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Abstract

Let k and ¢ be positive integers with £ < k — 2. It is proved that there
exists a positive integer ¢ depending on k and ¢ such that every graph of
order (2k —1—¢/k)n+c contains n vertex disjoint induced subgraphs, where
these subgraphs are isomorphic to each other and they are isomorphic to one
of four graphs: (1) a clique of order k, (2) an independent set of order k, (3)
the join of a clique of order ¢ and an independent set of order k — ¢, or (4)
the union of an independent set of order ¢ and a clique of order k — /.
Keywords: graph decomposition, induced subgraph, graph Ramsey theory,
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1. INTRODUCTION

Let G and H denote finite undirected graphs without multiple edges and loops.
For a graph G, let V(G) and E(G) denote the set of vertices of G and the set of
edges of G. For a subset S C V(G), the subgraph of G induced by S is denoted
by G[S].

For two graphs G and H, let us define N(G, H) as the maximum integer n
such that there exists a vertex partition V(G) = VoUVU- - -UV,, satisfying G[V;] =
H for 1 <i <n. For a family of graphs H, let us define N (G, H) as the maximum
of N(G,H) over H € H. Furthermore, for a positive integer n, we define an
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integer valued function f(n,?H) as the minimum integer s such that N(G,H) > n
for every graph G with |V(G)| > s. By the definition, f(1,{Kj, K}) is the
classical Ramsey number of 2-edge colored graphs, where K is the complement
of K, 0-

We remark that if  does not contain K}, or K, for all k > 1, then f(n, H) is
not determined as a finite value, because we have N(K, H) = 0 or N(K4,H) =0
for s > 1. Hence, in the following, we always assume that { K}, K;} C H for some
k and /.

Our aim is to study f(n,H) for some family of graphs H with n sufficiently
large. In order to explain related results, let us introduce a few more notations.
For two graphs G and Ga, the union G1UG3 is the graph such that V(G1UG2) =
V(G1)UV(G2) and E(G1UG2) = E(G1)UE(G2). The join G1 + G2 is the graph
such that V(G1 + GQ) = V(Gl) U V(Gg) and E(Gl + GQ) = (V(Gl) X V(GQ)) @]
E(Gl) U E(Gg)

Let G, be the family of all graphs with k vertices. It is not difficult to see that
f(n,G2) =3n —1 for n > 1. Indeed, the inequality 3n — 1 < f(n,Gs) is followed
by the fact N(Ka,—1 U K,_1,G2) < n — 1. The following result is a classical one
in the graph Ramsey theory.

Theorem 1 [3]. Let n > 2. Then f(n,{Ks, K3}) = bn.
The above result is extended for complete graphs with any number of vertices.

Theorem 2 [1, 2|. Let k,{ > 2. Then
Fn K B) = (k41— Vnt (1, {(Kiy, K1) — 2 for n sufficiently large.

Let Ay = {K}, Ky, Kij—1,Ki1 -1} for k > 3. Recently, the author proved the
following result.

Theorem 3 [5]. Let k > 3. Then f(n, Ai) = <2k -1- 11€> n+O0(1).

Since Gz = A3, we have an immediate consequence of Theorem 3.

Corollary 4. f(n,G3) = %n + O(1).

We will discuss shortly f(n,G4) in Section 4.

2. MAIN RESuULTS

For 1 < (¢ <k—2,let Byy = {Kg, Ki, Ky + Ky—¢, Ko U Ki_}. The main result
of the paper is as follows.

Theorem 5. Let k and { be positive integers with2 < € < k—=2. Then f(n,By,) =

(2k—1—£>n+0(1).
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The proof of Theorem 5 will be given in Section 3. Since By ; = A, for k > 3, by
combining Theorem 3 and Theorem 5, we have f(n, By ) = (2k—1—£/k)n+0O(1)
forl1</¢<k-2.

In this problem, By, is in a special position.

Proposition 6. Let k > 3. Let H be a family of graphs having k vertices such that
HNByo = {Ky, K} for1 <€ <k—2. Then we have f(n,H) = (2k—1)n+0O(1).

In particular, for a graph H with k vertices such that H ¢ By ¢ for 1 < £ <
k —2, we have f(n,{Ky, K, H,H}) = (2k — 1)n + O(1).

Proof. 1t suffices to prove the claim in the first half. For a lower bound, let
G = Kjg-1n—1 + Kkn—1. Then we have N(G, Ky) = N(G,Ki) = n—1 and
N(G,H) = N(G,H) = 0 for H € H \ {Ky, K;}. Hence, we have f(n,H) >
|V(G)| = (2k — 1)n — 2. For an upper bound, by Theorem 2, we have f(n,H) <

fn, {Ky, Kr}) = 2k — D)n+ f(1,{Kk—1, Kx—1}) — 2 for n sufficiently large. m

3. PROOF OF THEOREM 5

Proof. Lower bound. Let G = Ky, + (K(—gn—1 U K(_1)n—1), where m =
(6 —2/k)n].
Claim. N(G, By ) < n.

Proof. Let V(G) = V3 U Vo U V3 such that |Vi| = m, |Va| = (K — {)n — 1,
Val = (k= 1)n — Land B(G) = () U ('F) U (Vi x Vo) U (Vi x V3).

Firstly, we have N(G, K,,) < n. Indeed, each K} of G contains at least k — 1
vertices of V3. Hence, we have N (G, Ky) < ||V3]/(k—1)] =n — 1.

In the same manner, we have N(G, K;U K;_;) < n. Indeed, each K, U Kj_
of G contains at least k — £ vertices of V5. Hence, we have N(G, K, U K;_4) <
IVal/ (k= )] =n 1. o o
Next, we show that N(G, Ky+ Ki_) < n. Indeed, each Ky+ K}, of G contains
at least ¢ vertices of V;. Hence, we have N (G, K, + Ky_) < [|V1]/¢] < n.

Lastly, we show that N(G, Ky) < n. For v € V(G), let us assign a weight
w(v) such that w(v) =1/(k—1) for v € V1, w(v) = 1/k for v € V5, and w(v) =0
for v € V3. Furthermore, for S C V(G), let w(S) = > cgw(v). Then we have
w(S) > 1 for any S C V(G) such that G[S] = Kj. On the other hand, the total
weight is calculated as

il Vel

w(V(G)) = -1 + I
1

< ki1<£—£>n+;((k—€)n—l):n—k.

Hence, we have N (G, K) < n. Therefore, we have N(G, By ) < n. O
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By the claim, we have f(n,By¢) > |[V(G)| > (2k —1 —£/k)n — 3.

Upper bound. Before we start the proof, let us show its outline. The main
idea of the proof is a variant of a “bow tie argument”, which is originated from
the proof of Theorem 1([3], see also [4]). A bow tie is a graph with 5 vertices
containing both K3 and K3. Let us summarize how to prove f(n,{K3, K3}) < 5n
by a bow tie argument. Let G be an underlying graph with 5n vertices. What
we want to show is that N(G, {K3, K3}) > n. If G contains no bow tie, it turns
out that the structure of G becomes very simple, and we can easily show that
N(G,{K3, K3}) > n. Otherwise, let S be a bow tie of G. We partition G into
two graphs G[S] and G' = G[V(G) \ S]. Since |V(G")| = 5(n — 1), by inductive
hypothesis, we have N(G’,{K3, K3}) > n — 1. Then with an additional K3 or
K3 in G[S], we have N (G, {K3, K3}) > n, as required.

Now, we go back to the proof of Theorem 5. We will show that for n > 1,
there exists a positive constant ¢ = c(k,f) depending on k and ¢, such that
f(n,Biye) < (2k—1—14/k)n+c. We will define the value of ¢ just after Lemma 8.
Suppose to a contradiction that G is a counterexample with the smallest number
of vertices. We assume |V (G)| > (2k — 1 —{4/k)n + c and N(G, By ) < n.

Let us introduce a family of graphs, By, ¢-good graphs, which is considered as
a variant of a bow tie. We call a graph G By ¢-good if there exists a positive
integer ng such that (1) |[V(Go)| = (2k — 1 — ¢/k)ng and (2) N(Go, H) > ng for
all H € Bry. Then a crucial observation is that a smallest counterexample G
contains no By, -good graph as an induced subgraph. Indeed, if G contains a
By, ¢-good induced subgraph G with |V (Go)| = (2k — 1 —£/k)ng, let us partition
G into two graphs Gog and G; = G[V(G) \ V(Gp)]. Then we have |V (G1)| >
(2k—1—£/k)(n—no)+c. Furthermore, since N(Go, H) > ng and N(G, H) < n for
all H € By, we have N(G1, By ) < n—ng. Hence, Gy is also a counterexample,
a contradiction to the minimality of G.

The following lemma is a key for the proof.

Lemma 7. Let ng = k*(k — 1)(k — £). Let Go be a graph with (2k — 1 — £/k)ng
vertices. Suppose that there exists a vertex partition V(Gy) = V1 U Vo U V3 UV,
such that |V1| = (£ — 1)ng, |Va| = lng, |V3| = (kK — O)no, |Va| = (k — € — £/k)ny,
and E(Go) D (1)U (Vi x Vo) U (B) U (Vs x Vi), E(Go) D (*2) U (Va x V3)U (D).

Then both Go and Go are By, ¢-good.

Proof. Since By ¢-goodness is symmetric for a graph and its complement, it
suffices to show that N(Go, H) > ng for all H € By, 4.

For H = K}, we have

LA LS S Y

N(Go. K _
(Go. Ke) 2 o+ = o™t e

nog = ng.
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For H = K}, we have

V Vi 14 k—0—1/k
J Il vl _ . /

N(Go, Ki) 2 3 =3 + 57 = g™ K

ng > nog.

For H = Ky + Kj_y4, we have

N(Go, K¢+ Kj—p)

> _— +
Hlln{ ,k min ,k

o {41 AL WAL ALV VWL

AR Y ANy R Al ey

. {kz—l (-1 k—¢-—-1 ¢ k—7¢ k—l}
> min + + ng > ng.

¢ k—¢ "k—1¢ 0 T k—1¢
Finally, for H = K, U Kj,_y, we have
N(Go, Ky UKj_y) > @ = no.

Hence, we have N (G, By¢) > no. O

We also use the following basic facts on graph Ramsey theory. (For example, see

[4].)

Fact 1. Let £ > 1. There exists a positive integer N1 depending on k such that
for any n > Nj, every graph with n vertices contains K} or K as a subgraph.

Fact 2. Let k£ > 1. There exists a positive integer No depending on k such that
for any n > Na, every bipartite graph G = G(A, B) with |A| = |B| = n, where
A and B are bipartitions of G, contains two sets of vertices A’ C A and B’ C B

with |A'| = |B'| = k satisfying A’ x B’ C E(G) or A’ x B’ C E(G).

By Ri(k) or Ra(k) we denote, respectively, the minimum integers Ny in Fact 1
and Ny in Fact 2.

Lemma 8. Let k, ki, ko, s, so, w be positive integers such that max{k;, ka} < k,
Ro(k) — k1 < so and s — sp = kyw. Let G be a graph. Let S C V(G) with |S| = s.
Then there exists a positive integer N3 depending on k and s such that for any
t > N3 and for any T C V(G) with SNT = 0, |T| = t, we have partitions
S=5USiU---USy and T =Ty UTyU---UT, satisfying that

(1) [So| = so,

(2) |Si| = k1, |Ti| = ko for 1 <i < w, and

(3) S;xT;, C E(Q) or S; xT; C E(G) for1<i<w.
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Proof. Let N3 be a positive integer such that N3 > k(s+k). Then, for 1 <i < w,
we have

|S] — (i — 1)k1 > s — (w—1)k1 > Ra(k),
and

yT|(i1)k22t(w1)k2=t(5;‘901>k;2
1

>t— (S — Sg)k > (S() + k)]{? > Rg(k})

Hence, by using Fact 2 w times, we can take subsets S; C S and T; C T one by

one such that |S;| = ki, |T;| = ke, and S; x T; C E(G) or S; x T; C E(G) for
1<i<w. .

By R3(k,s) we denote the minimum integer N3 in Lemma 8. In the proof of
Theorem 5, we use the existence of R;(k), Ra(k) and Rs(k,s), but we will not
need their exact values.

Let ng = k*(k — 1)¢(k — £), which is appeared in Lemma 7. Let us define
positive integers €, a1, a9, asz, B1, B2, and v satisfying the following conditions:

e ¢ = kny,
e oy, ag, ag, 1, B2, v are multiples of ek(2k — 1 — £/k),
aq a2 a3

¢ k-1 k—(—(/k
e o; > Ry(e) for 1 <i < 3,

14
>
° T— Eag = Rg(e’fk),
o oy — kaié 7 is a multiple of &/,
. B _ B2
max{k/2,}  min{k/2,k—(}’
14
>
. gﬁQ > Ro(ank),
o (9 > Ro(max{ag, R3(ek, a2)}),
o 31 — ? igg is a multiple of a9/,
o v > Ry(B),

e 7y Z Rg(agk‘,ﬁl).
Finally, we define a positive integer ¢ as ¢ = Ry (y) + 7. Next, we define a family
of subsets of the vertices.
A subset S C V(G) is called of type A, if there exists a partition S =
S1US2U S5 such that |S;] = a; for 1 <7 < 3 and (521) U (S1 x So)U (523) C E(G),
() U (S2 x S3) € E(G).
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A subset S C V(G) is called of type By if there exists a partition S = S; U So
such that |S;| = 3; for 1 <7 <2 and (521) U (S1 x S2) C E(G), (322) C E(G).

A subset S C V(Q) is called of type Cy if G[S] = K.

Furthermore, a subset S C V(G) is called of type A_, B_, C_, if in the
complement G, S is of type Ay, B,, Cy, respectively.

Let us consider a vertex partition V(G) = Vo U Vi U--- UV, such that

P1) for 1 <i < m,V; is one of the six types Ay, A_, By, B_, Cy, C_,
P2) Vj contains no subset S of these six types,

P3) n(Ay) + n(A-) is maximum with respect to (P1) and (P2),

P4) n(By) + n(B-) is maximum with respect to (P1), (P2) and (P3),

where for a type X, n(X) denotes the number of indices ¢ with 1 < i < m such
that V; is of type X.

We call a partition V(G) = VpuU Vi U--- UV, satisfying the above properties
from (P1) to (P4) a standard partition.

Firstly, we remark that if there exists a partition V(G) = VUV U--- UV
such that V; is one of the six types for 1 < ¢ < s, then we can extend the partition
to V(G) =VouUWViU---UVUVs U--- UV, satisfying (P1) and (P2), by taking
suitable subsets greedily from V. In particular, starting from s = 0, any graph
admits at least one standard partition.

We also remark that for a standard partition V(G) = VoU Vi U---UV,,, we
have [Vp| < ¢. Indeed, if ¢ < |Vp|, we have Ri(y) < ¢ < |Vp|. Hence, by Fact 1,
we have K., or K, in G[Vp], a contradiction to (P2).

Let V(G) = VpuViU---UV,, be a standard partition. First, we show Claims
1, 2 and 3, which reduce the number of possible combinations of the types of
subsets in the partition.

Claim 1. n(C4) =0 orn(C-) =0.

(
(
(
(

Proof. Suppose to a contradiction that n(C;) > 0 and n(C-) > 0. Without
loss of generality, we may assume V; is of type Cy and V3 is of type C_. Since
Vil = [Va| = v > Ra(B1), by Fact 2, for 1 < i < 2, we have V] C V; with

|V!/| = B1 such that V{ x Vj C E(G) or V{ x V§ C E(G). Therefore, we have a
subset S C V{ UV of type By or B_, a contradiction to (P4). 0

Claim 2. n(By) =0 orn(B-) =0.

Proof. Suppose to a contradiction that n(By) > 0 and n(B_) > 0. Without
loss of generality, we may assume Vj is of type B4 and V5 is of type B_. For
1 <4 <2 let V; = Vi U Vi such that (}') U (Vi1 x Vi2) C E(G), (*3?) C E(G),
(*32) ¢ B(G), (2') U (Va1 x Vaz) C E(G). By the definition of ; and 2, we have
[Vii| = |Va1| = 1 > P2 and B2 > Ra(ae). Hence, by Fact 2, for 1 < i < 2, we
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have V/; C Vi3 with |V]}| = ag such that V{; x V3§, C E(G) or V{; x V4, C E(G).
If Vi x Vg C E(G), then we have a subset S C V{; U V3, U Vo of type A, and

if V{; x V§; C E(G), then we have a subset S C Vi; UV{; UVia of type A_, a
contradiction to (P3). 0

Claim 3. n(Ay) =0 orn(A_) = 0.

Proof. Suppose to a contradiction that n(Ay) > 0 and n(A_) > 0. Without
loss of generality, we may assume Vj is of type A4 and V5 is of type A_. For
1 <i <2 let Vi = Vi1 UVipUVis such that (Y3') U (Vi1 x Vi2) U ('3%) C E(Q),
("2)U(Viax Vig) € B(G), ("32)U(Vaz x Vag) € B(G), (*3") U(Var x Vaa)U(*3) C

E(G). Since |Vi1]| = |Va1] = a1 > Ra(e), by Fact 2, for 1 < i < 2, we have

V! C Vip with |V}}| = € such that V}; x Vj; C E(G) or V{; x Vg, C E(G). If

7

Vi1 x V3 C E(G), then we have a subset S C V/; UVy; UVaa U Vs such that G[S] is

By ¢-good, and if V{; x V3, C E(G), then we have a subset S C V3, UV{;UVi2UV3
such that G[S] is By ¢-good, a contradiction. O

Next, we prepare Claims 4 and 5, which count the number of disjoint copies of
induced subgraphs isomorphic to H € By, in a subset of type A4 and type By.

Claim 4. Let S C V(G) be of type Ay. Let a = |S|/(2k — 1 —{/k). Then we
have

(1) N(G[S], Ky) > (1 4 /#(/f-p) a,

(2) N(G[S], Ky) > a,

(3) N(G[S], K¢ + Ki—¢) > a,

(4) N(G[S],Kg U Kk_g) > (1 - k(/f—@) a.

Proof. Indeed, let S = S; U Sy U S3 such that |S;] = a; for 1 < i < 3 and
() U(S1 % S2) U () € B(G), () U(S2 x S3) C E(G). By the definition of a1,
ay and ag, we have |S1| = la, |S2| = (k — 1)a and |S3] = (k — | — ¢/k)a. Hence,

we have

and

as required. O
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Claim 5. Let S C V(G) be of type B4. Let S = S1 U Sy such that |S;| = p; for
i=1,2and (3) U (S1 x S2) C B(G), () € E(G). Let a = |S|/(2k — 1 — £/k).
Then we have

(1) N(G[S], K) = a,

|51

k-2

Proof. By the definition of 81 and [, if £ > k/2 then |S1| = ¢|S|/k and |Sz| =
(k—10)|S|/k, and if ¢ < k/2 then |Si| = |S2| = |S|/2. Hence, in any case, we have
|S1] > |S|/2. Then we have

(2) N(G[S], K¢+ Ki—¢) >

[51] 5]
N K;) = > > a.
Furthermore, for ¢ > k/2, we have
—_— S
N(GIS]. Ko + Fioy) = 1,
and for ¢ < k/2, we have
— _ Sl 1S

Hence, in any case, we have N(G[S], K¢+ Ky_¢) > |S1|/(k — 2). 0

By Claim 3, without loss of generality, we may assume n(A_) = 0. Suppose that
m=p+q+rand Vi,...,V, are of type Ay, Vpi1,...,V,qq are of type By or
B_, Vprgt1s-- s Vpygsr are of type Cy or C_.

For 1 <i <p, let V; = Vi1 U Vio U Vj3 such that |Vj;| = a; for 1 < j <3 and
(Vi) U (Vi x Via) U (3) € E(G), (") U (Via x Vi3) € E(G).

Case 1. n(B-) = 0. For 1 < i < gq, let Vp4; = Vpyi1 U Vpyio such that
Vol = Bjs for j = 1,2 and ("51) U (Vprin x Vira2) € E(G), (74°2) € E(G).

Case 1.1. n(C-) = 0. In this case, V; is one of types A;, By, C for
1 <7 < m. Hence, by Claims 4 and 5, we have

N(GVi], Ki) = |Vil/(2k — 1 = £[k).
Therefore, since |Vp| < ¢, we have
N(G, Ki) > [V(G)\ Vol /(2 — 1 — /1) > n,

a contradiction.
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Case 1.2. n(Cy) = 0. In this case, V; is one of types A, By, C_ for
1 <i < m. Let us define a partition V(G) \ Vo = SUT UU such that

s=J Vi
1<i<q PHED
72U, VoriaOU, L, Tovar
1<i<q p+i,2 1<i<r pHq+is
v=J __W,
1<i<p

s=|S,t=1|T],u=|U|. Let ny =u/(2k —1—2L/k), na = (s+1)/(2k—1—L/E).
Since |Vp| < ¢, we have ny + no = |V(G) \ Wo|/(2k — 1 — £/k) > n. Furthermore,
by Claim 4, we have N(G[U], K; + Ky_¢) > n1 and N(G[U],K;) > ni. On the
other hand, since s +t = (2k — 1 — {/k)na, we have s > (k — 2)ng or t > kna.

If s > (k — 2)na, by Claim 5, we have

N(G[SUT], K; + Kp_g) > ﬁ > na.

If t > kng, we have

In any case, we have
N(G, {K@ =+ Kk_g,m}) >ny+ng >n,

a contradiction.
Case 2. n(By) = 0. For 1 < i < g, let Vp; = Vpyi1 U Vpyio such that
Virigl = Bj, for j = 1,2 and ("752) C B(G), ("5") U (Vpyin X Vpriz) C E(G).
Case 2.1. n(Cy) = 0. In this case, V; is one of types A}, B_, C_ for
1 <i < m. Hence, by Claim 4 and Claim 5, we have

N(G[Vi], Kk) = |Vi|/(2k — 1 — £/k).
Therefore, since |Vp| < ¢, we have
N(G,Ky) = |[V(G)\ Vol/(2k =1 = £/k) = n,

a contradiction.

Case 2.2. n(C_) = 0. In this case, V; is one of types A, B_, C, for
1 <i<m. We may assume ¢ > 1 and » > 1. Indeed, if g =0 or r = 0, as in
Case 1 or in Case 2.1, we have a contradiction.

In order to show the assertion of the theorem, we will modify the original
partition. Let us prepare two claims. Let X = J;-, <, Vptq+i-
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Claim 6. Suppose that ¢ < k/2. Let V; be of type B_ such that V; = V;1 UV, 2,
Vij| = B; with j = 1,2, (V3?) ¢ E(G), ('3') U (Vi1 x Vi) C E(G). Let
so = Pal/(k—1¥). Let T C X UV, such that G[T| = K. Then we have partitions
V;’l =SyUSiU---USy, T=TyuTyU---UT, such that

(1) [So| = so,
(2) S| = aol, |Tj| = aa(k —£) for1 < j < w,

(3) S;xT; C E(G) for1<j<w.

Proof. Since ¢ < k/2, we have 31 = (2. By the definition of 8y and v, we have
so = Pol/(k — £) > Ra(agk) and v > Rs(ask, 51). Hence, by Lemma 8, we have
partitions V;; = SoUS1U---USy, T =Ty UT1 U---UT,, such that (1) |So| = so,
(2) 15| = aol, |Tj| = aa(k —¥¢) for 1 < j < w, and (3")S; x T; C E(G) or
S; xT; C E(G) for 1 < j <w. If S; x T; C E(G) for some j, we have a set of
type A4 in T; U Sj U V2, which contradicts the property (P3) of the partition.

Thus we have S; x T; C E(G) for 1 < j < w, as claimed. 0

Claim 7. Let V; be of type Ay such that V; = Vi1 U V2 U Vis, |Vi | = o with
1<5<3, (53U (Vig x Vip) U ("5) € B(G), (3*) U(Vig x Vi) C E(G). Let
T C XUV such that G[T] = K.,. Let so = asl/(k—{). Then we have partitions
‘/;72250U51U--'U5w, T=ToUTyU---UTy, such that

(1) |So| = so,
(2) |S;] =€t |Ty| = e(k —£) for 1 < j < w,

(3) §; xT; CE(G) for1 <j <w.

Proof. Let A\ = max{ag, R3(ck,2)}. Let Vi1 = Vpi11 U Vpiq2 such that
Vor1sl = By, for j = 1,2 and ("752) € E(G), ("75"1) U (Vpyra X Vpyr2) C
E(G). Since |Vpy1,1| = 1 > Re(A) and |T| = v > Ra(A), by Fact 2, we have
Voi11 C Vo1, TV C T with [V 4| = |T'| = X such that T" x V|, ; C E(G) or
T'xV,,11 C E(G).

If 7' x V)., C E(G), we have a set of type Ay in T"UV, 1 ; UV,412, which
contradicts the property (P3) of the partition. Hence, we have T” ><Vp’ 111 CE (G).

Since sg = azl/(k — ) > Ra(ck) and |T'| = X\ > Rs(ck, as), by Lemma 8, we
have partitions Vjo = Sy U S U---U Sy, T =Ty UTy U---UT, such that (1)
|So| = s0, (2) |Sj] =¢€t, |Tj] =e(k—¢) for 1 < j <w, and (3") S; x T; C E(G)
or S; xT; C E(G) for 1 < j <w. If S; xT; C E(G) for some j, we have a
B} ¢-good subgraph in G[V;Jrl,l UT;US; UV, 3], a contradiction. Hence, we have

S; xT; C E(G) for 1 < j <w, as claimed. O

Under the situation of Claim 6, we have N(G[V; UT], K, U Ky_) > |V;1]/¢, and
under the situation of Claim 7, we have N(G[V; UT], K, U Ky_¢) > |Vi2|/¢.
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By using Claims 6 and 7, let us modify the partition V. = Vy UV U--- UV,
according to the following algorithm.

Algorithm 1.

Step 0. Xo = (X \V;,,)UVy. If £ < k/2, then put y = p+ g, otherwise put y = p.
Set 1 to 1.

Step 1. If ¢ > y, then set 0 to x and stop.

Step 2. If there exists W C Xy such that G[W] = K., then take W, otherwise
set 1 to z, set i — 1 to /' and stop.

Step 3. For V; and W, take 11,15, ..., T, C W satisfying the condition of Claim
6or7. Let Z;,=T1U---UT,. Set Xg=Xp\ Z;. Add 1 to i. Go to Step 1.

Note that in the procedure of the algorithm, G[X/] contains no E as a subgraph.
Indeed, if there exists W C Xy with G[W] = K., since v > R2(f1), by Fact 2,
we have V! C V,, and W C W such that V), U W’ is of type B4 or B_, a
contradiction to (P4) of the original partition.

After executing the algorithm, we consider the two subcases according to the
return status x.

Case 2.2.1. x = 0. Let us take a partition Xg = WoU W7 U --- U W), such
that G[W;] = K, for 1 <i < p and |Wy| < Ri(y).
Let us define

5=Ul.. Vs 0U,. oo
1<i<p 27 Uicigq PHoD

T — U1§i§p(Vi,l UVis)U U1gigq Vprig U U1gigy Z;U U1gigu W; U Vi,

s=|S|, t =|T|. Then we have s+t > (2k — 1 —{/k)n.

On the other hand, we have n > N(G[SUT], K, U Kj_;) > s/{. Hence, we
have ¢n > s. Furthermore, we have n > N(G[T], K}) > t/k. Hence, we have
kn > t. Therefore, we have (k + {)n > s+t > (2k — 1 — ¢/k)n, a contradiction.

Case 2.2.2. x = 1. Let us define
S = U1gigq Viti1,
I'= Ulgigq Vitiz U Ulgigy’ Ziy

U= Uléiﬁp Vi,

s=|S|,t=1T],u=|U|. Let ny = u/(2k —1—2L/k), no = (s+1t)/(2k — 1 —L/E).
Then we have ny+ng > n, since |V(G)\ (SUTUU)| = |[V,,UXp| < v+ Ri(v) = c.

By a similar argument to that in Case 1.2, if s > (k—1)ng, we have N(G[SU
T),K;) = s/(k — 1) > ng, a contradiction. Hence, we have s < (k — 1)na.
Therefore, we have

(1) (k — i) ng < t.
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In the same way, we have N(G[T], K}) + N(G[U], K}) < n. Hence, by Claim 4,
we have

(2) 2+(1+m>n1<n.
By (1) and (2), we have
(3) n < kna.

On the other hand, by using Claim 4, we have n > N(G,K,U Kj,_¢) > t/(k —
)+ (1 —2¢/k(k —£))n;. Hence, we have

(4) kt — (k* — k€ — )ng < In.
By (3) and (4), we have t < (k — £/k)ng, a contradiction to (1). This completes
the proof. [

4. CONCLUDING REMARKS

Let G, be the family of all graphs with k£ vertices, as defined in Section 1. For
k>4, f(n,G) is not known well. For k =4, let G = Ko,,—1 U (K1 + K3p—1).
Then we have N(G,Gs4) < n. It follows that f(n,Gs) > 6n — 2. On the other
hand, from Theorem 5 by substituting 4 for k£ and 2 for ¢, we have f(n,G,s) <
f(n,Ba2) = (13/2)n 4+ O(1). It is conjectured that f(n,Gs) = 6n+ O(1) ([5]).
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