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Abstract

Let K3

n
denote the Cartesian product Kn�Kn�Kn, where Kn is the

complete graph on n vertices. We show that the domination number of K3

n

is
⌈

n
2

2

⌉

.
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1. Introduction

Let G1 and G2 be two graphs. Per the notation of West [14], the Cartesian
product of G1 and G2 is the graph G1�G2 with vertex set V (G1�G2) = V (G1)×
V (G2) and edge set containing ((x1, y1), (x2, y2)) if and only if either x1 = x2 and
y1 is adjacent to y2, or y1 = y2 and x1 is adjacent to x2. To isomorphism,
Cartesian product is a binary operator that is both commutative and associative.

Let G be a graph. Then a dominating set of G is a subset D of V (G) such
that for every vertex v in V (G), v is equal or adjacent to some vertex in D.
The domination number of G, denoted γ(G), is the cardinality of the smallest
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dominating set of G. (See the text of Haynes et al. [7] for further study of
domination.)

Denoting Kn�Kn�Kn by K3
n, we show γ(K3

n) =
⌈

n2

2

⌉

.

Research on the domination number of Cartesian products of graphs has
been driven in large part by the open conjecture of Vizing [12, 13] that posits
the domination number of a Cartesian product to be bounded from below by
the product of the domination numbers of the factors. Products of graphs in
special classes have received particular attention. Following the work of Jacobson
and Kinch [8] and Chang [1, 2] on products of paths, Gonçalves et al. [5] have
determined λ(Pn�Pm) for arbitrarily large m and n. Considering the Cartesian
product of cycles, Klavžar and Seifter [9] determined γ(Ck�Cn) for k = 3, 4
and 5. El-Zahar and Shaheen [3, 4, 11] have subsequently obtained results for
additional k, n. The hypercube Qn, too, has been studied. In [10], Pai and Chiu
reviewed existing results in [6] on γ(Qn) for the purpose of analysing the power
domination number of Qn, a variant of γ(Qn).

We point out that because the Hamming graph H(d, n) is isomorphic to
the Cartesian product of d copies of Kn, we herein establish γ(H(3, n)). The
domination numbers of H(1, n) and H(2, n) are well known.

2. Proof

Since the claim is clearly true for n = 1, we henceforth assume n ≥ 2. The
vertices of K3

n shall be denoted in the usual way as lattice points (x, y, z) in
3-space, 1 ≤ x, y, z ≤ n, where x, y and z specify a row, column, and level,
respectively. For a given subset S of V (K3

n), the cross-section of S at row x

(resp. column y, level z) shall refer to the set of vertices in S that are in row
x (resp. column y, level z). For a dominating set D of K3

n, mD will denote the
smallest integer i such that some cross-section of K3

n contains precisely i vertices
in D.

Our strategy is outlined as follows:

(1) We show that there exists a dominating set of K3
n of cardinality

⌊

n

2

⌋2
+ (n−

⌊

n

2

⌋

)2;

(2) We show that if D is a dominating set of K3
n of minimum cardinality γ(K3

n),
then mD ≤

⌊

n

2

⌋

and γ(K3
n) ≥ m2

D
+ (n−mD)

2;

(3) We observe that the quadratic f(x) = x2 + (n − x)2 on the non-negative
integers is minimized at x =

⌊

n

2

⌋

, implying by (1) and (2) that mD =
⌊

n

2

⌋

and

hence γ(K3
n) =

⌊

n

2

⌋2
+ (n−

⌊

n

2

⌋

)2 =
⌈

n2

2

⌉

.

To show (1), we let n∗ denote
⌊

n

2

⌋

for notational convenience and we form a
partition of V (K3

n) consisting of the following eight sets:
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A1 = {(x, y, z) | 1 ≤ x, y, z ≤ n∗},
A2 = {(x, y, z) | 1 ≤ x, y ≤ n∗ and n∗ + 1 ≤ z ≤ n},
A3 = {(x, y, z) | n∗ + 1 ≤ x ≤ n and 1 ≤ y, z ≤ n∗},
A4 = {(x, y, z) | n∗ + 1 ≤ y ≤ n and 1 ≤ x, z ≤ n∗},
B1 = {(x, y, z) | n∗ + 1 ≤ x, y, z ≤ n},
B2 = {(x, y, z) | n∗ + 1 ≤ x, y ≤ n and 1 ≤ z ≤ n∗},
B3 = {(x, y, z) | 1 ≤ x ≤ n∗ and n∗ + 1 ≤ y, z ≤ n},
B4 = {(x, y, z) | 1 ≤ y ≤ n∗ and n∗ + 1 ≤ x, z ≤ n}.

We observe that there exists a subset SA1
of A1 of cardinality n2

∗
such that every

vertex in
⋃

4

i=1
Ai shares a row, column, or level with some vertex in SA1

. (Form
an n∗ × n∗ Latin square in which the cell entries are taken from {1, 2, . . . , n∗}.
Let SA1

contain (x, y, z) if and only if the entry at row x and column y of the
Latin square is z.) Similarly, there exists a subset SB1

of B1 of cardinality
(n − n∗)

2 such that every vertex in
⋃

4

i=1
Bi shares a row, column, or level with

some vertex in SB1
. This implies that SA1

⋃

SB1
is a dominating set of K3

n.
Since SA1

and SB1
are disjoint, there exists a dominating set of K3

n of cardinality

n2
∗
+ (n− n∗)

2 =
⌈

n2

2

⌉

.

We now show (2). Let D denote a dominating set of K3
n of minimum car-

dinality γ(K3
n). Since γ(K3

n) ≤
⌈

n2

2

⌉

by (1), we obtain nmD ≤
⌈

n2

2

⌉

, implying

mD ≤
⌊

n

2

⌋

.
With no loss of generality, we assume that the cross-section of V (K3

n) at level
z = 1 contains precisely mD vertices of D, and we denote the set of vertices in
D that are on level 1 by D1. Let c1 denote the number of columns at level 1
that contain no vertex in D1 and let r1 denote the number of rows at level 1 that
contain no vertex in D1. Since c1 ≥ n − mD and r1 ≥ n − mD, we may find
a set R1 of n − mD rows at level 1 and a set C1 of n − mD columns at level 1
that contain no vertices in D1. Accordingly, at the intersections of these rows
and columns we find (n −mD)

2 vertices at level 1 that are not adjacent to any
vertex in D1. Denoting the set of those vertices by S, it follows that each vertex
(x, y, 1) in S is adjacent to some vertex (x, y, z) in D where z ≥ 2. Therefore D

contains (n−mD)
2 distinct vertices (the set of which we denote by S1) that are

particularly adjacent to the (n −mD)
2 vertices in S. Moreover, there exist mD

rows on level 1, none of which is in R1. Hence the set S2 of vertices in D that
are in the cross-section at one of these rows does not intersect S1. Since each
of these mD cross-sections contains at least mD elements of D, we have that D
contains at least m2

D
+ (n−mD)

2 vertices, thus establishing (2).
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