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Abstract

Whitney’s Broken-cycle Theorem states the chromatic polynomial of a
graph as a sum over special edge subsets. We give a definition of cycles in
hypergraphs that preserves the statement of the theorem there.
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1. Introduction

The well-known Broken-cycle Theorem, originally given by Whitney [6, 7], states
the chromatic polynomial of a graph as a sum over edge subsets not including any
broken cycles, where a broken cycle arises from the deletion of the maximal edge
(with respect to a given order on the edge set) of a cycle.

While there are some definitions of cycles in hypergraphs [4], including the
most common one due to Berge [1, Section 5.1], none of these definitions admits
a straightforward generalization of broken cycles in hypergraphs such that the
Broken-cycle Theorem is valid in this more general case.

We give a novel definition of cycles in hypergraphs that preserves the state-
ment of the Broken-cycle Theorem. Therein cycles are minimal subgraphs such
that the deletion of an edge does not increase the number of connected compo-
nents.

Furthermore, we extend the result to graph polynomials similar to the chro-
matic polynomial and to regarding a subset of the broken cycles. Both general-
izations are already used in the case of graphs [5, Subsection 3.2.1].
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Definition. A hypergraph G = (V,E) is an ordered pair of a finite set of vertices,
the vertex set V, and a finite multiset of (hyper)edges, the edge set E, such that
each edge is a non-empty subset of the vertex set, i.e., e ⊆ V for all e ∈ E.

Consequently, a graph is a hypergraph G = (V,E), where each edge is a set of at
most two vertices: |e| ≤ 2 for all e ∈ E.

For a hypergraph G = (V,E) we use the standard notations known from
graphs, in particular the following ones: A hypergraph G′ = (V ′, E′) is a subgraph

of G, if V ′ ⊆ V and E′ ⊆ E. A hypergraph G〈A〉 = (V,A) for an edge subset
A ⊆ E is a spanning subgraph. Furthermore, we denote by k(G) the number of
connected components and by G−e the graph arising from G by deleting an edge
e ∈ E.

Definition. Let G = (V,E) be a hypergraph. G is δ-cyclic, if it has a subgraph
G′ = (V ′, E′) including at least one edge such that for each edge e ∈ E′ it holds

k(G′) = k(G′
−e).

Definition. Let G = (V,E) be a hypergraph. G is a δ-cycle, if it is δ-cyclic and
has no proper δ-cyclic subgraph.

Therefore, in the case of graphs the definitions of δ-cycles equals the usual defi-
nition of cycles (regarding a single loop and parallel edges also as cycles).

Example 1. Consider the hypergraph G = (V,E) with V = {1, 2, 3, 4, 5} and
E = {{1, 3}, {1, 2, 3}, {1, 4, 5}, {3, 4, 5}}. G is δ-cyclic but not a δ-cycle, because
the deletion of edge {1, 2, 3} renders vertex 2 isolated. The subgraph arising from
deleting the edge {1, 2, 3} and the vertex 2 is the only δ-cycle of G. G itself is a
cycle due to the definition of Berge [1, Section 5.1].

We consider hypergraphs G = (V,E) with a linear order < on the edge set E.
This linear order can be represented by a bijection β : E → {1, . . . , |E|} for all
e, f ∈ E with

e < f ⇔ β(e) < β(f).

Definition. Let G = (V,E) be a hypergraph with a linear order < on the edge
set E. Let C = (VC , EC) ⊆ G be a δ-cycle and e ∈ EC the maximal edge of C
with respect to <. Then EC \ {e} is a broken cycle in G with respect to <. The
set of all broken cycles of G with respect to < is denoted by B(G,<).

Definition. Let G = (V,E) be a hypergraph. A k-coloring of G is a function
φ : V → {1, . . . , k}. A k-coloring is proper, if not all vertices of any edge are
mapped to the same element.
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Definition. Let G = (V,E) be a hypergraph. The chromatic polynomial χ(G, x)
equals (for x ∈ N) the number of proper x-colorings.

The chromatic polynomial of a hypergraph satisfies the same edge subset expan-
sion that is valid in the case of graphs [3, Theorem 2.21], [6, Section 2].

Proposition 2 (Proposition 1.1 in [2]). Let G = (V,E) be a hypergraph. The

chromatic polynomial χ(G, x) satisfies

χ(G, x) =
∑

A⊆E
(−1)|A|xk(G〈A〉).(1)

2. A Broken-cycle Theorem for Hypergraphs

Theorem 3. Let G = (V,E) be a hypergraph with a linear order < on the edge

set E. The chromatic polynomial χ(G, x) satisfies

χ(G, x) =
∑

A⊆E
∀B∈B(G,<) : B*A

(−1)|A|xk(G〈A〉).

Proof. Assume that E = {e1, . . . , e|E|} such that e1 < · · · < e|E|. For each
broken cycle B ∈ B(G,<) we denote by e(B) the minimal edge closing the broken
cycle B, i.e.

e(B) = min {e ∈ E | B ∪ {e} is the edge set of a δ-cycle in G}.

We partition the edge subsets A ⊆ E into blocks Ei (some of them may be empty)
as follows: A ∈ E0 if A does not include any broken cycles, and, otherwise, A ∈ Ei

if ei is the minimal edge closing a broken cycle included in A, i.e. A ∈ Ei if
ei = min {e(B) | B ∈ B(G,<) ∧B ⊆ A}.

We claim that for each i > 0 and each A ⊆ E with ei /∈ A it holds

A ∈ Ei ⇔ A ∪ {ei} ∈ Ei.

Proof of the first direction (⇒): We have A ∈ Ei and assume that A ∪ {ei} ∈ Ej

with i 6= j, i.e. ej is the minimal edge closing a broken cycle in A∪ {ei}. Because
every broken cycle in A is also a broken cycle in A ∪ {ei}, there is also a broken
cycle closed by ei in A ∪ {ei}, and hence ej < ei. But there is no broken cycle
closed by ej in A, otherwise A ∈ Ej , and therefore ei must be an edge in each
broken cycle closed by ej in A ∪ {ei}. Consequently, as ej is greater than every
edge of the broken cycle closed by it, ei < ej , which gives a contradiction. It
follows A ∪ {ei} ∈ Ei.

Proof of the second direction (⇐): We have A ∪ {ei} ∈ Ei, i.e. ei is the
minimal edge closing some broken cycle in A∪ {ei}, and this broken cycle is also
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in A. Because every broken cycle in A is also in A ∪ {ei}, ei is the minimal edge
closing some broken cycle in A, consequently A ∈ Ei.

For such A (A ∈ Ei for i > 0) it follows that ei is an edge of a δ-cycle
in G〈A ∪ {ei}〉 and from the definition of δ-cycles it follows that k(G〈A〉) =
k(G〈A ∪ {ei}〉). Hence, for each block Ei 6= E0 (i > 0) it holds

∑
A∈Ei

(−1)|A|xk(G〈A〉) =
∑

A∈Ei

ei /∈A

(−1)|A|xk(G〈A〉)+
∑

A∈Ei

ei∈A

(−1)|A|xk(G〈A〉)

= 0.

As E0 is the set of edge subsets not including any broken cycle B ∈ B(G,<), we
have E0 = {A ⊆ E | ∀B ∈ B(G,<) : B * A} and the statement follows via the
edge subset expansion of the chromatic polynomial given in equation (1):

χ(G, x) =
∑

A⊆E
(−1)|A|xk(G〈A〉) =

∑
A⊆E
A∈E0

(−1)|A|xk(G〈A〉)

=
∑

A⊆E
∀B∈B(G,<) : B*A

(−1)|A|xk(G〈A〉).

In the case of graphs, the term k(G〈A〉) can be simplified to |V | − |A| in broken-
cycle-free spanning subgraphs. For hypergraphs this is not possible, because edges
can connect a different number of vertices.

3. A Further Generalization

Theorem 4. Let G = (V,E) be a hypergraph with a linear order < on the edge set

E, B ⊆ B(G,<) a subset of the set of broken cycles of G, and f(G,A) a function

to an additive abelian group such that for all A ⊆ E and all e ∈ E \A it holds

k(G〈A〉) = k(G〈A ∪ {e}〉) ⇒ f(G,A) = −f(G,A ∪ {e}).

Then
∑

A⊆E
f(G,A) =

∑
A⊆E

∀B∈B : B*A

f(G,A).

Proof. We use induction with respect to the cardinality of the set B. For the
basic step we assume that |B| = 0 and the statement holds obviously.

We assume as induction hypothesis that the statement holds for any set B ⊆
B(G,<) with cardinality less than k and consider now a set B ⊆ B(G,<) with
cardinality k.
For each broken cycle B ∈ B(G,<), we denote by e(B) the maximal edge closing
the broken cycle B, i.e.

e(B) = max {e ∈ E | B ∪ {e} is the edge set of a δ-cycle in G}.
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Let B ∈ B such that B = B′ ∪ {B} and e(B) ≮ e(B′) for all B′ ∈ B′.
In fact, we only have to show that the edge subsets that do include the broken

cycle B, but do not include any broken cycle B′ ∈ B′, cancel each other. Let A
be the set of such edge subsets, i.e.

A =
⋃

A⊆E
∀B′∈B′ : B′*A

B⊆A

{A}.

We claim that for each A ∈ A with e(B) /∈ A it holds

A ∈ A ⇔ A ∪ {e(B)} ∈ A.

Proof of the first direction (⇒): As B ⊆ A, obviously B ⊆ A ∪ {e(B)}. Hence
we have to show that there is no broken cycle B′ ∈ B′ with B′ ⊆ A ∪ {e(B)}.
Assume there is such a broken cycle B′. Because B′ * A, e(B) must be an edge
of B′, and consequently the maximal edge closing B′ must be greater than e(B),
e(B) < e(B′). This is a contradiction to the choice of B such that e(B) ≮ e(B′)
for all B′ ∈ B′. Hence there is no such B′ and it follows A ∪ {e(B)} ∈ A.

Proof of the second direction (⇐): We have A∪ {e(B)} ∈ A, i.e. A∪ {e(B)}
contains only the broken cycle B, which does not include e(B) by definition.
Therefore, A contains the broken cycle B, but no other broken cycle, because
otherwise this broken cycle would also be in A ∪ {e(B)}. Consequently A ∈ A.

Because |B′| < k we can use the induction hypothesis and the statement
follows by

∑
A⊆E

f(G,A) =
∑

A⊆E
∀B′∈B′ : B′*A

f(G,A)

=
∑

A⊆E
∀B′∈B′ : B′*A

B*A

f(G,A) +
∑

A⊆E
∀B′∈B′ : B′*A

B⊆A

f(G,A)

=
∑

A⊆E
∀B∈B : B*A

f(G,A) +
∑

A⊆E
∀B′∈B′ : B′*A
B⊆A,e(B)∈A

f(G,A)

+
∑

A⊆E
∀B′∈B′ : B′*A
B⊆A,e(B)/∈A

f(G,A)

=
∑

A⊆E
∀B∈B : B*A

f(G,A).
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