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Abstract

The Erdős-Gyárfás conjecture states that every graph with minimum
degree at least three has a cycle whose length is a power of 2. Since this
conjecture has proven to be far from reach, Hobbs asked if the Erdős-Gyárfás
conjecture holds in claw-free graphs. In this paper, we obtain some results
on this question, in particular for cubic claw-free graphs.
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1. Introduction

All graphs in this paper are assumed to be simple, that is, without any loops and
multiple edges. Let us first recall here briefly some notation and terminology we
will need in this paper. We denote by δ = δ(G) the minimum degree of the the
vertices in the graph G = (V,E). A uv-path is a path having the vertices u and
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v as its ends. The length of a path P (or a cycle C) is denoted by l(P ) (resp.
l(C)). Also, we denote the distance between the vertices u and v by d(u, v), that
is the length of a shortest uv-path. A graph that does not contain a particular
graph H as an induced subgraph is called H-free. The complete bipartite graph
K1,3 is referred to as a claw ; so a graph is called claw-free if it does not have K1,3

as an induced subgraph. A triangle is a cycle of length three. A chord of a cycle
C is an edge between two vertices of C which are not adjacent in C. By a hole

we mean a chordless cycle of length at least four. A hole of length n is called an
n-hole.

Several questions on cycles in graphs have been posed by Erdős and his
colleagues (see, e.g., [1]). In particular, in 1995 Erdős and Gyárfás [4] asked:

If G is a graph with minimum degree at least three, does G have a cycle whose

length is a power of 2?

This is known as the Erdős-Gyárfás conjecture. In fact, Erdős and Gyárfás [4]
said that “we are convinced now that this is false and no doubt there are graphs
for every r every vertex of which has degree ≥ r and which contain no cycle of
length 2k, but we never found a counterexample even for r = 3”.

There seems to be very little published on the Erdős-Gyárfás conjecture.
Markström [5] (via computer searches) asserted that any cubic counterexample
must have at least 30 vertices. Salehi Nowbandegani and Esfandiari [6] prove
that any bipartite counterexample must have at least 32 vertices.

More generally, Erdős asked does there exist an integer sequence a1, a2, a3, . . .
with zero density, and a constant c such that every graph with average degree
at least c contains a cycle of length ai for some i. This question is answered
affirmatively by Verstraëte [8].

Hobbs asked if the Erdős-Gyárfás conjecture holds in claw-free graphs [3].
Shauger [7] proved the conjecture for K1,m-free graphs having minimum degree
at least m + 1 or maximum degree at least 2m − 1. Also, Daniel and Shauger
[3] proved it for planar claw-free graphs. In this paper, we investigate claw-free
graphs with δ ≥4 and cubic claw-free graphs.

2. Two-power Cycle Lengths in Claw-free Graphs

Our first theorem concerns claw-free graphs with δ ≥ 3.

Theorem 1. Suppose that G is a claw-free graph with δ ≥ 3. Then G has a cycle

whose length is 2k, or 3 · 2k, for some positive integer k.

To prove Theorem 1 we need the following lemma.

Lemma 2. Let G be a graph with δ ≥ 3. If G does not have C4 as a subgraph,

then for some n ≥ 5 it has an n-hole.
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Proof. It is known that every graph with δ ≥ 2 contains a cycle of length at
least δ+1 (see, e.g., [2, Exercise 2.1.5]). Thus G has a cycle D1 of length n1 ≥ 5.
If n = 5, D1 must clearly be chordless. If n > 5, and D1 has no chord, we are
finished, so suppose D1 has a chord. The chord separates D1 into two shorter
cycles, none of which have length 4, by assumption. Thus at least one of these
two cycles, say D2, must have length 5 ≤ n2 < n1. Since G is finite, we must by
repeating this argument eventually find a chordless cycle Dk of length nk ≥ 5.

Definition. We call an edge of a graph triangulated if it is contained in a triangle.
Also if such a triangle is unique, we call the edge uniquely triangulated.

Now we are ready to prove Theorem 1.

Proof of Theorem 1. If G has a cycle of length four, the theorem holds, with
k =2. We may therefore assume that G does not contain any C4. Thus, by
Lemma 2, for some n ≥ 5, G has an n-hole. Let C : a1a2 . . . asa1, s ≥ 5, be a
smallest hole in G. Since δ ≥ 3 and C is a hole, each vertex of C has a neighbour
in G − V (C). For i, (1 ≤ i ≤ s), suppose that aibi ∈ E(G), where ai ∈ C and
bi ∈ V (G) \ V (C). Then either ai−1bi ∈ E(G), or ai+1bi ∈ E(G), because G is
claw-free. Now we show that bi 6= bj if |j − i| ≥ 2. To get a contradiction, fix i
and let aj be the first vertex of C after ai such that bi = bj = b, |j − i| ≥ 2. If
j− i = 2, then we get the C4 : aiai+1ai+2bai, which is absurd. If |j− i| > 2, then
we get the hole ai+1 · · · ajbai+1 which is certainly smaller than C (note that we
do not reject the case that this hole may be a C4).

Therefore, it follows that every other edge of C is uniquely triangulated;
we mark them. Moreover, the third vertices of the corresponding triangles are
disjoint. Note also that s is even. Consequently, we find cycles of lengths s, s +
1, . . . , 3

2
s by traversing C such that as we reach a marked edge, we pass it directly

or through the third vertex of its corresponding triangle. Since either there exists
a 2k or a 3 · 2k−1 between s and 3

2
s, the proof is complete.

As mentioned above, Shauger [7] proved the Erdős-Gyárfás conjecture for K1,m-
free graphs having minimum degree at least m + 1 or maximum degree at least
2m− 1. Theorem 5 improves on the result of Shauger in claw-free graphs. First
we state the following proposition. We omit the easy proof.

Proposition 3. In a 4-regular claw-free graph which does not contain C4, every

edge is uniquely triangulated.

Lemma 4. Let G be a 4-regular claw-free graph which does not contain C4 and v
be a vertex of G. Let C be a smallest n-hole in G containing v, n ≥ 5. Then for

every edge xy of C, the third vertex z = z(xy) of the corresponding triangle of xy
is out of C. Furthermore, if uw 6= xy are two edges of C, then z(uw) 6= z(xy).



638 P. Salehi, H. Esfandiari, M.H. Shirdareh and Kh. Bibak

Proof. First note that since C is a hole, for every edge xy in C, z = z(xy) /∈ C.
Let uw and wx be two consecutive edges in C. If z = z(uw) = z(wx), then we get
the C4 : uwxzu. Hence z(uw) 6= z(wx). Suppose that uw and xy are two non-
consecutive edges in C and suppose C traverses the vertices in order u,w, x, y,
and then v. Let Q be the yvu segment of C. Now if z = z(uw) = z(xy), then
the cycle uQyzu is a smaller hole containing v; unless u and y are adjacent in C
(and hence v is one of them). But in this case, we see that uzxyu is a C4 in G.
This contradiction shows that z(uw) = z(xy) for uw 6= xy is impossible.

Theorem 5. Let G be a claw-free graph with δ ≥ 4, which does not contain C4.

Then every non-cut vertex of G lies on a cycle whose length is a power of 2.

Proof. Since δ ≥ 4 and G is claw-free, if G has a vertex with degree at least
5, then this vertex lies on a C4; so we can assume that G is 4-regular. Suppose
that v is a non-cut vertex of G and let w, x, y, and u be its neighbours. Hence,
G−v is connected. In view of G is claw-free, we can assume that wu, xy ∈ E(G).
Let P1, P2, P3, and P4 be the shortest wy-path, wx-path, xu-path, and yu-path
in G − v, respectively. Also, without loss of generality assume that l(P1) =
min{l(P1), l(P2), l(P3), l(P4)}. The path P1 together with the edges vw and vy
make a cycle C. Clearly, l(P1) > 1, otherwise ywuvy will be a C4. Therefore,
l(C) = s ≥ 5. Since P1 was the shortest path among P1, P2, P3, and P4, we see
that neither x nor u are in P1 and, in fact, C is the shortest non-triangle hole
containing the vertex v; for if v lies on another non-triangle shorter hole, then two
of its neighbours would have distance less than l(P1) in G−v. By Lemma 4, each
edge of C is uniquely triangulated such that the third vertex of its corresponding
triangle is not on C and this correspondence is one to one. Since l(C) = s, then
G contains cycles of lengths s, s + 1, . . . , 2s. For, as in the proof of Theorem 1,
when we traverse the vertices of C, we can either pass the two ends of every edge
directly or through the third vertex of its corresponding triangle.

This implies that G has a cycle containing v whose length is 2k, for some
k ≥ 3.

3. The Erdős-Gyárfás Conjecture in Cubic Claw-free Graphs

In this section, we investigate the Erdős-Gyárfás conjecture in cubic claw-free
graphs. Indeed, we discuss on the cubic claw-free graphs for which the Erdős-
Gyárfás conjecture possibly does not hold.

Suppose that G is a cubic claw-free graph that does not contain C4. Let v be
an arbitrary vertex ofG, and let its neighbours be x, y, and z. SinceG is claw-free,
so we can assume that xy ∈ E(G). Thus, xz, yz /∈ E(G); otherwise a C4 appears.
Let x1 and y1 be respectively the other neighbours of x and y. Easily we see that
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x1 6= y1. Therefore, for every vertex there exists a unique triangle containing
it, such that the other neighbours of its vertices are distinct. Hence G consists
of some vertex-disjoint triangles which are connected by a perfect matching of
G. Furthermore, if two vertices from two triangles are matched, then there is
no more link between these two triangles, again because we have no C4 in G.
This means if we look locally at the graph, we see a triangle together with three
appended edges, such that these edges connect to three disjoint triangles. Now
define Ĝ to be the graph whose vertices are triangles of G and two vertices are
adjacent in Ĝ whenever their corresponding triangles in G are linked by an edge.
The graph Ĝ is then a simple cubic graph. We can imagine Ĝ as a graph obtained
from G by shrinking each triangle to a vertex.

Conversely, we can start from a simple cubic graph Ĝ and replacing each
vertex v with a triangle T ; linking the three vertices of T to the three triangles
corresponding to the three neighbours of v. This procedure results in a cubic
claw-free graph G without C4. To sum up, we have the following proposition.

Proposition 6. The mapping G ↔ Ĝ is a one to one correspondence between

simple cubic graphs and simple cubic claw-free graphs without C4.

Corollary 7. If Ĝ contains a cycle of length k, then this cycle provides cycles of

lengths 2k, 2k + 1, . . . , 3k in G.

Proof. Consider a cycle Ĉ of length k in Ĝ. The subgraph S of G corresponding
to Ĉ consists of a cycle of length 2k such that every other edge of it is triangulated.
Hence we can find cycles of lengths 2k, 2k + 1, . . . , 3k in S.

Based on Proposition 6 and Corollary 7, we think the following conjecture is true.

Conjecture 8. Every cubic graph contains a cycle of length l such that 2l ≤
2k < 3l, for some positive integer k.

If this conjecture holds, it will lead to a proof of the Erdős-Gyárfás conjecture in
cubic claw-free graphs. Also note that this conjecture can be easily deduced from
the Erdős-Gyárfás conjecture. But for simplicity, we restrict ourselves to cubic
graphs, and the length of the desired cycle has a very wide range.

At the end, we investigate minimal cubic claw-free graphs which possibly
have no cycle with length a power of 2.

Theorem 9. Any counterexample to the Erdős-Gyárfás conjecture in cubic claw-

free graphs must have at least 114 vertices.

Proof. Let G be a claw-free cubic graph of order 3n. Then Ĝ (defined in Propo-
sition 6) is a cubic graph of order n. By Corollary 7, if Ĝ contains a cycle of
length l, where l ∈ {2, 3, 4, 6, 7, 8}, then the Erdős-Gyárfás conjecture holds for
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G. So let us assume that Ĝ does not contain such cycles. Let v0 be a vertex of
Ĝ. We consider {v0} as level 0, and define level i, i ≥ 1, as the set

Li = {v ∈ V (Ĝ) : d(v, v0) = i}.

Clearly, L1 is an independent set. It is easy to see that the subgraph induced by
L2 has at most one edge. One can check that if the subgraph induced by L2 has
no edge, then the subgraph induced by L3 has at most three edges, and if the
subgraph induced by L2 has one edge, then the subgraph induced by L3 has at
most one edge. No two elements of L3 have common neighbours in L4, because
otherwise, Ĝ contains the cycles of lengths 2, 4, 6, or 8. An easy calculation
shows that Ĝ has at least 38 vertices. Consequently, any counterexample for the
Erdős-Gyárfás conjecture must have at least 3× 38 = 114 vertices.
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