# THE RAMSEY NUMBER FOR THETA GRAPH VERSUS A CLIQUE OF ORDER THREE AND FOUR 

M.S.A. Bataineh<br>Department of Mathematics<br>Yarmouk University<br>Irbid-Jordan<br>e-mail: bataineh71@hotmail.com<br>M.M.M. Jaradat<br>Department of Mathematics, Statistics and Physics<br>Qatar University<br>Doha-Qatar<br>e-mail: mmjst4@qu.edu.qa<br>AND<br>M.S. Bateeha<br>Department of Mathematics<br>Yarmouk University<br>Irbid-Jordan


#### Abstract

For any two graphs $F_{1}$ and $F_{2}$, the graph Ramsey number $r\left(F_{1}, F_{2}\right)$ is the smallest positive integer $N$ with the property that every graph on at least $N$ vertices contains $F_{1}$ or its complement contains $F_{2}$ as a subgraph. In this paper, we consider the Ramsey numbers for theta-complete graphs. We determine $r\left(\theta_{n}, K_{m}\right)$ for $m=2,3,4$ and $n>m$. More specifically, we establish that $r\left(\theta_{n}, K_{m}\right)=(n-1)(m-1)+1$ for $m=3,4$ and $n>m$.


Keywords: Ramsey number, independent set, theta graph, complete graph.
2010 Mathematics Subject Classification: 05C55, 05C35.

## 1. Introduction

Graphs considered in this paper are finite, undirected and have no loops or multiple edges. For a given graph $G$, we use $V(G), E(G), \Delta(G)$ and $\delta(G)$ to denote the vertex set, edge set, maximum degree and minimum degree of $G$, respectively. An independent set of vertices of a graph $G$ is a subset of $V(G)$ in which no two vertices are adjacent. The independence number of a graph $G, \alpha(G)$, is the size of the largest independent set. The degree of a vertex $u$ in $G$, denoted by $d_{G}(u)$, is the number of edges of $G$ incident with $u$. The neighbor of a vertex $u \in V(G)$, denoted by $N(u)$, is the set of all vertices that are adjacent to $u$. For a nonempty set $V_{1} \subseteq V(G)$, the induced subgraph of $G$ induced by $V_{1}$, denoted by $\left\langle V_{1}\right\rangle$, is the subgraph of $G$ with vertex set $V_{1}$ and those edges of $G$ that have both ends in $V_{1}$. A theta graph $\theta_{n}$ on $n$ vertices is a cycle $C_{n}$ with a new edge joining two non-adjacent vertices of $C_{n}$.

The graph Ramsey number $r\left(F_{1}, F_{2}\right)$ is the smallest positive integer $N$ with the property that every graph on at least $N$ vertices contains $F_{1}$ or its complement contains $F_{2}$ as a subgraph. It is well known that the problem of determining the Ramsey numbers for complete graphs is very difficult and it is easier to deal with sparse graphs instead of complete graphs.

Ramsey numbers for theta graphs were investigated by Jaradat et al. [5], in fact they determined $r\left(\theta_{4}, \theta_{k}\right), r\left(\theta_{5}, \theta_{k}\right)$ for $k \geq 4$. More specifically, they established that $r\left(\theta_{4}, \theta_{k}\right)=r\left(\theta_{5}, \theta_{k}\right)=2 k-1$ for $k \geq 5$. Furthermore, they determined $r\left(\theta_{n}, \theta_{n}\right)$ by proving that for $n \geq 5, R\left(\theta_{n}, \theta_{n}\right)=(3 n / 2)-1$ if $n$ is even and $2 n-1$ if $n$ is odd. The Ramsey number of theta graphs versus complete graphs dropping an edge and also theta-complete graph were studied by several authors. Chvátal and Harary [1], proved that $r\left(\theta_{4}, K_{4}\right)=11$. Bolze and Harborth [2] and Faudree et al. [4] showed that $r\left(\theta_{4}, K_{5}\right)=16$ and $r\left(\theta_{4}, K_{5}-e\right)=13$, respectively. McNamara [6] proved that $r\left(\theta_{4}, K_{6}\right)=21$ and McNamara and Radziszowski [7] gave the following two results: $r\left(\theta_{4}, K_{6}-e\right)=17$ and $r\left(\theta_{4}, K_{7}-e\right)=28$. An upper bound for $r\left(\theta_{4}, K_{7}\right)$ and the exact number for $r\left(\theta_{4}, K_{8}\right)$ were established by Boza [3], in fact, he proved that $r\left(\theta_{4}, K_{7}\right) \leq 31$ and $r\left(\theta_{4}, K_{8}\right)=42$. For more results concerning Ramsey numbers of graphs, we refer the reader to the updated bibliography by Radziszowski [8].

In this paper, we continue studying the theta-complete Ramsey number by extending the above special results to a more general results.

## 2. Main Results

In this section, we determine the Ramsey number of theta graphs versus complete graphs of order 3 and 4. By taking $G=(m-1) K_{n-1}$, one can notice that $G$ contains neither $\theta_{n}$ nor $m$-element independent set. Thus, we establish
$r\left(\theta_{n}, K_{m}\right) \geq(n-1)(m-1)+1$. This lower bound is certainly the case for all results of this paper, therefore we shall always prove just the claimed upper bounds for the Ramsey numbers. The following result is a straightforward from the above inequality and the fact that if $G$ is a graph with $n$ vertices and $\alpha(G)=1$, then $G=K_{n}$.

Theorem 1. For all $n \geq 2, r\left(\theta_{n}, K_{2}\right)=n$.
Theorem 2. For all $n \geq 4, r\left(\theta_{n}, K_{3}\right)=2 n-1$.
Proof. It is sufficient to prove that for $n \geq 4, r\left(\theta_{n}, K_{3}\right) \leq 2 n-1$. We prove it by induction on $n$. Let $n=4$ and $G$ be a graph with order 7 that contains neither $\theta_{4}$ nor 3 -element independent set. Since $r\left(C_{3}, K_{3}\right)=6, G$ contains a cycle $C$ of length 3, say $C=v_{1} v_{2} v_{3} v_{1}$. Since $r\left(\theta_{4}, K_{2}\right)=4$ and $|G-C|=4, G-C$ contains 2 -element independent set $X=\left\{x_{1}, x_{2}\right\}$. Since $G$ has no 3 -element independent set, each vertex of $C$ is adjacent to at least one vertex in $X$. Moreover, no vertex in $X$ is adjacent to two vertices of the cycle, otherwise $\theta_{4}$ is produced. Let $x_{1} v_{1}, x_{2} v_{2} \in E(G)$. Then $\left\{x_{1}, x_{2}, v_{3}\right\}$ is an independent set, a contradiction.

Now, assume that $G$ is a graph of order $2 n-1$ that contains neither $\theta_{n}$ nor a 3 -element independent set. Since $r\left(\theta_{n-1}, K_{3}\right)=2 n-3$ by induction, $G$ contains $\theta_{n-1}$, say $\theta_{n-1}=v_{1} v_{2} \cdots v_{n-1} v_{1} v_{j}$ for some $3 \leq j \leq n-2$, and since $r\left(\theta_{n}, K_{2}\right)=n$ and $\left|G-\theta_{n-1}\right|=n, G-\theta_{n-1}$ contains 2 -element independent set $X=\left\{x_{1}, x_{2}\right\}$. Since $G$ has no 3 -element independent set, each vertex of $\theta_{n-1}$ is adjacent to at least one vertex of $X$. No vertex in $X$ is adjacent to two consecutive vertices of $\theta_{n-1}$, since otherwise $\theta_{n}$ is produced. Suppose $x_{1}$ is adjacent to $v_{1}$. Then $x_{1}$ cannot be adjacent to $v_{2}$ and so $v_{2}$ must be adjacent to $x_{2}$, otherwise $\left\{x_{1}, x_{2}, v_{2}\right\}$ is a 3 -element independent set. $x_{2}$ cannot be adjacent to $v_{3}$ so $v_{3}$ must be adjacent to $x_{1}$, otherwise $\left\{x_{1}, x_{2}, v_{3}\right\}$ is 3 -element independent set. $x_{1}$ cannot be adjacent to $v_{4}$ so $x_{2}$ is adjacent to $v_{4}$ otherwise $\left\{x_{1}, x_{2}, v_{4}\right\}$ is a 3 -element independent set. Moreover $v_{1}$ must be adjacent to $v_{3}$, also $v_{2}$ must be adjacent to $v_{4}$, otherwise $\left\{v_{1}, v_{3}, x_{2}\right\}$ or $\left\{v_{2}, v_{4}, x_{1}\right\}$ is a 3 -element independent. To this end, one can note that $v_{3} x_{1} v_{1} v_{n-1} \cdots v_{5} v_{4} v_{2} v_{3} v_{1}$ forms $\theta_{n}$ (see Figure 1). This is a contradiction. This observation complete the proof.

The following theorem will be used in our coming result:
Theorem 3 (Chvátal and Harary[1]). $r\left(\theta_{4}, K_{4}\right)=11$.
Theorem 4. For all $n \geq 5, r\left(\theta_{n}, K_{4}\right)=3 n-2$.
Proof. It is sufficient to prove that every graph of order $3 n-2$ contains either $\theta_{n}$ or a 4 -element independent set. We prove it by induction on $n$. For $n=5$, suppose $G$ is a graph of order 13 that contains neither $\theta_{5}$ nor a 4 -element independent set. Our aim is to show that $G$ is a 5 -regular graph. But this contradicts the fact that


Figure 1. Depicts the situation in Theorem 2.2.
in any graph there is an even number of vertices of odd degree. Hence, $G$ must contain either $\theta_{5}$ or 4 -element independent set, which implies that $r\left(\theta_{5}, K_{4}\right)=13$. We accomplish that throughout proving four claims according to the possible degrees of $G$.

Claim 1. G contains no vertex of degree at least 7 .
Proof. Suppose that $G$ has a vertex $u$ of degree at least 7. Let $\left\{v_{1}, v_{2}, \ldots, v_{7}\right\} \subseteq$ $N(u)$ and $H=\left\langle\left\{v_{1}, v_{2}, \ldots, v_{7}\right\}\right\rangle . H$ contains neither $P_{4}$ nor a 4 -element independent set, and so $H=2 C_{3} \cup K_{1}$ or $H=C_{3} \cup 2 K_{2}$. Let $S=\left\{v_{8}, v_{9}, v_{10}, v_{11}, v_{12}\right\}$ be theset of remaining vertices of $G$. We now consider the following two cases of $H$.

Case 1. $H=2 C_{3} \cup K_{1}$. Let $v_{1} v_{2} v_{3} v_{1}$ and $v_{4} v_{5} v_{6} v_{4}$ be cycles of $H$ and $K_{1}=v_{7}$ which is shown in Figure 2. Observe that any vertex of $S$ cannot be adjacent to two vertices of $\left\{v_{1}, v_{2}, v_{3}, v_{4}, v_{5}, v_{6}, v_{7}\right\}$ as otherwise $\theta_{5}$ is produced. Now, we consider two subcases:

Subcase 1.1. There is a vertex of $S$, say $v_{8}$, adjacent to one vertex of $\left\{v_{1}, v_{2}, v_{3}, v_{4}, v_{5}, v_{6}\right\}$, say $v_{1}$. Then $v_{8}$ is not adjacent to any vertex of $\left\{v_{2}, v_{3}, v_{4}, v_{5}\right.$, $\left.v_{6}, v_{7}\right\}$. Hence $\left\{v_{8}, v_{2}, v_{6}, v_{7}\right\}$ is a 4 -element independent set. This is a contradiction.

Subcase 1.2. No vertex of $S$ is adjacent to any vertex of $\left\{v_{1}, v_{2}, v_{3}, v_{4}, v_{5}, v_{6}\right\}$.


Figure 2. Represents $\langle V(H) \cup\{u\}\rangle$ in the Case 1 of Claim 1.

Thus, each vertex of $S$ is adjacent to $v_{7}$ (as otherwise, if one vertex of $S$ is not adjacent to $v_{7}$, say $v_{8}$, then $\left\{v_{1}, v_{4}, v_{7}, v_{8}\right\}$ is a 4 -element independent set). Moreover, $\langle S\rangle=K_{5}$ (as otherwise, two non-adjacent vertices of $\langle S\rangle$ with a vertex of each of $v_{1} v_{2} v_{3} v_{1}$ and $v_{4} v_{5} v_{6} v_{4}$ form a 4 -element independent set). But $\theta_{5} \subset K_{5}$ and so $\theta_{5}$ is a subgraph of $G$. This is a contradiction.

Case 2. $H=C_{3} \cup 2 K_{2}$. Let $v_{1} v_{2} v_{3} v_{1}, v_{4} v_{5}$ and $v_{6} v_{7}$ be the cycle and the two edges of $H$, respectively. Note that any vertex of $S$ cannot be adjacent to two vertices of the cycle or adjacent to a vertex of the cycle and a vertex of $\left\{v_{4}, v_{5}, v_{6}, v_{7}\right\}$ or a vertex of $\left\{v_{4}, v_{5}\right\}$ and a vertex of $\left\{v_{6}, v_{7}\right\}$ as otherwise $\theta_{5}$ is produced. Now, if a vertex of $S$, say $v_{8}$, is adjacent to a vertex of $\left\{v_{1}, v_{2}, v_{3}\right\}$, say $v_{1}$, then $\left\{v_{2}, v_{4}, v_{6}, v_{8}\right\}$ is a 4 -element independent set, a contradiction. Similarly, if no vertex of $S$ is adjacent to a vertex of $\left\{v_{1}, v_{2}, v_{3}\right\}$ but there is a vertex adjacent to at most one vertex of $\left\{v_{4}, v_{5}, v_{6}, v_{7}\right\}$, then a 4 -element independent set is produced. Thus, every vertex of $S$ is adjacent either to both $v_{4}$ and $v_{5}$ or to both $v_{6}$ and $v_{7}$. Since $|S|=5$, without loss of generality we may assume that $v_{8}$ and $v_{9}$ are adjacent to both $v_{4}$ and $v_{5}$. To this end, if $v_{8} v_{9} \in E(G)$, then $v_{4} v_{8} v_{9} v_{5} u v_{4} v_{5}$ is a $\theta_{5}$, a contradiction. Thus, $v_{8} v_{9} \notin E(G)$, which implies that $\left\{v_{1}, v_{6}, v_{8}, v_{9}\right\}$ is a 4 -element independent set. This is a contradiction.

Claim 2. G contains no vertex of degree 6 .
Proof. Suppose that $G$ has a vertex $u$ of degree 6. Let $N(u)=\left\{v_{1}, v_{2}, \ldots, v_{6}\right\}$ and $H=\langle N(u)\rangle$. Since $H$ contains neither $P_{4}$ nor a 4 -element independent set, $H=2 C_{3}$ or $H=C_{3} \cup P_{3}$ or $H=C_{3} \cup K_{2} \cup K_{1}$ or $H=3 K_{2}$. As above we consider four cases of $H$.

Case 1. $H=2 C_{3}$. Let $v_{1} v_{2} v_{3} v_{1}$ and $v_{4} v_{5} v_{6} v_{4}$ be the two cycles of $H$ and $S=\left\{v_{7}, v_{8}, v_{9}, v_{10}, v_{11}, v_{12}\right\}$ be the set of remaining vertices in $G$. Observe that any vertex of $S$ is not adjacent to two vertices of $H$ as otherwise $\theta_{5}$ is produced. Note that there are at least two non adjacent vertices of $S$, say $v_{7}$ and $v_{8}$ (as otherwise $\langle S\rangle=K_{6}$ and so $\theta_{5}$ is produced). Since vertex $v_{7}$ (also $v_{8}$ ) is adjacent to one vertex of $N(u)$, say $v$ (also $\left.v^{\prime}\right)$, then by choosing vertices $w \in\left\{v_{1}, v_{2}, v_{3}\right\}-\{v$ ,$\left.v^{\prime}\right\}$ and $w^{\prime} \in\left\{v_{4}, v_{5}, v_{6}\right\}-\left\{v, v^{\prime}\right\}$ we obtain the 4-element independent set $\left\{w, w^{\prime} v,{ }_{7}, v_{8}\right\}$, which is impossible. Figure 3 depicts the situations.


Figure 3. Represents the situation in Case 1 of Claim 2

$$
\text { (the case } v=v_{2} \text { and } v^{\prime}=v_{4} . \text { ) }
$$

Case 2. $H=C_{3} \cup P_{3}$. The proof of this case follows by the same lines as of the proof of Case 1.

Case 3. $H=C_{3} \cup K_{2} \cup K_{1}$. Let $C_{3}=v_{1} v_{2} v_{3} v_{1}, K_{2}=v_{5} v_{6}$ and $K_{1}=v_{4}$. Let $S=\left\{v_{7}, v_{8}, v_{9}, v_{10}, v_{11}, v_{12}\right\}$ be the set of remaining vertices. Note that at least one vertex of $S$ is not adjacent to $v_{4}$ as otherwise $d\left(v_{4}\right)=7$. Without loss of generality, we may assume that $v_{7}$ is not adjacent to $v_{4}$. As in Case 1, every vertex of $S$ is adjacent to at most one vertex of $C_{3}$. Thus, $v_{7}$ is adjacent to both vertices of $v_{5}$ and $v_{6}$ (as otherwise a non-adjacent vertex to $v_{7}$ on $C_{3}$ and a nonadjacent vertex to $v_{7}$ from $\left\{v_{5}, v_{6}\right\}$ with $\left\{v_{4}, v_{7}\right\}$ form a 4-element independent set, a contradiction). Now, if there is another vertex of $S-\left\{v_{7}\right\}$, say $v_{8}$, that is not adjacent to $v_{4}$, then $v_{8}$ is adjacent to both of $v_{5}$ and $v_{6}$ and so $v_{7} v_{8} \notin E(G)$ (as otherwise $v_{5} u v_{6} v_{7} v_{8} v_{5} v_{6}$ is $\theta_{5}$, a contradiction). Therefore, by choosing a non adjacent vertex to any of $v_{7}$ and $v_{8}$ from the cycle $C_{3}$ with $\left\{v_{4}, v_{7}, v_{8}\right\}$ we form a

4 -element independent set, this is a contradiction. Now, if every vertex of $S-\left\{v_{7}\right\}$ is adjacent to $v_{4}$, then $S-\left\{v_{7}\right\}$ contains at least two non-adjacent vertices, say $v_{8}$ and $v_{9}$ (otherwise $\left\langle S-\left\{v_{7}\right\}\right\rangle=K_{5}$ which contains $\theta_{5}$, a contradiction). Note that neither $v_{8}$ nor $v_{9}$ is adjacent to any vertex of $v_{5}$ and $v_{6}$ (to see that, without loss of generality, we may assume that $v_{8}$ is adjacent to $v_{5}$, then $u v_{6} v_{5} v_{8} v_{4} u v_{5}$ is $\theta_{5}$, this is a contradiction). Thus, by choosing a non-adjacent vertex to any of $v_{8}$ and $v_{9}$ from the cycle $C_{3}$ with $\left\{v_{5}, v_{8}, v_{9}\right\}$ we form a 4 -element independent set. This is a contradiction.

Case 4. $H=3 K_{2}$. Let $N(u)=\left\{v_{1}, v_{2}, v_{3}, v_{4}, v_{5}, v_{6}\right\}$ and $v_{1} v_{2}, v_{3} v_{4}$ and $v_{5} v_{6}$ be the edges of $H$. Let $S=\left\{v_{7}, v_{8}, v_{9}, v_{10}, v_{11}, v_{12}\right\}$ be the set of remaining vertices. One can notice that no vertex of $S$ is adjacent to two vertices of two different edges of $H$. Moreover, if there is a vertex of $S$, say $v_{7}$, which is adjacent to only one vertex of $N(u)$, say $v_{1}$, then $\left\{v_{2}, v_{3}, v_{5}, v_{7}\right\}$ is a 4 -element independent set. Thus, each vertex of $S$ must be adjacent to the vertices of exactly one edge of $H$. Since $|S|=6$, there are at least two vertices of $S$, say $v_{7}$ and $v_{8}$, that are adjacent to the vertices of the same edge of $H$, say $v_{1}$ and $v_{2}$. If $v_{7} v_{8} \in E(G)$, then as in Case 3 we see that $\theta_{5}$ is produced. If $v_{7} v_{8} \notin E(G)$, then as in Case 3 a 4 -element independent set is obtained. This is a contradiction.

Claim 3. $G$ contains no vertex of degree 4.
Proof. Suppose that $G$ has a vertex $u$ of degree 4. Let $N(u)=\left\{v_{9}, v_{10}, v_{11}, v_{12}\right\}$ and $S=\left\{v_{1}, v_{2}, \ldots, v_{8}\right\}$ be the set of remaining vertices. Since $r\left(C_{4}, K_{3}\right)=$ $7,\langle S\rangle$ must contain a cycle of length 4 , otherwise $\alpha(\langle S\rangle) \geq 3$, and so three independent vertices of $\langle S\rangle$ with $u$ form a 4 -element independent set. Let the cycle be $v_{1} v_{2} v_{3} v_{4} v_{1}$. Note that any vertex of $\left\{v_{5}, v_{6}, v_{7}, v_{8}\right\}$ cannot be adjacent to two consecutive vertices of the cycle $v_{1} v_{2} v_{3} v_{4} v_{1}$ since otherwise $\theta_{5}$ is produced. Now, fix a vertex of $\left\{v_{5}, v_{6}, v_{7}, v_{8}\right\}$, say $v_{5}$. According to the adjacency of $v_{5}$ we consider three cases:

Case 1. $v_{5}$ is adjacent to two nonconsecutive vertices of the cycle, say $v_{1}$ and $v_{3}$. If $v_{2} v_{4} \in E(G)$, then $v_{1} v_{5} v_{3} v_{4} v_{2} v_{1} v_{4}$ is $\theta_{5}$. A contradiction. If $v_{2} v_{4} \notin E(G)$, then $\left\{v_{2}, v_{4}, v_{5}, u\right\}$ is a 4 -element independent set, a contradiction.

Case 2. $v_{5}$ is adjacent to exactly one vertex of the cycle, say $v_{1}$. If $v_{2} v_{4} \notin$ $E(G)$, then $\left\{v_{2}, v_{4}, v_{5}, u\right\}$ is a 4 -element independent set, a contradiction. If $v_{2} v_{4} \in E(G)$, then $\left\{v_{6}, v_{7}, v_{8}\right\}$ must contain a vertex that is not adjacent to $v_{4}$, say $v_{6}$, otherwise $d_{G}\left(v_{4}\right) \geq 6$. Note that $v_{6}$ must be adjacent to $v_{5}$, otherwise $\left\{v_{4}, v_{5}, v_{6}, u\right\}$ is a 4 -element independent set, a contradiction. Now, we consider the following subcases:

Subcase 2.1. At least one of $v_{7}$ and $v_{8}$ is adjacent to $v_{4}$, say $v_{7}$. Then $v_{7}$ cannot be adjacent to $v_{5}$ since otherwise $\theta_{5}=v_{1} v_{2} v_{4} v_{7} v_{5} v_{1} v_{4}$ is produced. Also,
$v_{7}$ cannot be adjacent to $v_{3}$, otherwise $\theta_{5}=v_{3} v_{2} v_{1} v_{4} v_{7} v_{3} v_{4}$ is produced. Hence, $\left\{v_{3}, v_{5}, v_{7}, u\right\}$ is a 4 -element independent set. This is a contradiction.

Subcase 2.2. Non of $v_{7}$ and $v_{8}$ is adjacent to $v_{4}$. Then $v_{7}$ is adjacent to $v_{5}$, otherwise $\left\{v_{4}, v_{5}, v_{7}, u\right\}$ is a 4 -element independent set. By the symmetry, $v_{8}$ is adjacent to $v_{5}$. Similarly, each of $v_{7}$ and $v_{8}$ is adjacent to $v_{6}$ (otherwise, $\left\{v_{4}, v_{6}, v_{7}, u\right\}$ is a 4 -element independent set if $v_{7}$ is not adjacent to $v_{6}$ and $\left\{v_{4}, v_{6}, v_{8}, u\right\}$ is a 4 -element independent set if $v_{8}$ is not adjacent to $v_{6}$ ). Finally, $v_{7} v_{8} \in E(G)$ (otherwise, $\left\{v_{4}, v_{7}, v_{8}, u\right\}$ is a 4 -element independent set). One can easily check that non of $v_{6}, v_{7}, v_{8}$ is adjacent to $v_{2}$, otherwise $\theta_{5}$ is produced. To this end, if $v_{1} v_{3} \notin E(G)$, then each vertex $v \in\left\{v_{6}, v_{7}, v_{8}\right\}$ is adjacent to $v_{3}$, otherwise $\left\{v, v_{1}, v_{3}, u\right\}$ is a 4 -element independent set, a contradiction. But in this case $\theta_{5}=v_{8} v_{5} v_{6} v_{7} v_{3} v_{8} v_{7}$ is produced (see Figure 4). This a contradiction.


Figure 4. Depicts the situation in Subcase 2.2 of Claim 3 in case $v_{1} v_{3} \notin E(G)$.
Now we need to consider the case $v_{1} v_{3} \in E(G)$. Let $v_{9}, v_{10} \in N(u)$ such that $v_{9} v_{10} \notin E(G)$. Then each of $v_{9}, v_{10}$ is adjacent to at most one vertex of each of $\left\{v_{1}, v_{2}, v_{3}, v_{4}\right\}$ and $\left\{v_{5}, v_{6}, v_{7}, v_{8}\right\}$, since otherwise $\theta_{5}$ is produced. Hence, there are vertices $v \in\left\{v_{1}, v_{2}, v_{3}, v_{4}\right\}$ and $v^{\prime} \in\left\{v_{5}, v_{6}, v_{7}, v_{8}\right\}$ which are adjacent to neither $v_{9}$ nor $v_{10}$ with $\left\{v_{9}, v_{10}\right\}$. Thus, $\left\{v_{9}, v_{10}, v_{9}, v_{10}\right\}$ is a 4 -element independent set (see Figure 5). This is a contradiction.

Case 3. $v_{5}$ is adjacent to no vertex of the cycle. Then by using the last argument from Subcase 2.2 we get the same contradiction.

Claim 4. G contains no vertex of degree less than or equal to 3 .
Proof. Suppose that $G$ has a vertex $u$ of degree less than or equal to 3 . Then


Figure 5. Depicts the situation in Subcase 2.2 of Claim 3 in case $v_{1} v_{3} \in E(G)$.
there is a set $S$ of nine vertices in $G$ which are distinct from $u$ and not adjacent to $u$. The subgraph $\langle S\rangle$ of $G$ contains no $\theta_{5}$. By Theorem 2.2, $\langle S\rangle$ contains a 3 -element independent set, say $v_{1}, v_{2}, v_{3}$. Hence $\left\{v_{1}, v_{2}, v_{3}, u\right\}$ is a 4 -element independent set. This is a contradiction. This observation completes the proof of the claim.

Now, by inductive hypothesis, $r\left(\theta_{n-1}, K_{4}\right)=3 n-5$ for $n>5$. Suppose that $G$ is a graph of order $3 n-2$ that contains neither $\theta_{n}$ nor a 4 -element independent set. Since, $r\left(\theta_{n-1}, K_{4}\right)=3 n-5, G$ contains $\theta_{n-1}$ as a subgraph, say $\theta_{n-1}: v_{1} v_{2} \cdots v_{n-1} v_{1} v_{m}$ for some $3 \leq m \leq n-2$ of length $n-1$. Also, using $r\left(\theta_{n}, K_{3}\right)=2 n-1$ and $\left|G-\theta_{n-1}\right|=2 n-1$, we get that $G-\theta_{n-1}$ contains $3-$ element independent set $X=\left\{x_{1}, x_{2}, x_{3}\right\}$. Since $G$ has no 4 -element independent set, each vertex on $\theta_{n-1}$ is adjacent to at least one vertex of $X$. No vertex in $X$ is adjacent to two consecutive vertices of $\theta_{n-1}$, since otherwise $\theta_{n}$ is produced. Moreover, if $x \in X$ is adjacent to $v_{i}$ and $v_{j}$, then $v_{i+1} v_{j+1} \notin E(G)$, as otherwise $v_{i} x v_{j} v_{j-1} \cdots v_{i+1} v_{j+1} \cdots v_{i-1} v_{i} v_{i+1}$ forms a theta graph of order $n$.

Claim 5. No vertex of $X$ is adjacent to more than two vertices of $\theta_{n-1}$.
Proof. Suppose there is a vertex $x \in X$ such that $x$ is adjacent to $v_{i}, v_{j}$ and $v_{k}$. Then $v_{i+1} v_{j+1} \notin E(G), v_{i+1} v_{k+1} \notin E(G)$ and $v_{j+1} v_{k+1} \notin E(G)$. Moreover, $x$ cannot be adjacent to any vertex of $\left\{v_{i+1}, v_{j+1}, v_{k+1}\right\}$ which implies that
$\left\{x, v_{i+1}, v_{j+1}, v_{k+1}\right\}$ is a 4-element independent set. The proof of the claim is complete.

Now, since $n-1>4$, at least one vertex of $X$ is adjacent to two vertices of $\theta_{n-1}$, we may assume that $x_{1}$ is adjacent to $v_{i}$ and $v_{j}$ only, thus $x_{1} v_{i+1} \notin E(G)$ and $x_{1} v_{j+1} \notin E(G)$. Since $v_{j+2}$ is adjacent to some vertex of $X$, we may assume that $x_{2} v_{j+2} \in E(G)$, it is clear that $x_{2}$ cannot be adjacent to $v_{i+1}$, since otherwise $v_{i} x_{1} v_{j} v_{j-1} \cdots v_{i+1} x_{2} v_{j+2} v_{j+3} \cdots v_{i-1} v_{i} v_{i+1}$ forms a theta graph of order $n$. Moreover, $x_{2}$ cannot be adjacent to $v_{j+1}$, thus $\left\{x_{1}, x_{2}, v_{i+1}, v_{j+1}\right\}$ is a 4-element independent set, a contradiction. The contradiction completes the proof of the theorem.

## Acknowledgment

The authors like to thank very much the referees for their very valuable comments and suggestions.

## References

[1] V. Chvátal and F. Harary, Generalized Ramsey theory for graphs, III. Small offdiagonal numbers, Pacific J. Math. 41 (1972) 335-345. doi:10.2140/pjm.1972.41.335
[2] R. Bolze and H. Harborth, The Ramsey number $r\left(K_{4}-x, K_{5}\right)$, The Theory and Applications of Graphs (Kalamazoo, MI, 1980) John Wiley \& Sons, New York (1981) 109-116.
[3] L. Boza, Nuevas Cotas Superiores de Algunos Numeros de Ramsey del Tipo $r\left(K_{m}, K_{n}-e\right)$, in: Proceedings of the VII Jornada de Matematica Discreta y Algoritmica, JMDA 2010, Castro Urdiales, Spain July (2010).
[4] R.J. Faudree, C.C. Rousseau and R.H. Schelp, All triangle-graph Ramsey numbers for connected graphs of order six, J. Graph Theory 4 (1980) 293-300. doi:10.1002/jgt. 3190040307
[5] M.M.M. Jaradat, M.S. Bataineh and S. Radaideh, Ramsey numbers for theta graphs, Internat. J. Combin. 2011 (2011) Article ID 649687. doi:10.1155/2011/649687
[6] J. McNamara, Sunny Brockport, unpublished
[7] J. McNamara and S.P. Radziszowski, The Ramsey Numbers $R\left(K_{4}-e, K_{6}-e\right)$ and $R\left(K_{4}-e, K_{7}-e\right)$, Congr. Numer. 81 (1991) 89-96.
[8] S.P. Radziszowski, Small Ramsey numbers, Electron. J. Combin. (2011) DS1.
Received 7 December 2011
Revised 13 February 2013
Accepted 13 February 2013

