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Abstract

The irregularity of a simple undirected graph G was defined by Albertson
[5] as irr(G) =

∑

uv∈E(G) |dG(u)− dG(v)|, where dG(u) denotes the degree of

a vertex u ∈ V (G). In this paper we consider the irregularity of graphs under
several graph operations including join, Cartesian product, direct product,
strong product, corona product, lexicographic product, disjunction and sym-
metric difference. We give exact expressions or (sharp) upper bounds on the
irregularity of graphs under the above mentioned operations.
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1. Introduction

Let G be a simple undirected graph with |V (G)| = n vertices and |E(G)| = m
edges. The degree of a vertex v in G is the number of edges incident with v and it
is denoted by dG(v). A graph G is regular if all its vertices have the same degree,
otherwise it is irregular. However, in many applications and problems it is of big
importance to know how irregular a given graph is. Several graph topological
indices have been proposed for that purpose. Among the most investigated ones
are: the irregularity of a graph introduced by Albertson [5], the variance of vertex
degrees [7], and Collatz-Sinogowitz index [12].

The imbalance of an edge e = uv ∈ E, defined as imb(e) = |dG(u)− dG(v)|,
appeares implicitly in the context of Ramsey problems with repeat degrees [6],
and later in the work of Chen, Erdős, Rousseau, and Schlep [11], where 2-colorings
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of edges of a complete graph were considered. In [5], Albertson defined the
irregularity of G as

irr(G) =
∑

e∈E(G)
imb(e).(1)

It is shown in [5] that for a graph G, irr(G) < 4n3/27 and that this bound
can be approached arbitrary closely. Albertson also presented upper bounds on
irregularity for bipartite graphs, triangle-free graphs and a sharp upper bound
for trees. Some claims about bipartite graphs given in [5] have been formally
proved in [21]. Related to Albertson is the work of Hansen and Mélot [20], who
characterized the graphs with n vertices and m edges with maximal irregularity.
The irregularity measure irr also is related to the first Zagreb index M1(G) and the
second Zagreb index M2(G), one of the oldest and most investigated topological
graph indices, defined as follows:

M1(G) =
∑

v∈V (G)
d2G(v) and M2(G) =

∑

uv∈E(G)
dG(u)dG(v).

Alternatively the first Zagreb index can be expressed as

M1(G) =
∑

uv∈E(G)
(dG(u) + dG(v)).(2)

Fath-Tabar [16] established new bounds on the first and the second Zagreb indices
that depend on the irregularity of graphs as defined in (1). In line with the
standard terminology of chemical graph theory, and the obvious connection with
the first and the second Zagreb indices, Fath-Tabar named the sum in (1) the
third Zagreb index and denoted it by M3(G). However, in the rest of the paper,
we will use its older name and call it the irregularity of a graph. Two other most
frequently used graph topological indices, that measure how irregular a graph
is, are the variance of degrees and the Collatz-Sinogowitz index [12]. Let G be
a graph with n vertices and m edges, and λ1 be the index or largest eigenvalue
of the adjacency matrix A = (aij) (with aij = 1 if vertices i and j are joined
by an edge and 0 otherwise). Let ni denotes the number of vertices of degree i
for i = 1, 2, . . . , n− 1. Then, the variance of degrees and the Collatz-Sinogowitz
index are respectively defined as

Var(G) =
1

n

∑n−1

i=1
ni

(

i−
2m

n

)2

and CS(G) = λ1 −
2m

n
.(3)

Results of comparing irr, CS and Var are presented in [7, 13, 18]. There have
been other attempts to determine how irregular graph is [2, 3, 4, 8, 9, 10, 22],
but heretofore this has not been captured by a single parameter as it was done
by the irregularity measure by Albertson. The graph operation, especially graph
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products, plays significant role not only in pure and applied mathematics, but also
in computer science. For example, the Cartesian product provide an important
model for linking computers. In order to synchronize the work of the whole system
it is necessary to search for Hamiltonian paths and cycles in the network. Thus,
some results on Hamiltonian paths and cycles in Cartesian product of graphs can
be applied in computer network design [27]. Many of the problems can be easily
handled if the related graphs are regular or close to regular.

The aim of this paper is to investigate the irregularity measure by Albertson
under several graph operations including join, Cartesian product, direct product,
strong product, corona product, lexicographic product, disjunction and symmet-
ric difference. Detailed exposition on some graph operations one can find in [19].

In the sequel we will introduce additional necessary notation and results that
will be used in the rest of the paper. For details of the mathematical theory and
chemical applications of the Zagreb indices see surveys [14, 17, 24, 25] and papers
[15, 28, 29].

A vertex is isolated if its degree is zero. An independent set is a set of vertices
in a graph, no two of which are adjacent. The vertices from an independent set
are independent vertices. For two graphs G1 and G2, with disjoint vertex sets
V (G1) and V (G2) and disjoint edge sets E(G1) and E(G2), the disjoint union of
G1 and G2 is the graph G = G1 ∪ G2, with the vertex set V (G1) ∪ V (G2) and
the edge set E(G1) ∪ E(G2). Obviously, irr(G ∪H) = irr(G) + irr(H).

To obtain some of the bounds in the next section, we will use a recently
introduced irregularity measure of a graph, so-called the total irregularity of a
graph [1], defined as

irrt(G) =
1

2

∑

u,v∈V (G)
|dG(u)− dG(v)| .(4)

Theorem 1 [1]. For a simple undirected graph G with n vertices, it holds that

irrt(G) ≤











1
12

(

2n3 − 3n2 − 2n
)

n even,

1
12

(

2n3 − 3n2 − 2n+ 3
)

n odd.

Moreover, the bounds are sharp.

2. Results

2.1. Join

The join G+H of simple undirected graphs G and H is the graph with the vertex
set V (G + H) = V (G) ∪ V (H) and the edge set E(G + H) = E(G) ∪ E(H) ∪
{uv : u ∈ V (G), v ∈ V (H)}.
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Theorem 2. Let G and H be simple undirected graphs with |V (G)| = n1 and

|V (H)| = n2 such that n1 ≥ n2. Then

irr(G+H) ≤ irr(G) + irr(H) + n2(n1 − 1)(n1 − 2).

Moreover, the bound is sharp.

Proof. By the definition, |V (G+H)|= |V (G)|+|V (H)|=n1+n2 and |E(G+H)|
= |E(G)|+ |E(H)|+ n1n2. The irregularity of G+H is

irr(G+H) =
∑

uv∈E(G+H) |dG+H(u)− dG+H(v)|

=
∑

xy∈E(G) |dG+H(x)− dG+H(y)|

+
∑

zt∈E(H) |dG+H(z)− dG+H(t)|

+
∑

u∈V (G)

∑

v∈V (H) |dG+H(u)− dG+H(v)| .

For a vertex u ∈ V (G), it holds that dG+H(u) = dG(u) + n2, and for a vertex
v ∈ V (H), it holds that dG+H(v) = dH(v) + n1. Thus, further we have

irr(G+H) =
∑

xy∈E(G) |dG(x)− dG(y)|+
∑

zt∈E(H) |dH(z)− dH(t)|

+
∑

u∈V (G)

∑

v∈V (H) |dG(u)− dH(v) + n2 − n1|

= irr(G)+irr(H)+
∑

u∈V (G)

∑

v∈V (H) |n1 −n2 +dH(v)− dG(u)| .

Under the constrains n1 ≥ n2, dG(u) ≤ n1 − 1, and dH(v) ≤ n2 − 1, the double
sum

∑

u∈V (G)

∑

v∈V (H) |n1 − n2 + dH(v)− dG(u)| is maximal when H is a graph
with maximal sum of vertex degrees, i.e., H is the complete graph Kn2

, and G is
a graph with minimal sum of vertex degrees, i.e., G is a tree on n1 vertices Tn1

.
Thus,

∑

u∈V (G)
v∈V (H)

|n1−n2+dH(v)−dG(u)|≤
∑

u∈V (Tn1
)

v∈V (Kn2
)

∣

∣n1−n2+dKn2
(v)−dTn1

(u)
∣

∣

=
∑

u∈V (Tn1
)

∑

v∈V (Kn2
)

∣

∣n1−1−dTn1
(u)

∣

∣

= n2
∑

u∈V (Tn1
)

(

n1− 1− dTn1
(u)

)

= n2n1(n1 − 1)− 2n2(n1 − 1)

= n2(n1 − 1)(n1 − 2),

and

irr(G+H) ≤ irr(G) + irr(H) + n2(n1 − 1)(n1 − 2).(5)
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When n1 ≤ 2, irr(G) = irr(H) = irr(G+H) = 0, and the claim of the theorem is
fulfilled. From the derivation, it follows that (5) is equality when H is complete
graph on n2 vertices and G is any tree on n1 vertices.

Example 3. Let denote by Hi a graph with |V (Hi)| = i isolated vertices. Then,
the bipartite graph Ki,j is a join ofHi andHj . Analogously, the complete k-partite
graph G = Kn1,...,nk

is join of Hn1
, . . . , and Hnk

. We have that irr(Kni,nj
) =

ninj |nj − ni| . For the irregularity of Kn1,...,nk
we obtain

irr(Kn1,...,nk
) =

∑

uv∈E(Kn1,...,nk
) |dG(u)− dG(v)|

=
∑k−1

i=1

∑k
j=i+1

∑

uv∈E(Kni,nj
) |dG(u)− dG(v)|

=
∑k−1

i=1

∑k
j=i+1 ninj |nj − ni| =

∑k−1
i=1

∑k
j=i+1 irr(Kni,nj

).

2.2. Cartesian product

The Cartesian product G�H of two simple undirected graphs G and H is the
graph with the vertex set V (G�H) = V (G)×V (H) and the edge set E(G�H) =
{(ui, vk)(uj , vl) : [(uiuj ∈ E(G))∧ (vk = vl)] ∨ [(vkvl ∈ E(H)) ∧ (ui = uj)]} .

Theorem 4. Let G and H be simple undirected graphs with |V (G)| = n1 and

|V (H)| = n2. Then

irr(G�H) = n2 irr(G) + n1 irr(H).

Proof. From the definiton of the Cartesian product, it follows |V (G�H)| =
|V (G)| |V (H)|, |E(G�H)| = n2 |E(G)|+n1 |E(H)|, and dG�H(ui, vk) = dG(ui)+
dH(vk). Hence,

irr(G�H) =
∑

(ui,vk)(uj ,vl)∈E(G�H) |dG�H(ui, vk)− dG�H(uj , vl)|

=
∑

uiuj∈E(G)

∑

v∈V (H) |dG�H(ui, v)− dG�H(uj , v)|

+
∑

vkvl∈E(H)

∑

u∈V (G) |dG�H(u, vk)− dG�H(u, vl)|

=
∑

uiuj∈E(G)

∑

v∈V (H) |(dG(ui) + dH(v))− (dG(uj) + dH(v))|

+
∑

vkvl∈E(H)

∑

u∈V (G) |(dG(u) + dH(vk))− (dG(u) + dH(vl))|

= n2 irr(G) + n1 irr(H).

2.3. Direct product

The direct product G×H (also known as tensor product, Kronecker product [26],
categorical product [23] and conjunctive product) of simple undirected graphs G
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Figure 1. (a) Path graph on l vertices Pl, and cycle graph on k vertices Ck,

(b) direct product graph Pl × Ck, and

(c) strong product graph Pl ⊠ Ck.

and H is the graph with the vertex set V (G×H) = V (G)× V (H), and the edge
set E(G×H) = {(ui, vk)(uj , vl) : (ui, uj) ∈ E(G) ∧ (vk, vl) ∈ E(H)}.

Theorem 5. Let G and H be simple undirected graphs. Then

irr(G×H) ≤ irr(G)M1(H) + irr(H)M1(G).

Moreover, the bound is sharp for infinitely many graphs.

Proof. From the definition of the direct product, it follows |V (G×H)| = |V (G)|
|V (H)|, |E(G×H)| = 2 |E(G)| |E(H)|, and dG×H(ui, vk) = dG(ui)dH(vk). The
irregularity of the direct product G×H is
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irr(G×H) =
∑

(ui,vk)(uj ,vl)∈E(G×H) |dG×H(ui, vk)− dG×H(uj , vl)|

= 2
∑

uiuj∈E(G)

∑

vkvl∈E(H) |dG(ui)dH(vk)− dG(uj)dH(vl)|

=
∑

uiuj∈E(G)

∑

vkvl∈E(H) |(dG(ui)− dG(uj))(dH(vk) + dH(vl))

+ (dG(ui) + dG(uj))(dH(vk)− dH(vl))| .

Applying the triangle inequality in the above expression and by equation (2), we
obtain

irr(G×H) ≤
∑

uiuj∈E(G)

∑

vkvl∈E(H)[ |dG(ui)− dG(uj)| (dH(vk) + dH(vl))

+ |dH(vk)− dH(vl)| (dG(ui) + dG(uj)) ]

= irr(G)M1(H) + irr(H)M1(G).

To prove that the presented bound is the best possible, consider the direct product
Pl × Ck, l ≥ 1, k ≥ 3 (an illustration is given in Figure 1(b)). Straightforward
calculations gives that M1(Pl) = 4l − 6,M1(Ck) = 4k, irr(Pl) = 2, irr(Ck) = 0.
The graph Pl × Ck is comprised of 2k vertices of degree 2, and k(l − 2) vertices
of degree 4. Each vertex of degree 2 is adjacent with exactly two vertices with
degree 4. Hence, irr(Pl ×Ck) = 8k. On the other hand, the bound obtain here is
irr(Pl × Ck) ≤ irr(Pl)M1(Ck) + irr(Ck)M1(Pl) = 8k.

2.4. Strong product

The strong product G⊠H of two simple undirected graphs G and H is the graph
with the vertex set V (G ⊠ H = V (G) × V (H) and the edge set E(G ⊠ H) =
{(ui, vk)(uj , vl) : [(uiuj ∈ E(G))∧ (vk = vl)] ∨ [(vkvl ∈ E(H)) ∧ (ui = uj)] ∨
[(uiuj ∈ E(G)) ∧ (vkvl ∈ E(H))]}.

Theorem 6. Let G and H be simple undirected graphs with |V (G)| = n1,

|E(G)| = m1, |V (H)| = n2 and |E(H)| = m2. Then

irr(G⊠H) ≤ (n2 + 4m2 +M1(H)) irr(G) + (n1 + 4m1 +M1(G)) irr(H).

Moreover, the bound is sharp for infinitely many graphs.

Proof. For the strong product V (G⊠H), it holds that |V (G⊠H)| = |V (G)|
|V (H)|, |E(G⊠H)| = |V (H)| |E(G)| + |V (G)| |E(H)| + 2 |E(G)| |E(H)|, and
dG⊠H(ui, vk) = dG(ui) + dH(vk) + dG(ui)dH(vk). The irregularity of G⊠H is

irr(G⊠H) =
∑

(ui,vk)(uj ,vl)∈E(G⊠H)
|dG⊠H(ui, vk)− dG⊠H(uj , vl)|

=
∑

vk=vl∈V (H)

∑

uiuj∈E(G)
|dG⊠H(ui, vk)− dG⊠H(uj , vl)|

+
∑

ui=uj∈V (G)

∑

vkvl∈E(H)
|dG⊠H(ui, vk)− dG⊠H(uj , vl)|

+ 2
∑

uiuj∈E(G)

∑

vkvl∈E(H)
|dG⊠H(ui, vk)− dG⊠H(uj , vl)| .

(6)
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By an algebraic transformation and applying the triangle inequality, we obtain

|dG⊠H(ui, vk)− dG⊠H(uj , vl)| = |dG(ui) + dH(vk) + dG(ui)dH(vk)

− dG(uj)− dH(vl)− dG(uj)dH(vl)|

≤ |dG(ui)− dG(uj)|+ |dH(vk)− dH(vl)|

+
1

2
(dG(ui) + dG(uj)) |dH(vl)− dH(vk)|

+
1

2
(dH(vl) + dH(vk)) |dG(ui)− dG(uj)|

= f1(i, j, k, l).

(7)

Substituting (7) in (6), we obtain

irr(G⊠H) ≤
∑

vk=vl∈V (H)
uiuj∈E(G)

f1(i, j, k, l) +
∑

ui=uj∈V (G)
vkvl∈E(H)

f1(i, j, k, l)

+ 2
∑

uiuj∈E(G)
vkvl∈E(H)

f1(i, j, k, l).
(8)

We have

∑

vk=vl∈V (H)
uiuj∈E(G)

f1(i, j, k, l) =
∑

v∈V (H)

∑

uiuj∈E(G)
|dG(ui)− dG(uj)|

+
∑

v∈V (H)

∑

uiuj∈E(G)
|dH(v)−dH(v)|

+
1

2

∑

v∈V (H)

∑

uiuj∈E(G)
(dG(ui) + dG(uj)) |dH(v)−dH(v)|

+
1

2

∑

v∈V (H)

∑

uiuj∈E(G)
(dH(v) + dH(v)) |dG(ui)− dG(uj)|

= (n2 + 2m2)irr(G).

(9)

Similarly,

∑

ui=uj∈V (G)
vkvl∈E(H)

f1(i, j, k, l) =
∑

u∈V (G)

∑

vkvl∈E(H)
|dG(u)− dG(u)|

+
∑

u∈V (G)

∑

vkvl∈E(H)
|dH(vk)− dH(vl)|

+
1

2

∑

u∈V (G)

∑

vkvl∈E(H)
(dG(u) + dG(u)) |dH(vk)−dH(vl)|

+
1

2

∑

u∈V (G)

∑

vkvl∈E(H)
(dH(vk) + dH(vl)) |dG(u)− dG(u)|

= (n1 + 2m1)irr(H).

(10)
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Finally,

∑

uiuj∈E(G)
vkvl∈E(H)

f1(i, j, k, l) =
∑

uiuj∈E(G)
vkvl∈E(H)

|dG(ui)− dG(uj)|

+
∑

uiuj∈E(G)
vkvl∈E(H)

|dH(vk)− dH(vl)|

+
1

2

∑

uiuj∈E(G)
vkvl∈E(H)

(dG(ui) + dG(uj)) |dH(vk)− dH(vl)|

+
1

2

∑

uiuj∈E(G)
vkvl∈E(H)

(dH(vk) + dH(vl)) |dG(ui)− dG(uj)|

= (m2 +
1

2
M1(H))irr(G) + (m1 +

1

2
M1(G))irr(H)

(11)

From (8), (9), (10) and (11), we have

irr(G⊠H) ≤ (n2 + 4m2 +M1(H)) irr(G) + (n1 + 4m1 +M1(G)) irr(H).

To prove that the presented bound is the best possible, consider the strong
product Pl ⊠ Ck, l ≥ 1, k ≥ 3 illustrated in Figure 1(c). Simple calculations
gives that M1(Pl) = 4l − 6,M1(Ck) = 4k, irr(Pl) = 2, irr(Ck) = 0. The graph
Pl ⊠ Ck is comprised of 2k vertices of degree 5, and k(l − 2) vertices of degree
8. Each vertex of degree 5 is adjacent with exactly three vertices with degree
8. Hence, irr(Pl ⊠ Ck) = 18k. On the other hand, the bound obtain here is
irr(Pl ⊠ Ck) ≤ (k + 4k +M1(Ck)) irr(Pl) + (l + 4(l − 1) +M1(Pl)) irr(Ck) = 18k.

2.5. Corona product

The corona productG⊙H of simple undirected graphsG andH with |V (G)| = n1

and |V (H)| = n2, is defined as the graph who is obtained by taking the disjoint
union of G and n1 copies of H and for each i, 1 ≤ i ≤ n1, inserting edges between
the ith vertex of G and each vertex of the ith copy of H. Thus, the corona graph
G ⊙H is the graph with the vertex set V (G ⊙H) = V (G)

⋃

i=1,...,n1
V (Hi) and

the edge set E(G⊙H) = E(G)
⋃

i=1,...,n1
E(Hi)∪{uivj : ui ∈ V (G), vj ∈ V (Hi)},

where Hi is the ith copy of the graph H.

Theorem 7. Let G and H be simple undirected graphs with |V (G)| = n1 and

|V (H)| = n2. Then

irr(G⊙H) ≤ irr(G) + n1 irr(H) + n1

(

n2
2 + n1n2 − 4n2 + 2

)

.

Moreover, the bound is sharp.
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Proof. By the definition of G⊙H, |V (G⊙H)| = |V (G)|+n1 |V (H)| = n1+n1n2,
and |E(G⊙H)| = |E(G)|+ n1 |E(H)|+ n1n2. The irregularity of G⊙H is

irr(G⊙H) =
∑

uv∈E(G⊙H) |dG⊙H(u)− dG⊙H(v)|

=
∑

xy∈E(G) |dG⊙H(x)− dG⊙H(y)|

+
∑n1

i=1

∑

zt∈E(Hi)
|dG⊙H(z)− dG⊙H(t)|

+
∑

u∈V (G)

∑

v∈V (H) |dG⊙H(u)− dG⊙H(v)| .

For a vertex u ∈ V (G), it holds that dG⊙H(u) = dG(u) + n2 and for a vertex
v ∈ V (Hi), 1 ≤ i ≤ n2, we have dG⊙H(v) = dH(v) + 1. Thus,

irr(G⊙H) =
∑

xy∈E(G)
|dG(x) + n2 − dG(y)− n2|

+
∑n1

i=1

∑

zt∈E(H)
|dH(z) + 1− dH(t)− 1|

+
∑

u∈V (G)

∑

v∈V (H)
|dG(u) + n2 − dH(v)− 1|

=
∑

xy∈E(G)
|dG(x)− dG(y)|+ n1

∑

zt∈E(H)
|dH(z)− dH(t)|

+
∑

u∈V (G)

∑

v∈V (H)
|dG(u)− dH(v) + n2 − 1|

= irr(G) + n1irr(H) +
∑

u∈V (G)

∑

v∈V (H)
|dG(u)− dH(v)+ n2− 1| .

(12)

Since n1 ≥ n2, the double sum in (12) is maximal when
∑

u∈V (G) dG(u) is maxi-

mal, i.e., G is the complete graph Kn1
, and

∑

v∈V (H) dH(v) is minimal, i.e., H is

a tree on n2 vertices Tn2
. Thus,

∑

u∈V (G)
v∈V (H)

f1(i, j, k, l) =
∑

u∈V (G)

∑

v∈V (H)
|dG(u)− dH(v) + n2 − 1|

≤
∑

u∈V (Kn1
)

∑

v∈V (Tn2
)

∣

∣dKn1
(u)− dTn2

(v) + n2 − 1
∣

∣

=
∑

u∈V (Kn1
)

∑

v∈V (Tn2
)

∣

∣n1 − 1− dTn2
(v) + n2 − 1

∣

∣

= n1

∑

v∈V (Tn2
)

(

n1 + n2 − 2− dTn2
(v)

)

= n1n2(n1 + n2 − 2)− 2n1(n2 − 1)

= n1(n
2
2 + n1n2 − 4n2 + 2).

(13)

Substituting (13) into (12), we obtain

irr(G⊙H) ≤ irr(G) + n1 irr(H) + n1

(

n2
2 + n1n2 − 4n2 + 2

)

.(14)

From the derivation of the bound (14), it follows that the sharp bound is obtained
when G is compete graph on n1 vertices and H is any tree on n2 vertices.
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2.6. Lexicographic product

The lexicographic product G ◦H (also known as the graph composition) of simple
undirected graphs G and H is the graph with the vertex set V (G ◦H) = V (G)×
V (H) and the edge set E(G ◦ H) = {(ui, vk)(uj , vl) : [uiuj ∈ E(G)] ∨ [(vkvl ∈
E(H)) ∧ (ui = uj)]}.

Theorem 8. Let G and H be simple undirected graphs with |V (G)| = n1,

|E(G)| = m1, |V (H)| = n2 and |E(H)| = m2. Then

irr(G ◦H) ≤ n3
2 irr(G) + n1 irr(H) +

1

6
m1

(

2n3
2 − 3n2

2 − 2n2 + 3
)

.

Proof. By the definition of G◦H, it follows that |V (G ◦H)| = n1n2, |E(G ◦H)|
= n1m2+n2

2m1 and dG◦H(ui, vj) = n2dG(ui)+ dH(vj) for all 1 ≤ i ≤ n1, 1 ≤ j ≤
n2. Applying those relations, we obtain

irr(G ◦H)=
∑

(ui,vk)(uj ,vl)∈E(G◦H) |dG◦H(ui, vk)− dG◦H(uj , vl)|

=
∑

ui∈V (G)

∑

vkvl∈E(H) |(n2dG(ui)+ dH(vk))−(n2dG(ui)+ dH(vl))|

+
∑

vk,vl∈V (H)

∑

uiuj∈E(G) |n2dG(ui) + dH(vk)− n2dG(uj)− dH(vl)|

=
∑

ui∈V (G)

∑

vkvl∈E(H) |dH(vk)− dH(vl)|

+
∑

vk,vl∈V (H)

∑

uiuj∈E(G) |n2(dG(ui)− dG(uj))+ (dH(vk)− dH(vl))|

= n1irr(H)

+
∑

vk,vl∈V (H)

∑

uiuj∈E(G) |n2(dG(ui)− dG(uj))+ dH(vk)− dH(vl)| .

By applying the triangle inequality in the last expression, we have

irr(G ◦H) ≤ n1 irr(H) + n3
2 irr(G) + |E(G)|

∑

vk,vl∈V (H) |dH(vk)− dH(vl)| .

Finally, by Theorem 1, we obtain

irr(G ◦H) ≤ n3
2 irr(G) + n1 irr(H) + 1

6 m1

(

2n3
2 − 3n2

2 − 2n2 + 3
)

.

2.7. Disjunction

The disjunction G ∨H of simple undirected graphs G and H with |V (G)| = n1

and |V (H)| = n2 is the graph with the vertex set V (G∨H) = V (G)×V (H) and
the edge set E(G ∨H) = {(ui, vk)(uj , vl) : uiuj ∈ E(G) ∨ vkvl ∈ E(H)}.

Theorem 9. Let G and H be simple undirected graphs with |V (G)| = n1,

|E(G)| = m1, |V (H)| = n2 and |E(H)| = m2. Then

irr(G ∨H) ≤ (n3
2 −M1(H)) irr(G) + (2n2m2 +M1(H)) irrt(G)

+(n3
1 −M1(G)) irr(H) + (2n1m1 +M1(G)) irrt(H).
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Proof. By definition of G ∨H, it holds that |V (G ∨H)| = n1n2, |E(G ∨H)| =
n2
2m1+n2

1m2−2m1m2 and d(G∨H)(ui, vk) = n2dG(ui)+n1dH(vk)−dG(ui)dH(vk)
for all 1 ≤ i ≤ n1, 1 ≤ j ≤ n2. Applying those relations, we obtain

irr(G ∨H) =
∑

(ui,vk)(uj ,vl)∈E(G∨H)
|dG∨H(ui, vk)− dG∨H(uj , vl)|

=
∑

vk,vl∈V (H)

∑

uiuj∈E(G)
|dG∨H(ui, vk)− dG∨H(uj , vl)|

+
∑

ui,uj∈V (G)

∑

vkvl∈E(H)
|dG∨H(ui, vk)− dG∨H(uj , vl)|

− 2
∑

uiuj∈E(G)

∑

vkvl∈E(H)
|dG∨H(ui, vk)− dG∨H(uj , vl)| .

(15)

After an algebraic transformation and the triangle inequality, we have

|dG∨H(ui, vk)− dG∨H(uj , vl)| = |n2dG(ui) + n1dH(vk)− dG(ui)dH(vk)

−n2dG(uj)− n1dH(vl) + dG(uj)dH(vl)|

≤ n2 |dG(ui)− dG(uj)|+ n1 |dH(vk)− dH(vl)|

+
1

2
(dG(ui) + dG(uj)) |dH(vk)− dH(vl)|

+
1

2
(dH(vk) + dH(vl)) |dG(ui)− dG(uj)|

= f2(i, j, k, l).

(16)

Substituting (16) in (15), we obtain

irr(G ∨H) ≤
∑

vk,vl∈V (H)

∑

uiuj∈E(G)
f2(i, j, k, l)

+
∑

ui,uj∈V (G)

∑

vkvl∈E(H)
f2(i, j, k, l)

− 2
∑

uiuj∈E(G)

∑

vkvl∈E(H)
f2(i, j, k, l).

(17)

Applying (1), (2) and (4), we have

∑

vk,vl∈V (H)
uiuj∈E(G)

f2(i, j, k, l) =
∑

vk,vl∈V (H)
uiuj∈E(G)

n2 |dG(ui)− dG(uj)|

+
∑

vk,vl∈V (H)
uiuj∈E(G)

n1 |dH(vk)− dH(vl)|

+
1

2

∑

vk,vl∈V (H)
uiuj∈E(G)

(dG(ui) + dG(uj)) |dH(vk)− dH(vl)|

+
1

2

∑

vk,vl∈V (H)
uiuj∈E(G)

(dH(vk) + dH(vl)) |dG(ui)− dG(uj)|

= n2(n
2
2 + 2m2)irr(G) + (M1(G) + 2n1m1)irrt(H).

(18)
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Similarly,
∑

ui,uj∈V (G)
vkvl∈E(H)

f2(i, j, k, l) =
∑

ui,uj∈V (G)
vkvl∈E(H)

n2 |dG(ui)− dG(uj)| r

+
∑

ui,uj∈V (G)
vkvl∈E(H)

n1 |dH(vk)− dH(vl)|

+
1

2

∑

ui,uj∈V (G)
vkvl∈E(H)

(dG(ui) + dG(uj)) |dH(vk)− dH(vl)|

+
1

2

∑

ui,uj∈V (G)
vkvl∈E(H)

(dH(vk) + dH(vl)) |dG(ui)− dG(uj)|

= n1(n
2
1 + 2m1)irr(H) + (M1(H) + 2n2m2)irrt(G).

(19)

Finally,
∑

uiuj∈E(G)
vkvl∈E(H)

f2(i, j, k, l) =
∑

uiuj∈E(G)
vkvl∈E(H)

n2 |dG(ui)− dG(uj)|

+
∑

uiuj∈E(G)
vkvl∈E(H)

n1 |dH(vk)− dH(vl)|

+
1

2

∑

uiuj∈E(G)
vkvl∈E(H)

(dG(ui) + dG(uj)) |dH(vk)− dH(vl)|

+
1

2

∑

uiuj∈E(G)
vkvl∈E(H)

(dH(vk) + dH(vl)) |dG(ui)− dG(uj)|

= (n2m2 +
1

2
M1(H))irr(G) + (n1m1 +

1

2
M1(G))irr(H).

(20)

Combining (17), (18), (19) and (20), we finally obtain

irr(G ∨H) ≤ (n3
2 −M1(H))irr(G) + (2n2m2 +M1(H))irrt(G)

+ (n3
1 −M1(G))irr(H) + (2n1m1 +M1(G))irrt(H).

(21)

2.8. Symmetric difference

The symmetric difference G ⊕ H of simple undirected graphs G and H with
|V (G)| = n1 and |V (H)| = n2 is the graph with the vertex set V (G⊕H) = V (G)×
V (H) and the edge set E(G ⊕H) = {(ui, vk)(uj , vl) : eitheruiuj ∈ E(G) or vkvl
∈ E(H)}. It holds that |V (G⊕H)| = n1n2, |E(G⊕H)| = n2

1m2 + n2
2m1 −

4m1m2 and d(G⊕H)(ui, vj) = n2dG(ui) + n1dH(vj) − 2dG(ui)dH(vj) for all 1 ≤
i ≤ n1, 1 ≤ j ≤ n2. Much as in the previous case, we present only the bound on
the irregularity of symmetric difference of two graphs.

Theorem 10. Let G and H be simple undirected graphs with |V (G)| = n1,

|E(G)| = m1, |V (H)| = n2 and |E(H)| = m2. Then

irr(G⊕H) ≤ (n3
2 − 4M1(H)) irr(G) + 2 (n2m2 +M1(H)) irrt(G)

+(n3
1 − 4M1(G)) irr(H) + 2 (n1m1 +M1(G)) irrt(H).
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3. Conclusion

In this paper we consider the irregularity of simple undirected graphs, as defined
by Albertson [5], under several graph operations. We presented the exact ex-
pression for Cartesian product, and sharp upper bounds for join, corona product,
direct product and strong product. It is an open problem if the presented upper
bounds on the irregularity of lexicographic product, disjunction and symmetric
difference are the best possible.
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[11] G. Chen, P. Erdős, C. Rousseau and R. Schelp, Ramsey problems involving degrees

in edge-colored complete graphs of vertices belonging to monochromatic subgraphs ,
European J. Combin. 14 (1993) 183–189.
doi:10.1006/eujc.1993.1023

[12] L. Collatz and U. Sinogowitz, Spektren endlicher Graphen, Abh. Math. Semin. Univ.
Hamburg 21 (1957) 63–77.
doi:10.1007/BF02941924

http://dx.doi.org/10.1002/jgt.3190110214
http://dx.doi.org/10.1016/0012-365X\(93\)90134-F
http://dx.doi.org/10.1016/0024-3795\(92\)90004-T
http://dx.doi.org/10.1016/0024-3795\(91\)90067-7
http://dx.doi.org/10.2307/2686701
http://dx.doi.org/10.1006/eujc.1993.1023
http://dx.doi.org/10.1007/BF02941924


The Irregularity of Graphs under Graph Operations 277
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