn for some ε(Cn) ≤
k ≤ n− 1. Consider a cycle Cn = v1, v2, . . . , vn and the edge ordering f given by
f(vivi+1) = i for 1 ≤ i ≤ n− 1 and f(vnv1) = n. The only v2-avoiding maximal
f -ascent has length n− 1. Hence v2 is an (n− 1)-kernel of Cn. Since Cn is vertex
transitive, any U ⊆ V (Cn) with |U | = 1 is an (n− 1)-kernel of Cn.
Suppose that U ⊆ V (G) and |U | ≥ 2. Let u, v ∈ U , and say u = v1 and
v = vk where 2 ≤ k ≤ n. Let f : E(Cn) → {1, . . . , n} such that f(v1v2) = 1,
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f(vkvk+1) = n (or f(vkv1) = n if k = n), and the remaining edges are labelled so
that there are exactly two maximal f -ascents in G, both of which start with the
edge labelled 1 and end with the edge labelled n (one in each direction around
the cycle). One of the ascents starts at u and the other ends at v, which implies
that U is not a kernel of Cn. Therefore, if U is a k-kernel of Cn, then |U | = 1
and k = n− 1.

4.3. Spiders

In this section we identify sets which are an ε-kernel of a spider S(a1, a2, . . . , ar)
and use this result to determine a new upper bound for the depression of trees.
Recall that for a tree T and a vertex v ∈ B(T ) with deg v = r, an arrangement
of the edges e1, . . . , er incident with v is called suitable if ℓi(v) ≤ ℓj(v) whenever
i < j, where ℓi(v) is the length of shortest v-endpath containing ei.

Proposition 14. Let T = S(a1, a2, . . . , ar). If U ⊆ V (T )− L(T ) and U ∪B(T )
is independent, then U is an ε-kernel of T .

Proof. Let B(T ) = {v} and U ⊆ V (T )−L(T ) such that U ∪{v} is independent.
By Corollary 8, ε(S(a1, a2, . . . , ar)) = min{a1 + a2, a3 + 1}. Hence, to prove the
result we must show that for any edge ordering f of T there exists a U -avoiding
maximal f -ascent of length at most min{a1 + a2, a3 + 1}.

Let e1, e2, . . . , er be a suitable arrangement of the edges incident with the
branch vertex v. For 1 ≤ i < j ≤ 3, let Pi,j be the path of length ai + aj which
contains ei and ej . From Proposition 11, for G = P1,2, any independent set of
V (G) forms an ε-kernel of G, where ε(G) = a1+a2. This implies that for any edge
ordering f of T , there exists a (U ∪ {v})-avoiding maximal f -ascent of length at
most a1 + a2 which is contained in P1,2. Similarly, there exist (U ∪ {v})-avoiding
maximal f -ascents of lengths at most a1 + a3 and a2 + a3 contained in P1,3 and
P2,3 respectively. Let λi,j be a (U ∪{v})-avoiding maximal f -ascent contained in
the path Pi,j where 1 ≤ i < j ≤ 3.

Let f be an edge ordering of T . If a1+ a2 ≤ a3+1, then we are done. Hence
we assume a1 + a2 > a3 + 1. Suppose to the contrary that there does not exist a
U -avoiding maximal f -ascent of length at most a3 + 1 in T . Then each λi,j has
length at least a3 + 2 ≥ a2 + 2 ≥ a1 + 2 which implies the edges ei and ej are
contained in λi,j .

Without loss of generality assume that f(e1) < f(e2). For 1 ≤ i ≤ 3, let
e′i be the edge adjacent to ei and not incident with v. Then, since the length
of λ1,2 is at least a2 + 2, f(e′1) < f(e1) and f(e2) < f(e′2). This implies that
f(e′3) < f(e3) < f(e2) or else the length of λ2,3 is at most a3 + 1, which is a
contradiction. But then either λ1,3 has length at most a1 + 1 (if f(e3) > f(e1)),
or λ1,3 has length at most a3+1 (if f(e3) < f(e1)), which again is a contradiction.
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We use Proposition 14 to establish an upper bound for the depression of a tree.
The bound requires the following definition. An embedded spider of a tree T is a
subgraph H = S(a1, a2, . . . , ar) of T which is a spider, no endpath of H contains
consecutive vertices in B(T ), and leaves of H are also leaves of T . Let Hes(T )
denote the set of all embedded spiders H = S(a1, a2, . . . , ar) of T where r ≥ 3.
If Hes(T ) 6= ∅, define

σ(T ) = minH∈Hes(T ){a3 + 1}.

If Hes(T ) = ∅, then define σ(T ) = ∞.
Note that σ(T ) ≤ s(T ), where s(T ) = minH∈H(T ){a3 + 1} and H(T ) is the

set of all hanging spiders of T with at least three leaves.
Recall that ℓ(T ) is the minimum length of a path P between two leaves of T

such that P contains no two consecutive branch vertices.

Theorem 15. For any tree T , ε(T ) ≤ min{ℓ(T ), σ(T )}.

Proof. If min{ℓ(T ), σ(T )} = ℓ(T ), then the result follows from Theorem 7. Sup-
pose then that ℓ(T ) > σ(T ). Let H = S(a1, a2, . . . , ar} be an embedded spider
of T such that a3+1 = σ(T ). Let U be the set of vertices of H that are adjacent
to vertices of T −H. Since H is an embedded spider, U ∪B(H) is indepent. By
Proposition 14, U is an ε-kernel of H. By Theorem 2, ε(T ) ≤ min{a1+a2, a3+1},
and since ℓ(T ) > σ(T ), a1 + a2 > a3 + 1 and the bound is established.

Figure 3. A tree T with ε(T ) = 4.

The bound in Theorem 15 is an improvement on the bound in Theorem 9. For
example, consider the tree T shown in Figure 3. We note that ℓ(T ) = 5 and
that T does not contain any hanging spiders with at least three leaves, thus from
Theorem 9 it follows that ε(T ) ≤ 5. On the other hand, for the embedded spider
S(3, 3, 3) indicated by the emphasized edges, a3 + 1 = 4 which implies σ(T ) ≤ 4.
Hence by Theorem 15, ε(T ) ≤ 4.
For the tree shown in Figure 3 the lower bound in Theorem 6 gives ε(T ) ≥ 4
and it was shown in [9] that this bound is tight for trees with no adjacent branch
vertices. Hence, for this example, the bound from Theorem 15 is best possible.
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Next we show that in general the bound in Theorem 15 gives the exact value of
ε(T ) whenever B(T ) is independent.

Recall that for v ∈ B(T ) with deg v = r, from a suitable arrangement
e1, . . . , er of the edges incident with v,

ρ(v) = min{ℓ1(v) + ℓ2(v), ℓ3(v) + 1}.

Theorem 16. If B(T ) is independent, then ε(T ) = min{ℓ(T ), σ(T )}.

Proof. If T is a path, then the result is obvious. We consider then only trees
for which B(T ) 6= ∅. To prove the result we show that if B(T ) is indepen-
dent, then the lower bound in Theorem 6 is equivalent to the upper bound
in Theorem 15, that is, min{ℓ(T ), σ(T )} = minv∈B(T ){ρ(v)}. Since for any
tree T , minv∈B(T ){ρ(v)} ≤ ε(T ) ≤ min{ℓ(T ), σ(T )}, it is enough to show that
min{ℓ(T ), σ(T )} ≤ minv∈B(T ){ρ(v)}.

Let T be a tree with B(T ) independent, and v a vertex in B(T ) such
that ρ(v) = minw∈B(T ){ρ(w)} = k. Necessarily, v is the branch vertex of
an embedded spider of T , say S(a1, a2, . . . , ar) where r ≥ 3. By definition
ρ(v) = min{a1 + a2, a3 + 1}. Moreover, ℓ(T ) ≤ a1 + a2, and σ(T ) ≤ a3 + 1.
Hence, min{ℓ(T ), σ(T )} ≤ ρ(v) and the result follows.

4.4. Graphs whose line graph has diameter two

Recall that if diam(L(G)) = 2, then ε(G) ≤ 3. In this section we describe a
sufficient condition for a vertex of a graph G with diam(L(G)) = 2 to be a
k-kernel of G for k ∈ {2, 3}.

We introduce the following notation which we utilize in this section. For a
graph G and sets A,B ⊆ V (G), define E(A,B) as the set of all edges ab ∈ E(G)
such that a ∈ A and b ∈ B.

Theorem 17. Let G be a graph with diam(L(G)) = 2. If v is a vertex such that

N [v] is a vertex cover of G, then v is a k-kernel of G, where k ∈ {2, 3}.

Proof. Let v ∈ V (G) be a vertex such that N [v] is a vertex cover of G. It suffices
to show that for any edge ordering f there exists a v-avoiding maximal f -ascent
of length at most three. Suppose |E(G)| = n and let f : E(G) → {1, . . . , n} be an
edge ordering of G. Let uw and xy be the edges with f(uw) = 1 and f(xy) = n.
Since diam(L(G)) = 2, uw and xy lie on a common P4. If v ∈ {u,w}∩{x, y}, say
v = w = y, then uvx is a v-avoiding maximal f -ascent of length at most three.
Similarly, if (say) w = y and v /∈ {u,w, x, y}, then uwx is a v-avoiding maximal
ascent. If {u,w} ∩ {x, y} = ∅ and v /∈ {u,w, x, y}, then E({u,w}, {x, y}) 6= ∅
since uw and xy lie on a common P4. Any e ∈ E({u,w}, {x, y}) has label k with
1 < k < n, thus one of uwxy, uwyx, wuxy and wuyx is a maximal v-avoiding
ascent. We may therefore assume that v ∈ {u,w, x, y} and v /∈ {u,w} ∩ {x, y}.
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w = x = w1u

v = r

Figure 4. In each case the edge labelled 2 is incident with w.

Without loss of generality suppose v = y. We consider two cases.

Case 1. {u,w} ∩ {x, v} = ∅. Since N [v] is a vertex cover, v is joined to u
or w with an edge labelled k, where 1 < k < n. In the former case wuvx is a
maximal v-avoiding f -ascent, and in the latter case uwvx is such an ascent.

Case 2. {u,w} ∩ {x, v} 6= ∅. By our assumption v /∈ {u,w} and we may
assume without loss of generality that x = w. Let f(zr) = n − 1 and suppose
v /∈ {z, r}. If r ∈ {u,w}, then uwz or wuz is a maximal v-avoiding ascent. Hence
we may assume r /∈ {u,w} and similarly z /∈ {u,w}. But zr and uw lie on a
common P4, hence there exists an edge e ∈ E({z, r}, {u,w}) and this edge has
label k with 1 < k < n − 1, thus forming a v-avoiding maximal (3, f)-ascent.
Therefore v ∈ {z, r}; say v = r. (Note that possibly z = u.)

Let f(u1, w1) = 2 and suppose {u1, w1} ∩ {u, v, w, z} = ∅. Since N [v] is
a vertex cover, v is adjacent to u1 or w1 and this edge has label k with 2 <
k < n − 1. Since u1 /∈ {u,w}, u1w1 is not adjacent to an edge with a smaller
label. Thus u1w1vw or w1u1vw is a v-avoiding maximal ascent. It follows that
{u1, w1} ∩ {u, v, w, z} 6= ∅. We show that the edge labelled 2 is incident with w.

Now suppose that |{u1, w1} ∩ {u, v, w, z}| = 1 and without loss of generality
w1 ∈ {u, v, w, z}. If w1 = z then u1zvw is a maximal ascent and if w1 = v then
u1vw is a maximal ascent. Suppose then that w1 = u. Then u1 is not incident
with an edge with a smaller label. Since N [v] is a vertex cover, v is joined to
u1 or u by an edge with label k, 2 < k < n (possibly k = n − 1 if u = z), so
u1uvw or uu1vw is a v-avoiding maximal ascent. Hence w1 = w (see Figure 4(a)
and 4(b)). If |E(G)| = 4, then zvw is a v-avoiding maximal f -ascent.

Suppose next that |{u1, w1} ∩ {u, v, w, z}| = 2. If u1w1 = zu, then z 6= u
and uzvw is a v-avoiding maximal f -ascent. If u1w1 = vu, then z 6= u and uvw
is such an ascent. Hence u1w1 = zw; say u1 = z and w1 = w and note that
z 6= u. Thus we see that in each case the edge labelled 2 is incident with w (see
Figure 4(c)). If |E(G)| = 4, then zvw is a v-avoiding maximal f -ascent.

Assume |E(G)| ≥ 5 and let f(u2w2) = 3. Suppose u2w2 = uu1. If z /∈ {u, u1},
then since N [v] is a vertex cover, v is joined to u or u1 by an edge with label k,
3 ≤ k ≤ n − 1. Suppose uv ∈ E(G) and consider the ascent u1uvw. Since u1
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Figure 5. The ascent zvw in H1 and H2 is a v-avoiding maximal ascent.

is not incident with the edge labelled 1, and the addition of the edge u1w with
label 2 forms a 4-cycle, u1uvw is a v-avoiding maximal f -ascent. Similarly, if
u1v ∈ E(H), then uu1vw is a v-avoiding maximal f -ascent. If z = u, u1uvw
is a v-avoiding maximal ascent, and if z = u1, then uu1vw is such an ascent.
For all other possibilities similar arguments as for u1w1 show that u2w2 = zw (if
f(zw) /∈ {1, 2}) or, without loss of generality, w2 = w and no edge incident with
u2 has label 1, 2, n − 1, n. Let u0 = u. By repeating the above argument we see
that each edge uiwi with f(uiwi) = i+ 1, i = 0, 1, . . . , n− 3, is incident with w,
say wi = w, and possibly ui = z for one i = 0, 1, . . . , n− 3. Therefore, the graph
H is either the graph H1 or H2 in Figure 5. But in either graph the ascent zvw
is a v-avoiding maximal f -ascent and the proof of Case 2 is complete.

Corollary 18. Let G be a graph with diam(L(G)) = 2 and ε(G) = 3. If v is a

vertex such that N [v] is a vertex cover of G, then v is an ε-kernel of G.

To illustrate the above corollary, note that for n ≥ 4, diam(L(Kn)) = 2, ε(Kn) =
3, and for any vertex v ∈ V (Kn), N [v] is a vertex cover of Kn. Therefore, by
Corollary 18 we see that for any v ∈ V (Kn), v is an ε-kernel of Kn, n ≥ 4.

Theorem 2 and Theorem 17 allow us to identify a large class of graphs with
depression at most three. We state this result in the following corollary.

Corollary 19. Let G be a graph with an end-block B such that diam(L(B)) ≤ 2,
and v the cut vertex of G contained in B. If N [v] is a vertex cover of B, then

ε(G) ≤ 3.

Next we show that the converse of Theorem 17 is false. As a counterexample
consider the vertex v of the graph G shown in Figure 6. Clearly, diam(L(G)) = 2
and N [v] is not a vertex cover of G. In order to show that v is a k-kernel where
k ∈ {2, 3} we must show that for every edge ordering f of G there exists a
v-avoiding maximal f -ascent of length at most three.

Suppose to the contrary that f : E(G) → {1, 2, . . . , 8} is an edge ordering
of G for which there does not exist a v-avoiding maximal f -ascent of length at
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Figure 6. A graph G with diam(L(G)) = 2 and a vertex v

such that N [v] is not a vertex cover of G.

most three. If {f−1(1), f−1(8)} ⊆ {e3, e4, e5, e6, e7, e8}, then there clearly exists
a v-avoiding maximal ascent of length at most three. Thus for some e ∈ {e1, e2},
f(e) ∈ {1, 8}, say f(e1) = 1. Then e1e2 is contained in a v-avoiding maximal
f -ascent λ, and by our assumption λ has length four. Thus either λ = e1e2e3e4 or
λ = e1e2e7e4 and without loss of generality we assume the former. To complete
the proof we consider the following cases.

Let k = min({f(e3), f(e5), f(e6), f(e7)}). If f(e3) = k, then either e3e7 or
e3e7e5 is a v-avoiding maximal f -ascent. Similarily, if f(e7) = k, then e7e3 or
e7e3e6 is a v-avoiding maximal f -ascent, and if f(e5) = k, then e5e6 or e5e6e3 is
a v-avoiding maximal f -ascent.

We assume then that f(e6) = min({f(e3), f(e5), f(e6), f(e7)}). Then e6e5
are the first two edges of a maximal ascent, and since G does not contain a
v-avoiding maximal f -ascent of length at most three, it follows that f(e5) <
f(e7) < f(e2). Now if f(e8) > f(e2), then e6e8 is a v-avoiding maximal f -ascent.
Assume then that f(e8) < f(e2). Since e1e2e3e4 is an f -ascent, it follows that
f(e8) < f(e3). If f(e8) < f(e5), then e8e5e4 is a v-avoiding maximal f -ascent.
Finally, if f(e8) > f(e5), then e5e8e3 is a v-avoiding maximal f -ascent.

This covers all cases and establishes the proof of the counterexample to the
converse of Theorem 17.

5. Open Problems

1. In Section 4.3 we identified ε-kernels for the class of trees known as spiders
and this result was used to determine an upper bound for the depression of trees.
A double spider is a tree with exactly two branch vertices, these two vertices
being adjacent. It may be possible to improve on the upper bound for trees by
identifying ε-kernels for other classes of trees such as double spiders.

2. Let G be a graph with diam(L(G)) = 2. Theorem 17 identifies a sufficient
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condition for a vertex v ∈ V (G) to be a k-kernel of G where k ∈ {2, 3}. Determine
a necessary condition for such a vertex.

3. Obtain a similar result to Theorem 17 for graphs with diam(L(G)) ≥ 3.
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