Discussiones Mathematicae
doi:10.7151/dmgt. 1731
Note

THE DOMINATION NUMBER OF $\boldsymbol{K}_{\boldsymbol{n}}^{3}$

John Georges ${ }^{1}$, Jianwei Lin ${ }^{2}$
AND
David Mauro ${ }^{1}$
${ }^{1}$ Department of Mathematics
Trinity College
Hartford, CT USA 06106
${ }^{2}$ Department of Mathematics
Western Michigan Univ.
Kalamazoo, MI USA 49008
e-mail: jianwei.lin@wmich.edu john.georges@trincoll.edu david.mauro@trincoll.edu

Abstract

Let K_{n}^{3} denote the Cartesian product $K_{n} \square K_{n} \square K_{n}$, where K_{n} is the complete graph on n vertices. We show that the domination number of K_{n}^{3} is $\left\lceil\frac{n^{2}}{2}\right\rceil$.

Keywords: Cartesian product, dominating set, domination number.
2010 Mathematics Subject Classification: 05C69, 05C76.

1. Introduction

Let G_{1} and G_{2} be two graphs. Per the notation of West [14], the Cartesian product of G_{1} and G_{2} is the graph $G_{1} \square G_{2}$ with vertex set $V\left(G_{1} \square G_{2}\right)=V\left(G_{1}\right) \times$ $V\left(G_{2}\right)$ and edge set containing $\left(\left(x_{1}, y_{1}\right),\left(x_{2}, y_{2}\right)\right)$ if and only if either $x_{1}=x_{2}$ and y_{1} is adjacent to y_{2}, or $y_{1}=y_{2}$ and x_{1} is adjacent to x_{2}. To isomorphism, Cartesian product is a binary operator that is both commutative and associative.

Let G be a graph. Then a dominating set of G is a subset D of $V(G)$ such that for every vertex v in $V(G), v$ is equal or adjacent to some vertex in D. The domination number of G, denoted $\gamma(G)$, is the cardinality of the smallest
dominating set of G. (See the text of Haynes et al. [7] for further study of domination.)

Denoting $K_{n} \square K_{n} \square K_{n}$ by K_{n}^{3}, we show $\gamma\left(K_{n}^{3}\right)=\left\lceil\frac{n^{2}}{2}\right\rceil$.
Research on the domination number of Cartesian products of graphs has been driven in large part by the open conjecture of Vizing $[12,13]$ that posits the domination number of a Cartesian product to be bounded from below by the product of the domination numbers of the factors. Products of graphs in special classes have received particular attention. Following the work of Jacobson and Kinch [8] and Chang [1, 2] on products of paths, Gonçalves et al. [5] have determined $\lambda\left(P_{n} \square P_{m}\right)$ for arbitrarily large m and n. Considering the Cartesian product of cycles, Klavžar and Seifter [9] determined $\gamma\left(C_{k} \square C_{n}\right)$ for $k=3,4$ and 5. El-Zahar and Shaheen $[3,4,11]$ have subsequently obtained results for additional k, n. The hypercube Q_{n}, too, has been studied. In [10], Pai and Chiu reviewed existing results in [6] on $\gamma\left(Q_{n}\right)$ for the purpose of analysing the power domination number of Q_{n}, a variant of $\gamma\left(Q_{n}\right)$.

We point out that because the Hamming graph $H(d, n)$ is isomorphic to the Cartesian product of d copies of K_{n}, we herein establish $\gamma(H(3, n))$. The domination numbers of $H(1, n)$ and $H(2, n)$ are well known.

2. Proof

Since the claim is clearly true for $n=1$, we henceforth assume $n \geq 2$. The vertices of K_{n}^{3} shall be denoted in the usual way as lattice points (x, y, z) in 3 -space, $1 \leq x, y, z \leq n$, where x, y and z specify a row, column, and level, respectively. For a given subset S of $V\left(K_{n}^{3}\right)$, the cross-section of S at row x (resp. column y, level z) shall refer to the set of vertices in S that are in row x (resp. column y, level z). For a dominating set D of K_{n}^{3}, m_{D} will denote the smallest integer i such that some cross-section of K_{n}^{3} contains precisely i vertices in D.

Our strategy is outlined as follows:
(1) We show that there exists a dominating set of K_{n}^{3} of cardinality $\left\lfloor\frac{n}{2}\right\rfloor^{2}+(n-$ $\left.\left\lfloor\frac{n}{2}\right\rfloor\right)^{2}$;
(2) We show that if D is a dominating set of K_{n}^{3} of minimum cardinality $\gamma\left(K_{n}^{3}\right)$, then $m_{D} \leq\left\lfloor\frac{n}{2}\right\rfloor$ and $\gamma\left(K_{n}^{3}\right) \geq m_{D}^{2}+\left(n-m_{D}\right)^{2}$;
(3) We observe that the quadratic $f(x)=x^{2}+(n-x)^{2}$ on the non-negative integers is minimized at $x=\left\lfloor\frac{n}{2}\right\rfloor$, implying by (1) and (2) that $m_{D}=\left\lfloor\frac{n}{2}\right\rfloor$ and hence $\gamma\left(K_{n}^{3}\right)=\left\lfloor\frac{n}{2}\right\rfloor^{2}+\left(n-\left\lfloor\frac{n}{2}\right\rfloor\right)^{2}=\left\lceil\frac{n^{2}}{2}\right\rceil$.

To show (1), we let n_{*} denote $\left\lfloor\frac{n}{2}\right\rfloor$ for notational convenience and we form a partition of $V\left(K_{n}^{3}\right)$ consisting of the following eight sets:

$$
\begin{aligned}
& A_{1}=\left\{(x, y, z) \mid 1 \leq x, y, z \leq n_{*}\right\}, \\
& A_{2}=\left\{(x, y, z) \mid 1 \leq x, y \leq n_{*} \text { and } n_{*}+1 \leq z \leq n\right\}, \\
& A_{3}=\left\{(x, y, z) \mid n_{*}+1 \leq x \leq n \text { and } 1 \leq y, z \leq n_{*}\right\}, \\
& A_{4}=\left\{(x, y, z) \mid n_{*}+1 \leq y \leq n \text { and } 1 \leq x, z \leq n_{*}\right\}, \\
& B_{1}=\left\{(x, y, z) \mid n_{*}+1 \leq x, y, z \leq n\right\}, \\
& B_{2}=\left\{(x, y, z) \mid n_{*}+1 \leq x, y \leq n \text { and } 1 \leq z \leq n_{*}\right\}, \\
& B_{3}=\left\{(x, y, z) \mid 1 \leq x \leq n_{*} \text { and } n_{*}+1 \leq y, z \leq n\right\}, \\
& B_{4}=\left\{(x, y, z) \mid 1 \leq y \leq n_{*} \text { and } n_{*}+1 \leq x, z \leq n\right\} .
\end{aligned}
$$

We observe that there exists a subset $S_{A_{1}}$ of A_{1} of cardinality n_{*}^{2} such that every vertex in $\bigcup_{i=1}^{4} A_{i}$ shares a row, column, or level with some vertex in $S_{A_{1}}$. (Form an $n_{*} \times n_{*}$ Latin square in which the cell entries are taken from $\left\{1,2, \ldots, n_{*}\right\}$. Let $S_{A_{1}}$ contain (x, y, z) if and only if the entry at row x and column y of the Latin square is z.) Similarly, there exists a subset $S_{B_{1}}$ of B_{1} of cardinality $\left(n-n_{*}\right)^{2}$ such that every vertex in $\bigcup_{i=1}^{4} B_{i}$ shares a row, column, or level with some vertex in $S_{B_{1}}$. This implies that $S_{A_{1}} \cup S_{B_{1}}$ is a dominating set of K_{n}^{3}. Since $S_{A_{1}}$ and $S_{B_{1}}$ are disjoint, there exists a dominating set of K_{n}^{3} of cardinality $n_{*}^{2}+\left(n-n_{*}\right)^{2}=\left\lceil\frac{n^{2}}{2}\right\rceil$.

We now show (2). Let D denote a dominating set of K_{n}^{3} of minimum cardinality $\gamma\left(K_{n}^{3}\right)$. Since $\gamma\left(K_{n}^{3}\right) \leq\left\lceil\frac{n^{2}}{2}\right\rceil$ by (1), we obtain $n m_{D} \leq\left\lceil\frac{n^{2}}{2}\right\rceil$, implying $m_{D} \leq\left\lfloor\frac{n}{2}\right\rfloor$.

With no loss of generality, we assume that the cross-section of $V\left(K_{n}^{3}\right)$ at level $z=1$ contains precisely m_{D} vertices of D, and we denote the set of vertices in D that are on level 1 by D_{1}. Let c_{1} denote the number of columns at level 1 that contain no vertex in D_{1} and let r_{1} denote the number of rows at level 1 that contain no vertex in D_{1}. Since $c_{1} \geq n-m_{D}$ and $r_{1} \geq n-m_{D}$, we may find a set R_{1} of $n-m_{D}$ rows at level 1 and a set C_{1} of $n-m_{D}$ columns at level 1 that contain no vertices in D_{1}. Accordingly, at the intersections of these rows and columns we find $\left(n-m_{D}\right)^{2}$ vertices at level 1 that are not adjacent to any vertex in D_{1}. Denoting the set of those vertices by S, it follows that each vertex $(x, y, 1)$ in S is adjacent to some vertex (x, y, z) in D where $z \geq 2$. Therefore D contains $\left(n-m_{D}\right)^{2}$ distinct vertices (the set of which we denote by S_{1}) that are particularly adjacent to the $\left(n-m_{D}\right)^{2}$ vertices in S. Moreover, there exist m_{D} rows on level 1, none of which is in R_{1}. Hence the set S_{2} of vertices in D that are in the cross-section at one of these rows does not intersect S_{1}. Since each of these m_{D} cross-sections contains at least m_{D} elements of D, we have that D contains at least $m_{D}^{2}+\left(n-m_{D}\right)^{2}$ vertices, thus establishing (2).

Acknowledgements

The authors thank the referees for their helpful and constructive comments.

References

[1] T.Y. Chang, Domination number of grid graphs, Ph.D. Thesis, (Department of Mathematics, University of South Florida, 1992).
[2] T.Y. Chang and W.E. Clark, The domination numbers of the $5 \times n$ and $6 \times n$ grid graphs, J. Graph Theory 17 (1993) 81-108. doi:10.1002/jgt. 3190170110
[3] M.H. El-Zahar and R.S. Shaheen, On the domination number of the product of two cycles, Ars Combin. 84 (2007) 51-64.
[4] M.H. El-Zahar and R.S. Shaheen, The domination number of $C_{8} \square C_{n}$ and $C_{9} \square C_{n}$, J. Egyptian Math. Soc. 7 (1999) 151-166.
[5] D. Gonçalves, A. Pinlou, M. Rao and S. Thomassé, The domination number of grids, SIAM J. Discrete Math. 25 (2011) 1443-1453.
doi:10.1137/11082574
[6] F. Harary and M. Livingston, Independent domination in hypercubes, Appl. Math. Lett. 6 (1993) 27-28. doi:10.1016/0893-9659(93)90027-K
[7] T.W. Haynes, S.T. Hedetniemi and P.J. Slater, Fundamentals of Domination in Graphs (Marcel Dekker, 1998).
[8] M.S. Jacobson and L.F. Kinch, On the domination number of the products of graphs I, Ars Combin. 18 (1983) 33-44.
[9] S. Klavžar and N. Seifter, Dominating Cartesian products of cycles, Discrete Appl. Math. 59 (1995) 129-136. doi:10.1016/0166-218X(93)E0167-W
[10] K.-J. Pai and W.-J. Chiu, A note on "On the power dominating set of hypercubes", in: Proceedings of the $29^{\text {th }}$ Workshop on Combinatorial Mathematics and Computing Theory, National Taipei College of Business, Taipei, Taiwan April 27-28, (2012) 65-68.
[11] R.S. Shaheen, On the domination number of $m \times n$ toroidal grid graphs, Congr. Numer. 146 (2000) 187-200.
[12] V.G Vizing, Some unsolved problems in graph theory, Uspekhi Mat. Nauk, 23 (6 (144)) (1968) 117-134.
[13] V.G Vizing, The Cartesian product of graphs, Vyčisl. Sistemy 9 (1963) 30-43.
[14] D.B. West, Introduction to Graph Theory (Prentice Hall, 2001).
Received 9 July 2012
Revised 29 December 2012 Accepted 29 December 2012

