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Abstract

For any two graphs F1 and F2, the graph Ramsey number r(F1, F2) is
the smallest positive integer N with the property that every graph on at
least N vertices contains F1 or its complement contains F2 as a subgraph.
In this paper, we consider the Ramsey numbers for theta-complete graphs.
We determine r(θn,Km) for m = 2, 3, 4 and n > m. More specifically, we
establish that r(θn,Km) = (n− 1)(m− 1) + 1 for m = 3, 4 and n > m.
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1. Introduction

Graphs considered in this paper are finite, undirected and have no loops or mul-
tiple edges. For a given graph G, we use V (G), E(G), ∆(G) and δ(G) to denote
the vertex set, edge set, maximum degree and minimum degree of G, respectively.
An independent set of vertices of a graph G is a subset of V (G) in which no two
vertices are adjacent. The independence number of a graph G,α(G), is the size
of the largest independent set. The degree of a vertex u in G, denoted by dG(u),
is the number of edges of G incident with u. The neighbor of a vertex u ∈ V (G),
denoted by N(u), is the set of all vertices that are adjacent to u. For a nonempty
set V1 ⊆ V (G), the induced subgraph of G induced by V1, denoted by 〈V1〉, is
the subgraph of G with vertex set V1 and those edges of G that have both ends
in V1. A theta graph θn on n vertices is a cycle Cn with a new edge joining two
non-adjacent vertices of Cn.

The graph Ramsey number r(F1, F2) is the smallest positive integer N with
the property that every graph on at leastN vertices contains F1 or its complement
contains F2 as a subgraph. It is well known that the problem of determining the
Ramsey numbers for complete graphs is very difficult and it is easier to deal with
sparse graphs instead of complete graphs.

Ramsey numbers for theta graphs were investigated by Jaradat et al. [5],
in fact they determined r(θ4, θk), r(θ5, θk) for k ≥ 4. More specifically, they
established that r(θ4, θk) = r(θ5, θk) = 2k − 1 for k ≥ 5. Furthermore, they
determined r(θn, θn) by proving that for n ≥ 5, R(θn, θn) = (3n/2)−1 if n is even
and 2n−1 if n is odd. The Ramsey number of theta graphs versus complete graphs
dropping an edge and also theta-complete graph were studied by several authors.
Chvátal and Harary [1], proved that r(θ4,K4) = 11. Bolze and Harborth [2] and
Faudree et al. [4] showed that r(θ4,K5) = 16 and r(θ4,K5−e) = 13, respectively.
McNamara [6] proved that r(θ4,K6) = 21 and McNamara and Radziszowski [7]
gave the following two results: r(θ4,K6 − e) = 17 and r(θ4,K7 − e) = 28. An
upper bound for r(θ4,K7) and the exact number for r(θ4,K8) were established
by Boza [3], in fact, he proved that r(θ4,K7) ≤ 31 and r(θ4,K8) = 42. For more
results concerning Ramsey numbers of graphs, we refer the reader to the updated
bibliography by Radziszowski [8].

In this paper, we continue studying the theta-complete Ramsey number by
extending the above special results to a more general results.

2. Main Results

In this section, we determine the Ramsey number of theta graphs versus com-
plete graphs of order 3 and 4. By taking G = (m − 1)Kn−1, one can notice
that G contains neither θn nor m-element independent set. Thus, we establish
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r(θn,Km) ≥ (n− 1)(m− 1)+ 1. This lower bound is certainly the case for all re-
sults of this paper, therefore we shall always prove just the claimed upper bounds
for the Ramsey numbers. The following result is a straightforward from the above
inequality and the fact that if G is a graph with n vertices and α(G) = 1, then
G = Kn.

Theorem 1. For all n ≥ 2, r(θn,K2) = n.

Theorem 2. For all n ≥ 4, r(θn,K3) = 2n− 1.

Proof. It is sufficient to prove that for n ≥ 4, r(θn,K3) ≤ 2n−1. We prove it by
induction on n. Let n = 4 and G be a graph with order 7 that contains neither
θ4 nor 3-element independent set. Since r(C3,K3) = 6, G contains a cycle C of
length 3, say C = v1v2v3v1. Since r(θ4,K2) = 4 and |G−C| = 4, G−C contains
2-element independent set X = {x1, x2}. Since G has no 3-element independent
set, each vertex of C is adjacent to at least one vertex in X. Moreover, no
vertex in X is adjacent to two vertices of the cycle, otherwise θ4 is produced. Let
x1v1, x2v2 ∈ E(G). Then {x1, x2, v3} is an independent set, a contradiction.

Now, assume that G is a graph of order 2n−1 that contains neither θn nor a
3-element independent set. Since r(θn−1,K3) = 2n− 3 by induction, G contains
θn−1, say θn−1 = v1v2 · · · vn−1v1vj for some 3 ≤ j ≤ n−2, and since r(θn,K2) = n
and |G− θn−1| = n, G− θn−1 contains 2-element independent set X = {x1, x2}.
Since G has no 3-element independent set, each vertex of θn−1 is adjacent to at
least one vertex of X. No vertex in X is adjacent to two consecutive vertices
of θn−1, since otherwise θn is produced. Suppose x1 is adjacent to v1. Then x1
cannot be adjacent to v2 and so v2 must be adjacent to x2, otherwise {x1, x2, v2}
is a 3-element independent set. x2 cannot be adjacent to v3 so v3 must be adjacent
to x1, otherwise {x1, x2, v3} is 3-element independent set. x1 cannot be adjacent
to v4 so x2 is adjacent to v4 otherwise {x1, x2, v4} is a 3-element independent set.
Moreover v1 must be adjacent to v3, also v2 must be adjacent to v4, otherwise
{v1, v3, x2} or {v2, v4, x1} is a 3-element independent. To this end, one can note
that v3x1v1vn−1 · · · v5v4v2v3v1 forms θn (see Figure 1). This is a contradiction.
This observation complete the proof.

The following theorem will be used in our coming result:

Theorem 3 (Chvátal and Harary[1]). r(θ4,K4) = 11.

Theorem 4. For all n ≥ 5, r(θn,K4) = 3n− 2.

Proof. It is sufficient to prove that every graph of order 3n−2 contains either θn
or a 4-element independent set. We prove it by induction on n. For n = 5, suppose
G is a graph of order 13 that contains neither θ5 nor a 4-element independent set.
Our aim is to show that G is a 5-regular graph. But this contradicts the fact that
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Figure 1. Depicts the situation in Theorem 2.2.

in any graph there is an even number of vertices of odd degree. Hence, G must
contain either θ5 or 4-element independent set, which implies that r(θ5,K4) = 13.
We accomplish that throughout proving four claims according to the possible
degrees of G.

Claim 1. G contains no vertex of degree at least 7.

Proof. Suppose that G has a vertex u of degree at least 7. Let {v1, v2, . . . , v7} ⊆
N(u) and H = 〈{v1, v2, . . . , v7}〉. H contains neither P4 nor a 4-element indepen-
dent set, and so H = 2C3 ∪K1 or H = C3 ∪ 2K2. Let S = {v8, v9, v10, v11, v12}
be theset of remaining vertices of G. We now consider the following two cases of
H.

Case 1. H = 2C3∪K1. Let v1v2v3v1 and v4v5v6v4 be cycles ofH andK1 = v7
which is shown in Figure 2. Observe that any vertex of S cannot be adjacent
to two vertices of {v1, v2, v3, v4, v5, v6, v7} as otherwise θ5 is produced. Now, we
consider two subcases:

Subcase 1.1. There is a vertex of S, say v8, adjacent to one vertex of
{v1, v2, v3, v4, v5, v6}, say v1. Then v8 is not adjacent to any vertex of {v2, v3, v4, v5,
v6, v7}. Hence {v8, v2, v6, v7} is a 4-element independent set. This is a contradic-
tion.

Subcase 1.2. No vertex of S is adjacent to any vertex of {v1, v2, v3, v4, v5, v6}.
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Figure 2. Represents 〈V (H) ∪ {u}〉 in the Case 1 of Claim 1.

Thus, each vertex of S is adjacent to v7 (as otherwise, if one vertex of S is
not adjacent to v7, say v8, then {v1, v4, v7, v8} is a 4-element independent set).
Moreover, 〈S〉 = K5 (as otherwise, two non-adjacent vertices of 〈S〉 with a vertex
of each of v1v2v3v1 and v4v5v6v4 form a 4-element independent set). But θ5 ⊂ K5

and so θ5 is a subgraph of G. This is a contradiction.

Case 2. H = C3 ∪ 2K2. Let v1v2v3v1, v4v5 and v6v7 be the cycle and the
two edges of H, respectively. Note that any vertex of S cannot be adjacent to
two vertices of the cycle or adjacent to a vertex of the cycle and a vertex of
{v4, v5, v6, v7} or a vertex of {v4, v5} and a vertex of {v6, v7} as otherwise θ5 is
produced. Now, if a vertex of S, say v8, is adjacent to a vertex of {v1, v2, v3}, say
v1, then {v2, v4, v6, v8} is a 4-element independent set, a contradiction. Similarly,
if no vertex of S is adjacent to a vertex of {v1, v2, v3} but there is a vertex
adjacent to at most one vertex of {v4, v5, v6, v7}, then a 4-element independent
set is produced. Thus, every vertex of S is adjacent either to both v4 and v5
or to both v6 and v7. Since |S| = 5, without loss of generality we may assume
that v8 and v9 are adjacent to both v4 and v5. To this end, if v8v9 ∈ E(G), then
v4v8v9v5uv4v5 is a θ5, a contradiction. Thus, v8v9 /∈ E(G), which implies that
{v1, v6, v8, v9} is a 4-element independent set. This is a contradiction.

Claim 2. G contains no vertex of degree 6.

Proof. Suppose that G has a vertex u of degree 6. Let N(u) = {v1, v2, . . . , v6}
and H = 〈N(u)〉. Since H contains neither P4 nor a 4-element independent set,
H = 2C3 or H = C3 ∪ P3 or H = C3 ∪ K2 ∪ K1 or H = 3K2. As above we
consider four cases of H.



228 M. Bataineh, M. Jaradat and M. Bateeha

Case 1. H = 2C3. Let v1v2v3v1 and v4v5v6v4 be the two cycles of H and
S = {v7, v8, v9, v10, v11, v12} be the set of remaining vertices in G. Observe that
any vertex of S is not adjacent to two vertices of H as otherwise θ5 is produced.
Note that there are at least two non adjacent vertices of S, say v7 and v8 (as
otherwise 〈S〉 = K6 and so θ5 is produced). Since vertex v7 (also v8) is adjacent to
one vertex of N(u), say v (also v′), then by choosing vertices w ∈ {v1, v2, v3}−{v
, v′} and w′ ∈ {v4, v5, v6} − {v , v′} we obtain the 4-element independent set
{w,w′v, 7, v8}, which is impossible. Figure 3 depicts the situations.
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Figure 3. Represents the situation in Case 1 of Claim 2

(the case v = v2 and v
′

= v4.)

Case 2. H = C3 ∪ P3. The proof of this case follows by the same lines as of
the proof of Case 1.

Case 3. H = C3 ∪ K2 ∪ K1. Let C3 = v1v2v3v1, K2 = v5v6 and K1 = v4.
Let S = {v7, v8, v9, v10, v11, v12} be the set of remaining vertices. Note that at
least one vertex of S is not adjacent to v4 as otherwise d(v4) = 7. Without loss
of generality, we may assume that v7 is not adjacent to v4. As in Case 1, every
vertex of S is adjacent to at most one vertex of C3. Thus, v7 is adjacent to both
vertices of v5 and v6 (as otherwise a non-adjacent vertex to v7 on C3 and a non-
adjacent vertex to v7 from {v5, v6} with {v4, v7} form a 4-element independent
set, a contradiction). Now, if there is another vertex of S − {v7}, say v8, that is
not adjacent to v4, then v8 is adjacent to both of v5 and v6 and so v7v8 /∈ E(G)
(as otherwise v5uv6v7v8v5v6 is θ5, a contradiction). Therefore, by choosing a non
adjacent vertex to any of v7 and v8 from the cycle C3 with {v4, v7, v8} we form a
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4-element independent set, this is a contradiction. Now, if every vertex of S−{v7}
is adjacent to v4, then S − {v7} contains at least two non-adjacent vertices, say
v8 and v9 (otherwise 〈S − {v7}〉 = K5 which contains θ5, a contradiction). Note
that neither v8 nor v9 is adjacent to any vertex of v5 and v6 (to see that, without
loss of generality, we may assume that v8 is adjacent to v5, then uv6v5v8v4uv5 is
θ5, this is a contradiction). Thus, by choosing a non-adjacent vertex to any of v8
and v9 from the cycle C3 with {v5, v8, v9} we form a 4-element independent set.
This is a contradiction.

Case 4. H = 3K2. Let N(u) = {v1, v2, v3, v4, v5, v6} and v1v2, v3v4 and
v5v6 be the edges of H. Let S = {v7, v8, v9, v10, v11, v12} be the set of remaining
vertices. One can notice that no vertex of S is adjacent to two vertices of two
different edges of H. Moreover, if there is a vertex of S, say v7, which is adjacent
to only one vertex of N(u), say v1, then {v2, v3, v5, v7} is a 4-element independent
set. Thus, each vertex of S must be adjacent to the vertices of exactly one edge
of H. Since |S| = 6, there are at least two vertices of S, say v7 and v8, that are
adjacent to the vertices of the same edge of H, say v1 and v2. If v7v8 ∈ E(G),
then as in Case 3 we see that θ5 is produced. If v7v8 /∈ E(G), then as in Case 3
a 4-element independent set is obtained. This is a contradiction.

Claim 3. G contains no vertex of degree 4.

Proof. Suppose that G has a vertex u of degree 4. Let N(u) = {v9, v10, v11, v12}
and S = {v1, v2, . . . , v8} be the set of remaining vertices. Since r(C4,K3) =
7, 〈S〉 must contain a cycle of length 4, otherwise α(〈S〉) ≥ 3, and so three
independent vertices of 〈S〉 with u form a 4-element independent set. Let the
cycle be v1v2v3v4v1. Note that any vertex of {v5, v6, v7, v8} cannot be adjacent to
two consecutive vertices of the cycle v1v2v3v4v1 since otherwise θ5 is produced.
Now, fix a vertex of {v5, v6, v7, v8}, say v5. According to the adjacency of v5 we
consider three cases:

Case 1. v5 is adjacent to two nonconsecutive vertices of the cycle, say v1 and
v3. If v2v4 ∈ E(G), then v1v5v3v4v2v1v4 is θ5. A contradiction. If v2v4 /∈ E(G),
then {v2, v4, v5, u} is a 4-element independent set, a contradiction.

Case 2. v5 is adjacent to exactly one vertex of the cycle, say v1. If v2v4 /∈
E(G), then {v2, v4, v5, u} is a 4-element independent set, a contradiction. If
v2v4 ∈ E(G), then {v6, v7, v8} must contain a vertex that is not adjacent to v4,
say v6, otherwise dG(v4) ≥ 6. Note that v6 must be adjacent to v5, otherwise
{v4, v5, v6, u} is a 4-element independent set, a contradiction. Now, we consider
the following subcases:

Subcase 2.1. At least one of v7 and v8 is adjacent to v4, say v7. Then v7
cannot be adjacent to v5 since otherwise θ5 = v1v2v4v7v5v1v4 is produced. Also,
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v7 cannot be adjacent to v3, otherwise θ5 = v3v2v1v4v7v3v4 is produced. Hence,
{v3, v5, v7, u} is a 4-element independent set. This is a contradiction.

Subcase 2.2. Non of v7 and v8 is adjacent to v4. Then v7 is adjacent to v5,
otherwise {v4, v5, v7, u} is a 4-element independent set. By the symmetry, v8 is ad-
jacent to v5. Similarly, each of v7 and v8 is adjacent to v6 (otherwise, {v4, v6, v7, u}
is a 4-element independent set if v7 is not adjacent to v6 and {v4, v6, v8, u} is a
4-element independent set if v8 is not adjacent to v6). Finally, v7v8 ∈ E(G)
(otherwise, {v4, v7, v8, u} is a 4-element independent set). One can easily check
that non of v6, v7, v8 is adjacent to v2, otherwise θ5 is produced. To this end,
if v1v3 /∈ E(G), then each vertex v ∈ {v6, v7, v8} is adjacent to v3, otherwise
{v, v1, v3, u} is a 4-element independent set, a contradiction. But in this case
θ5 = v8v5v6v7v3v8v7 is produced (see Figure 4). This a contradiction.
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Figure 4. Depicts the situation in Subcase 2.2 of Claim 3 in case v1v3 /∈ E(G).

Now we need to consider the case v1v3 ∈ E(G). Let v9, v10 ∈ N(u) such that
v9v10 /∈ E(G). Then each of v9, v10 is adjacent to at most one vertex of each of
{v1, v2, v3, v4} and {v5, v6, v7, v8}, since otherwise θ5 is produced. Hence, there are
vertices v ∈ {v1, v2, v3, v4} and v′ ∈ {v5, v6, v7, v8} which are adjacent to neither
v9 nor v10 with {v9, v10}. Thus,{v9, v10, v9, v10} is a 4-element independent set
(see Figure 5). This is a contradiction.

Case 3. v5 is adjacent to no vertex of the cycle. Then by using the last
argument from Subcase 2.2 we get the same contradiction.

Claim 4. G contains no vertex of degree less than or equal to 3.

Proof. Suppose that G has a vertex u of degree less than or equal to 3. Then
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Figure 5. Depicts the situation in Subcase 2.2 of Claim 3 in case v1v3 ∈ E(G).

there is a set S of nine vertices in G which are distinct from u and not adjacent
to u. The subgraph 〈S〉 of G contains no θ5. By Theorem 2.2, 〈S〉 contains
a 3-element independent set, say v1, v2, v3. Hence {v1, v2, v3, u } is a 4-element
independent set. This is a contradiction. This observation completes the proof
of the claim.

Now, by inductive hypothesis, r(θn−1,K4) = 3n − 5 for n > 5. Suppose that
G is a graph of order 3n − 2 that contains neither θn nor a 4-element inde-
pendent set. Since, r(θn−1,K4) = 3n − 5, G contains θn−1 as a subgraph, say
θn−1 : v1v2 · · · vn−1v1vm for some 3 ≤ m ≤ n − 2 of length n − 1. Also, using
r(θn,K3) = 2n − 1 and |G − θn−1| = 2n − 1, we get that G − θn−1 contains 3-
element independent set X = {x1, x2, x3}. Since G has no 4-element independent
set, each vertex on θn−1 is adjacent to at least one vertex of X. No vertex in X
is adjacent to two consecutive vertices of θn−1, since otherwise θn is produced.
Moreover, if x ∈ X is adjacent to vi and vj , then vi+1vj+1 /∈ E(G), as otherwise
vixvjvj−1 · · · vi+1vj+1 · · · vi−1vivi+1 forms a theta graph of order n.

Claim 5. No vertex of X is adjacent to more than two vertices of θn−1.

Proof. Suppose there is a vertex x ∈ X such that x is adjacent to vi, vj and
vk. Then vi+1vj+1 /∈ E(G), vi+1vk+1 /∈ E(G) and vj+1vk+1 /∈ E(G). More-
over, x cannot be adjacent to any vertex of {vi+1, vj+1, vk+1} which implies that
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{x, vi+1, vj+1, vk+1} is a 4-element independent set. The proof of the claim is
complete.

Now, since n − 1 > 4, at least one vertex of X is adjacent to two vertices of
θn−1, we may assume that x1 is adjacent to vi and vj only, thus x1vi+1 /∈ E(G)
and x1vj+1 /∈ E(G). Since vj+2 is adjacent to some vertex of X, we may assume
that x2vj+2 ∈ E(G), it is clear that x2 cannot be adjacent to vi+1, since other-
wise vix1vjvj−1 · · · vi+1x2vj+2vj+3 · · · vi−1vivi+1 forms a theta graph of order n.
Moreover, x2 cannot be adjacent to vj+1, thus {x1, x2, vi+1, vj+1} is a 4-element
independent set, a contradiction. The contradiction completes the proof of the
theorem.
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