Discussiones Mathematicae Graph Theory 34 (2014) 249–261 doi:10.7151/dmgt.1729

A RAMSEY-TYPE THEOREM FOR MULTIPLE DISJOINT COPIES OF INDUCED SUBGRAPHS

Tomoki Nakamigawa¹

Department of Information Science Shonan Institute of Technology 1-1-25 Tsujido-Nishikaigan, Fujisawa Kanagawa 251-8511, Japan

e-mail: nakami@info.shonan-it.ac.jp

Abstract

Let k and ℓ be positive integers with $\ell \leq k-2$. It is proved that there exists a positive integer c depending on k and ℓ such that every graph of order $(2k-1-\ell/k)n+c$ contains n vertex disjoint induced subgraphs, where these subgraphs are isomorphic to each other and they are isomorphic to one of four graphs: (1) a clique of order k, (2) an independent set of order k, (3) the join of a clique of order ℓ and an independent set of order $k - \ell$, or (4) the union of an independent set of order $k - \ell$.

Keywords: graph decomposition, induced subgraph, graph Ramsey theory, extremal graph theory.

2010 Mathematics Subject Classification: 05C55, 05C35.

1. INTRODUCTION

Let G and H denote finite undirected graphs without multiple edges and loops. For a graph G, let V(G) and E(G) denote the set of vertices of G and the set of edges of G. For a subset $S \subset V(G)$, the subgraph of G induced by S is denoted by G[S].

For two graphs G and H, let us define N(G, H) as the maximum integer nsuch that there exists a vertex partition $V(G) = V_0 \cup V_1 \cup \cdots \cup V_n$ satisfying $G[V_i] \cong$ H for $1 \leq i \leq n$. For a family of graphs \mathcal{H} , let us define $N(G, \mathcal{H})$ as the maximum of N(G, H) over $H \in \mathcal{H}$. Furthermore, for a positive integer n, we define an

¹This work was supported by KAKENHI(23540168). The extended abstract of the paper is published in Electron. Notes Discrete Math. **43** (2013) 97–102, Erdős Centennial.

integer valued function $f(n, \mathcal{H})$ as the minimum integer s such that $N(G, \mathcal{H}) \ge n$ for every graph G with $|V(G)| \ge s$. By the definition, $f(1, \{K_k, \overline{K_\ell}\})$ is the classical Ramsey number of 2-edge colored graphs, where $\overline{K_\ell}$ is the complement of K_ℓ .

We remark that if \mathcal{H} does not contain K_k or $\overline{K_k}$ for all $k \geq 1$, then $f(n, \mathcal{H})$ is not determined as a finite value, because we have $N(K_s, \mathcal{H}) = 0$ or $N(\overline{K_s}, \mathcal{H}) = 0$ for $s \geq 1$. Hence, in the following, we always assume that $\{K_k, \overline{K_\ell}\} \subset \mathcal{H}$ for some k and ℓ .

Our aim is to study $f(n, \mathcal{H})$ for some family of graphs \mathcal{H} with n sufficiently large. In order to explain related results, let us introduce a few more notations. For two graphs G_1 and G_2 , the union $G_1 \cup G_2$ is the graph such that $V(G_1 \cup G_2) =$ $V(G_1) \cup V(G_2)$ and $E(G_1 \cup G_2) = E(G_1) \cup E(G_2)$. The join $G_1 + G_2$ is the graph such that $V(G_1 + G_2) = V(G_1) \cup V(G_2)$ and $E(G_1 + G_2) = (V(G_1) \times V(G_2)) \cup$ $E(G_1) \cup E(G_2)$.

Let \mathcal{G}_k be the family of all graphs with k vertices. It is not difficult to see that $f(n, \mathcal{G}_2) = 3n - 1$ for $n \geq 1$. Indeed, the inequality $3n - 1 \leq f(n, \mathcal{G}_2)$ is followed by the fact $N(K_{2n-1} \cup \overline{K_{n-1}}, \mathcal{G}_2) \leq n - 1$. The following result is a classical one in the graph Ramsey theory.

Theorem 1 [3]. Let $n \ge 2$. Then $f(n, \{K_3, \overline{K_3}\}) = 5n$.

The above result is extended for complete graphs with any number of vertices.

Theorem 2 [1, 2]. Let $k, \ell \geq 2$. Then $f(n, \{K_k, \overline{K_\ell}\}) = (k+l-1)n + f(1, \{K_{k-1}, \overline{K_{\ell-1}}\}) - 2$ for n sufficiently large. Let $\mathcal{A}_k = \{K_k, \overline{K_k}, K_{1,k-1}, \overline{K_{1,k-1}}\}$ for $k \geq 3$. Recently, the author proved the

following result.

Theorem 3 [5]. Let
$$k \ge 3$$
. Then $f(n, \mathcal{A}_k) = \left(2k - 1 - \frac{1}{k}\right)n + O(1)$.

Since $\mathcal{G}_3 = \mathcal{A}_3$, we have an immediate consequence of Theorem 3.

Corollary 4. $f(n, \mathcal{G}_3) = \frac{14}{3}n + O(1).$

We will discuss shortly $f(n, \mathcal{G}_4)$ in Section 4.

2. MAIN RESULTS

For $1 \leq \ell \leq k-2$, let $\mathcal{B}_{k,\ell} = \{K_k, \overline{K_k}, K_\ell + \overline{K_{k-\ell}}, \overline{K_\ell} \cup K_{k-\ell}\}$. The main result of the paper is as follows.

Theorem 5. Let k and ℓ be positive integers with $2 \leq \ell \leq k-2$. Then $f(n, \mathcal{B}_{k,\ell}) = \left(2k-1-\frac{\ell}{k}\right)n+O(1)$.

The proof of Theorem 5 will be given in Section 3. Since $\mathcal{B}_{k,1} = \mathcal{A}_k$ for $k \ge 3$, by combining Theorem 3 and Theorem 5, we have $f(n, \mathcal{B}_{k,\ell}) = (2k-1-\ell/k)n+O(1)$ for $1 \le \ell \le k-2$.

In this problem, $\mathcal{B}_{k,\ell}$ is in a special position.

Proposition 6. Let $k \geq 3$. Let \mathcal{H} be a family of graphs having k vertices such that $\mathcal{H} \cap \mathcal{B}_{k,\ell} = \{K_k, \overline{K_k}\}$ for $1 \leq \ell \leq k-2$. Then we have $f(n, \mathcal{H}) = (2k-1)n + O(1)$. In particular, for a graph H with k vertices such that $H \notin \mathcal{B}_{k,\ell}$ for $1 \leq \ell \leq k-2$.

k-2, we have $f(n, \{K_k, \overline{K_k}, H, \overline{H}\}) = (2k-1)n + O(1).$

Proof. It suffices to prove the claim in the first half. For a lower bound, let $G = K_{(k-1)n-1} + \overline{K_{kn-1}}$. Then we have $N(G, K_k) = N(G, \overline{K_k}) = n-1$ and $N(G, H) = N(G, \overline{H}) = 0$ for $H \in \mathcal{H} \setminus \{K_k, \overline{K_k}\}$. Hence, we have $f(n, \mathcal{H}) > |V(G)| = (2k-1)n-2$. For an upper bound, by Theorem 2, we have $f(n, \mathcal{H}) \leq f(n, \{K_k, \overline{K_k}\}) = (2k-1)n + f(1, \{K_{k-1}, \overline{K_{k-1}}\}) - 2$ for n sufficiently large.

3. Proof of Theorem 5

Proof. Lower bound. Let $G = K_m + (K_{(k-\ell)n-1} \cup \overline{K_{(k-1)n-1}})$, where $m = \lfloor (\ell - \ell/k)n \rfloor$.

Claim. $N(G, \mathcal{B}_{k,\ell}) < n$.

Proof. Let $V(G) = V_1 \cup V_2 \cup V_3$ such that $|V_1| = m$, $|V_2| = (k - \ell)n - 1$, $|V_3| = (k - 1)n - 1$ and $E(G) = \binom{V_1}{2} \cup \binom{V_2}{2} \cup (V_1 \times V_2) \cup (V_1 \times V_3)$.

Firstly, we have $N(G, \overline{K_n}) < n$. Indeed, each $\overline{K_k}$ of G contains at least k-1 vertices of V_3 . Hence, we have $N(G, \overline{K_k}) \leq \lfloor |V_3|/(k-1) \rfloor = n-1$.

In the same manner, we have $N(G, \overline{K_{\ell}} \cup K_{k-\ell}) < n$. Indeed, each $\overline{K_{\ell}} \cup K_{k-\ell}$ of G contains at least $k - \ell$ vertices of V_2 . Hence, we have $N(G, \overline{K_{\ell}} \cup K_{k-\ell}) \leq \lfloor |V_2|/(k-\ell) \rfloor = n-1$.

Next, we show that $N(G, K_{\ell} + \overline{K_{k-\ell}}) < n$. Indeed, each $K_{\ell} + \overline{K_{k-\ell}}$ of G contains at least ℓ vertices of V_1 . Hence, we have $N(G, K_{\ell} + \overline{K_{k-\ell}}) \leq \lfloor |V_1|/\ell \rfloor < n$.

Lastly, we show that $N(G, K_k) < n$. For $v \in V(G)$, let us assign a weight w(v) such that w(v) = 1/(k-1) for $v \in V_1$, w(v) = 1/k for $v \in V_2$, and w(v) = 0 for $v \in V_3$. Furthermore, for $S \subset V(G)$, let $w(S) = \sum_{v \in S} w(v)$. Then we have $w(S) \ge 1$ for any $S \subset V(G)$ such that $G[S] \cong K_k$. On the other hand, the total weight is calculated as

$$w(V(G)) = \frac{|V_1|}{k-1} + \frac{|V_2|}{k}$$

$$\leq \frac{1}{k-1} \left(\ell - \frac{\ell}{k}\right) n + \frac{1}{k}((k-\ell)n - 1) = n - \frac{1}{k}$$

Hence, we have $N(G, K_k) < n$. Therefore, we have $N(G, \mathcal{B}_{k,\ell}) < n$.

By the claim, we have $f(n, \mathcal{B}_{k,\ell}) > |V(G)| > (2k - 1 - \ell/k)n - 3.$

Upper bound. Before we start the proof, let us show its outline. The main idea of the proof is a variant of a "bow tie argument", which is originated from the proof of Theorem 1([3], see also [4]). A bow tie is a graph with 5 vertices containing both K_3 and $\overline{K_3}$. Let us summarize how to prove $f(n, \{K_3, \overline{K_3}\}) \leq 5n$ by a bow tie argument. Let G be an underlying graph with 5n vertices. What we want to show is that $N(G, \{K_3, \overline{K_3}\}) \geq n$. If G contains no bow tie, it turns out that the structure of G becomes very simple, and we can easily show that $N(G, \{K_3, \overline{K_3}\}) \geq n$. Otherwise, let S be a bow tie of G. We partition G into two graphs G[S] and $G' = G[V(G) \setminus S]$. Since |V(G')| = 5(n-1), by inductive hypothesis, we have $N(G, \{K_3, \overline{K_3}\}) \geq n - 1$. Then with an additional K_3 or $\overline{K_3}$ in G[S], we have $N(G, \{K_3, \overline{K_3}\}) \geq n$, as required.

Now, we go back to the proof of Theorem 5. We will show that for $n \ge 1$, there exists a positive constant $c = c(k, \ell)$ depending on k and ℓ , such that $f(n, \mathcal{B}_{k,\ell}) \le (2k - 1 - \ell/k)n + c$. We will define the value of c just after Lemma 8. Suppose to a contradiction that G is a counterexample with the smallest number of vertices. We assume $|V(G)| \ge (2k - 1 - \ell/k)n + c$ and $N(G, \mathcal{B}_{k,\ell}) < n$.

Let us introduce a family of graphs, $\mathcal{B}_{k,\ell}$ -good graphs, which is considered as a variant of a bow tie. We call a graph $G_0 \ \mathcal{B}_{k,\ell}$ -good if there exists a positive integer n_0 such that (1) $|V(G_0)| = (2k - 1 - \ell/k)n_0$ and (2) $N(G_0, H) \ge n_0$ for all $H \in \mathcal{B}_{k,\ell}$. Then a crucial observation is that a smallest counterexample Gcontains no $\mathcal{B}_{k,\ell}$ -good graph as an induced subgraph. Indeed, if G contains a $\mathcal{B}_{k,\ell}$ -good induced subgraph G_0 with $|V(G_0)| = (2k - 1 - \ell/k)n_0$, let us partition G into two graphs G_0 and $G_1 = G[V(G) \setminus V(G_0)]$. Then we have $|V(G_1)| \ge$ $(2k-1-\ell/k)(n-n_0)+c$. Furthermore, since $N(G_0, H) \ge n_0$ and N(G, H) < n for all $H \in \mathcal{B}_{k,\ell}$, we have $N(G_1, \mathcal{B}_{k,\ell}) < n - n_0$. Hence, G_1 is also a counterexample, a contradiction to the minimality of G.

The following lemma is a key for the proof.

Lemma 7. Let $n_0 = k^2(k-1)\ell(k-\ell)$. Let G_0 be a graph with $(2k-1-\ell/k)n_0$ vertices. Suppose that there exists a vertex partition $V(G_0) = V_1 \cup V_2 \cup V_3 \cup V_4$ such that $|V_1| = (\ell-1)n_0$, $|V_2| = \ell n_0$, $|V_3| = (k-\ell)n_0$, $|V_4| = (k-\ell-\ell/k)n_0$, and $E(G_0) \supset {V_1 \choose 2} \cup (V_1 \times V_2) \cup {V_3 \choose 2} \cup (V_3 \times V_4)$, $E(\overline{G_0}) \supset {V_2 \choose 2} \cup (V_2 \times V_3) \cup {V_4 \choose 2}$. Then both G_0 and $\overline{G_0}$ are $\mathcal{B}_{k,\ell}$ -good.

Proof. Since $\mathcal{B}_{k,\ell}$ -goodness is symmetric for a graph and its complement, it suffices to show that $N(G_0, H) \ge n_0$ for all $H \in \mathcal{B}_{k,\ell}$.

For $H = K_k$, we have

$$N(G_0, K_k) \ge \frac{|V_1|}{k-1} + \frac{|V_3|}{k-1} = \frac{\ell-1}{k-1}n_0 + \frac{k-\ell}{k-1}n_0 = n_0.$$

For $H = \overline{K_k}$, we have

$$N(G_0, \overline{K_k}) \ge \frac{|V_2|}{k-1} + \frac{|V_4|}{k} = \frac{\ell}{k-1}n_0 + \frac{k-\ell-\ell/k}{k}n_0 > n_0.$$

For $H = K_{\ell} + \overline{K_{k-\ell}}$, we have

$$N(G_{0}, K_{\ell} + \overline{K_{k-\ell}}) \\ \ge \min\left\{\frac{|V_{1}|}{\ell}, \frac{|V_{2}|}{k-\ell}\right\} + \min\left\{\frac{|V_{3}|}{\ell}, \frac{|V_{4}|}{k-\ell}\right\} \\ = \min\left\{\frac{|V_{1}|}{\ell} + \frac{|V_{3}|}{\ell}, \frac{|V_{1}|}{\ell} + \frac{|V_{4}|}{k-\ell}, \frac{|V_{2}|}{k-\ell} + \frac{|V_{3}|}{\ell}, \frac{|V_{2}|}{k-\ell} + \frac{|V_{4}|}{k-\ell}\right\} \\ \ge \min\left\{\frac{k-1}{\ell}, \frac{\ell-1}{\ell} + \frac{k-\ell-1}{k-\ell}, \frac{\ell}{k-\ell} + \frac{k-\ell}{\ell}, \frac{k-1}{k-\ell}\right\} n_{0} \ge n_{0}.$$

Finally, for $H = \overline{K_{\ell}} \cup K_{k-\ell}$, we have

$$N(G_0, \overline{K_\ell} \cup K_{k-\ell}) \ge \frac{|V_2|}{\ell} = n_0.$$

Hence, we have $N(G_0, \mathcal{B}_{k,\ell}) \ge n_0$.

We also use the following basic facts on graph Ramsey theory. (For example, see [4].)

Fact 1. Let $k \ge 1$. There exists a positive integer N_1 depending on k such that for any $n \ge N_1$, every graph with n vertices contains K_k or $\overline{K_k}$ as a subgraph.

Fact 2. Let $k \ge 1$. There exists a positive integer N_2 depending on k such that for any $n \ge N_2$, every bipartite graph G = G(A, B) with |A| = |B| = n, where A and B are bipartitions of G, contains two sets of vertices $A' \subset A$ and $B' \subset B$ with |A'| = |B'| = k satisfying $A' \times B' \subset E(G)$ or $A' \times B' \subset E(\overline{G})$.

By $R_1(k)$ or $R_2(k)$ we denote, respectively, the minimum integers N_1 in Fact 1 and N_2 in Fact 2.

Lemma 8. Let k, k_1 , k_2 , s, s_0 , w be positive integers such that $\max\{k_1, k_2\} \leq k$, $R_2(k) - k_1 \leq s_0$ and $s - s_0 = k_1 w$. Let G be a graph. Let $S \subset V(G)$ with |S| = s. Then there exists a positive integer N_3 depending on k and s such that for any $t \geq N_3$ and for any $T \subset V(G)$ with $S \cap T = \emptyset$, |T| = t, we have partitions $S = S_0 \cup S_1 \cup \cdots \cup S_w$ and $T = T_0 \cup T_1 \cup \cdots \cup T_w$ satisfying that (1) $|S_0| = s_0$,

(2) $|S_i| = k_1, |T_i| = k_2$ for $1 \le i \le w$, and

(3) $S_i \times T_i \subset E(G)$ or $S_i \times T_i \subset E(\overline{G})$ for $1 \le i \le w$.

253

Proof. Let N_3 be a positive integer such that $N_3 \ge k(s+k)$. Then, for $1 \le i \le w$, we have

$$|S| - (i-1)k_1 \ge s - (w-1)k_1 \ge R_2(k),$$

and

$$|T| - (i-1)k_2 \ge t - (w-1)k_2 = t - \left(\frac{s-s_0}{k_1} - 1\right)k_2$$
$$\ge t - (s-s_0)k \ge (s_0+k)k \ge R_2(k).$$

Hence, by using Fact 2 w times, we can take subsets $S_i \subset S$ and $T_i \subset T$ one by one such that $|S_i| = k_1$, $|T_i| = k_2$, and $S_i \times T_i \subset E(\overline{G})$ or $S_i \times T_i \subset E(\overline{G})$ for $1 \leq i \leq w$.

By $R_3(k, s)$ we denote the minimum integer N_3 in Lemma 8. In the proof of Theorem 5, we use the existence of $R_1(k)$, $R_2(k)$ and $R_3(k, s)$, but we will not need their exact values.

Let $n_0 = k^2(k-1)\ell(k-\ell)$, which is appeared in Lemma 7. Let us define positive integers ε , α_1 , α_2 , α_3 , β_1 , β_2 , and γ satisfying the following conditions:

•
$$\varepsilon = kn_0$$
,

• $\alpha_1, \alpha_2, \alpha_3, \beta_1, \beta_2, \gamma$ are multiples of $\varepsilon k(2k - 1 - \ell/k)$,

•
$$\frac{\alpha_1}{\ell} = \frac{\alpha_2}{k-1} = \frac{\alpha_3}{k-\ell-\ell/k}$$

•
$$\alpha_i \ge R_2(\varepsilon)$$
 for $1 \le i \le 3$,

•
$$\frac{\iota}{k-\ell}\alpha_3 \ge R_2(\varepsilon k)$$

•
$$\alpha_2 - \frac{\alpha_3 \ell}{k - \ell}$$
 is a multiple of $\varepsilon \ell$,

•
$$\frac{\beta_1}{\max\{k/2,\ell\}} = \frac{\beta_2}{\min\{k/2,k-\ell\}},$$

•
$$\frac{\ell}{k-\ell}\beta_2 \ge R_2(\alpha_2 k),$$

•
$$\beta_2 \ge R_2(\max\{\alpha_2, R_3(\varepsilon k, \alpha_2)\}),$$

 $\beta_2 \ell$

•
$$\beta_1 - \frac{\beta_2 \ell}{k - \ell}$$
 is a multiple of $\alpha_2 \ell$,

•
$$\gamma \geq R_2(\beta_1),$$

•
$$\gamma \geq R_3(\alpha_2 k, \beta_1).$$

Finally, we define a positive integer c as $c = R_1(\gamma) + \gamma$. Next, we define a family of subsets of the vertices.

A subset $S \subset V(G)$ is called of type A_+ if there exists a partition $S = S_1 \cup S_2 \cup S_3$ such that $|S_i| = \alpha_i$ for $1 \le i \le 3$ and $\binom{S_1}{2} \cup (S_1 \times S_2) \cup \binom{S_3}{2} \subset E(G)$, $\binom{S_2}{2} \cup (S_2 \times S_3) \subset E(\overline{G})$.

A subset $S \subset V(G)$ is called of type B_+ if there exists a partition $S = S_1 \cup S_2$ such that $|S_i| = \beta_i$ for $1 \le i \le 2$ and $\binom{S_1}{2} \cup (S_1 \times S_2) \subset E(G), \binom{S_2}{2} \subset E(\overline{G}).$

A subset $S \subset V(G)$ is called of type C_+ if $G[S] \cong K_{\gamma}$.

Furthermore, a subset $S \subset V(G)$ is called of type A_- , B_- , C_- , if in the complement \overline{G} , S is of type A_+ , B_+ , C_+ , respectively.

Let us consider a vertex partition $V(G) = V_0 \cup V_1 \cup \cdots \cup V_m$ such that

(P1) for $1 \le i \le m$, V_i is one of the six types $A_+, A_-, B_+, B_-, C_+, C_-$,

(P2) V_0 contains no subset S of these six types,

(P3) $n(A_+) + n(A_-)$ is maximum with respect to (P1) and (P2),

(P4) $n(B_+) + n(B_-)$ is maximum with respect to (P1), (P2) and (P3),

where for a type X, n(X) denotes the number of indices i with $1 \le i \le m$ such that V_i is of type X.

We call a partition $V(G) = V_0 \cup V_1 \cup \cdots \cup V_m$ satisfying the above properties from (P1) to (P4) a standard partition.

Firstly, we remark that if there exists a partition $V(G) = V'_0 \cup V_1 \cup \cdots \cup V_s$ such that V_i is one of the six types for $1 \le i \le s$, then we can extend the partition to $V(G) = V_0 \cup V_1 \cup \cdots \cup V_s \cup V_{s+1} \cup \cdots \cup V_m$ satisfying (P1) and (P2), by taking suitable subsets greedily from V'_0 . In particular, starting from s = 0, any graph admits at least one standard partition.

We also remark that for a standard partition $V(G) = V_0 \cup V_1 \cup \cdots \cup V_m$, we have $|V_0| < c$. Indeed, if $c \leq |V_0|$, we have $R_1(\gamma) < c \leq |V_0|$. Hence, by Fact 1, we have K_{γ} or $\overline{K_{\gamma}}$ in $G[V_0]$, a contradiction to (P2).

Let $V(G) = V_0 \cup V_1 \cup \cdots \cup V_m$ be a standard partition. First, we show Claims 1, 2 and 3, which reduce the number of possible combinations of the types of subsets in the partition.

Claim 1. $n(C_+) = 0$ or $n(C_-) = 0$.

Proof. Suppose to a contradiction that $n(C_+) > 0$ and $n(C_-) > 0$. Without loss of generality, we may assume V_1 is of type C_+ and V_2 is of type C_- . Since $|V_1| = |V_2| = \gamma \ge R_2(\beta_1)$, by Fact 2, for $1 \le i \le 2$, we have $V'_i \subset V_i$ with $|V'_i| = \beta_1$ such that $V'_1 \times V'_2 \subset E(G)$ or $V'_1 \times V'_2 \subset E(\overline{G})$. Therefore, we have a subset $S \subset V'_1 \cup V'_2$ of type B_+ or B_- , a contradiction to (P4).

Claim 2. $n(B_+) = 0$ or $n(B_-) = 0$.

Proof. Suppose to a contradiction that $n(B_+) > 0$ and $n(B_-) > 0$. Without loss of generality, we may assume V_1 is of type B_+ and V_2 is of type B_- . For $1 \le i \le 2$, let $V_i = V_{i1} \cup V_{i2}$ such that $\binom{V_{11}}{2} \cup (V_{11} \times V_{12}) \subset E(G), \binom{V_{12}}{2} \subset E(\overline{G}),$ $\binom{V_{22}}{2} \subset E(G), \binom{V_{21}}{2} \cup (V_{21} \times V_{22}) \subset E(\overline{G})$. By the definition of β_1 and β_2 , we have $|V_{11}| = |V_{21}| = \beta_1 \ge \beta_2$ and $\beta_2 \ge R_2(\alpha_2)$. Hence, by Fact 2, for $1 \le i \le 2$, we have $V'_{i1} \subset V_{i1}$ with $|V'_{i1}| = \alpha_2$ such that $V'_{11} \times V'_{21} \subset E(G)$ or $V'_{11} \times V'_{21} \subset E(\overline{G})$. If $V'_{11} \times V'_{21} \subset E(G)$, then we have a subset $S \subset V'_{11} \cup V'_{21} \cup V_{22}$ of type A_+ , and if $V'_{11} \times V'_{21} \subset E(\overline{G})$, then we have a subset $S \subset V'_{21} \cup V'_{11} \cup V_{12}$ of type A_- , a contradiction to (P3).

Claim 3. $n(A_+) = 0$ or $n(A_-) = 0$.

Proof. Suppose to a contradiction that $n(A_+) > 0$ and $n(A_-) > 0$. Without loss of generality, we may assume V_1 is of type A_+ and V_2 is of type A_- . For $1 \le i \le 2$, let $V_i = V_{i1} \cup V_{i2} \cup V_{i3}$ such that $\binom{V_{11}}{2} \cup (V_{11} \times V_{12}) \cup \binom{V_{13}}{2} \subset E(G)$, $\binom{V_{12}}{2} \cup (V_{12} \times V_{13}) \subset E(\overline{G})$, $\binom{V_{22}}{2} \cup (V_{22} \times V_{23}) \subset E(G)$, $\binom{V_{21}}{2} \cup (V_{21} \times V_{22}) \cup \binom{V_{23}}{2} \subset E(\overline{G})$. Since $|V_{11}| = |V_{21}| = \alpha_1 \ge R_2(\varepsilon)$, by Fact 2, for $1 \le i \le 2$, we have $V'_{i1} \subset V_{i1}$ with $|V'_{i1}| = \varepsilon$ such that $V'_{11} \times V'_{21} \subset E(G)$ or $V'_{11} \times V'_{21} \subset E(\overline{G})$. If $V'_{11} \times V'_{21} \subset E(G)$, then we have a subset $S \subset V'_{11} \cup V'_{21} \cup V_{22} \cup V_{23}$ such that G[S] is $\mathcal{B}_{k,\ell}$ -good, and if $V'_{11} \times V'_{21} \subset E(\overline{G})$, then we have a subset $S \subset V'_{21} \cup V'_{11} \cup V'_{12} \cup V_{13}$ such that G[S] is $\mathcal{B}_{k,\ell}$ -good, a contradiction.

Next, we prepare Claims 4 and 5, which count the number of disjoint copies of induced subgraphs isomorphic to $H \in \mathcal{B}_{k,\ell}$ in a subset of type A_+ and type B_+ .

Claim 4. Let $S \subset V(G)$ be of type A_+ . Let $a = |S|/(2k - 1 - \ell/k)$. Then we have

(1)
$$N(G[S], K_k) \ge \left(1 + \frac{\ell}{k^2(k-1)}\right) a$$

(2) $N(G[S], K_k) \ge a,$ (3) $N(G[S], K_\ell + \overline{K_{k-\ell}}) \ge a,$ (4) $N(G[S], \overline{K_\ell} \cup K_{k-\ell}) \ge \left(1 - \frac{\ell}{k(k-\ell)}\right)a.$

Proof. Indeed, let $S = S_1 \cup S_2 \cup S_3$ such that $|S_i| = \alpha_i$ for $1 \le i \le 3$ and $\binom{S_1}{2} \cup (S_1 \times S_2) \cup \binom{S_3}{2} \subset E(G), \binom{S_2}{2} \cup (S_2 \times S_3) \subset E(\overline{G})$. By the definition of α_1 , α_2 and α_3 , we have $|S_1| = \ell a$, $|S_2| = (k-1)a$ and $|S_3| = (k-l-\ell/k)a$. Hence, we have

$$N(G[S], K_k) \ge \frac{|S_1|}{k-1} + \frac{|S_3|}{k} = \frac{\ell}{k-1}a + \frac{k-\ell-\ell/k}{k}a = \left(1 + \frac{\ell}{k^2(k-1)}\right)a,$$
$$N(G[S], \overline{K_k}) \ge \frac{|S_2|}{k-1} = a,$$
$$N(G[S], K_\ell + \overline{K_{k-\ell}}) \ge \frac{|S_1|}{\ell} = a,$$

and

$$N(G[S], \overline{K_{\ell}} \cup K_{k-\ell}) \ge \frac{|S_3|}{k-\ell} = \frac{k-\ell-\ell/k}{k-\ell}a = \left(1 - \frac{\ell}{k(k-\ell)}\right)a,$$

as required

Claim 5. Let $S \subset V(G)$ be of type B_+ . Let $S = S_1 \cup S_2$ such that $|S_i| = \beta_i$ for i = 1, 2 and $\binom{S_1}{2} \cup (S_1 \times S_2) \subset E(G), \binom{S_2}{2} \subset E(\overline{G})$. Let $a = |S|/(2k - 1 - \ell/k)$. Then we have

- (1) $N(G[S], K_k) \ge a$,
- (2) $N(G[S], K_{\ell} + \overline{K_{k-\ell}}) \ge \frac{|S_1|}{k-2}.$

Proof. By the definition of β_1 and β_2 , if $\ell \ge k/2$ then $|S_1| = \ell |S|/k$ and $|S_2| = (k-\ell)|S|/k$, and if $\ell < k/2$ then $|S_1| = |S_2| = |S|/2$. Hence, in any case, we have $|S_1| \ge |S|/2$. Then we have

$$N(G[S], K_k) = \frac{|S_1|}{k-1} \ge \frac{|S|}{2(k-1)} \ge a.$$

Furthermore, for $\ell \geq k/2$, we have

$$N(G[S], K_{\ell} + \overline{K_{k-\ell}}) = \frac{|S_1|}{\ell},$$

and for $\ell < k/2$, we have

$$N(G[S], K_{\ell} + \overline{K_{k-\ell}}) = \frac{|S_2|}{k-\ell} = \frac{|S_1|}{k-\ell}.$$

Hence, in any case, we have $N(G[S], K_{\ell} + \overline{K_{k-\ell}}) \ge |S_1|/(k-2).$

By Claim 3, without loss of generality, we may assume $n(A_{-}) = 0$. Suppose that m = p + q + r and V_1, \ldots, V_p are of type $A_+, V_{p+1}, \ldots, V_{p+q}$ are of type B_+ or $B_-, V_{p+q+1}, \ldots, V_{p+q+r}$ are of type C_+ or C_- .

For $1 \leq i \leq p$, let $V_i = V_{i1} \cup V_{i2} \cup V_{i3}$ such that $|V_{ij}| = \alpha_j$ for $1 \leq j \leq 3$ and $\binom{V_{i1}}{2} \cup (V_{i1} \times V_{i2}) \cup \binom{V_{i3}}{2} \subset E(G), \binom{V_{i2}}{2} \cup (V_{i2} \times V_{i3}) \subset E(\overline{G}).$

Case 1. $n(B_{-}) = 0$. For $1 \le i \le q$, let $V_{p+i} = V_{p+i,1} \cup V_{p+i,2}$ such that $|V_{p+i,j}| = \beta_j$, for j = 1, 2 and $\binom{V_{p+i,1}}{2} \cup (V_{p+i,1} \times V_{p+i,2}) \subset E(G)$, $\binom{V_{p+i,2}}{2} \subset E(\overline{G})$.

Case 1.1. $n(C_{-}) = 0$. In this case, V_i is one of types A_+ , B_+ , C_+ for $1 \le i \le m$. Hence, by Claims 4 and 5, we have

$$N(G[V_i], K_k) \ge |V_i|/(2k - 1 - \ell/k).$$

Therefore, since $|V_0| < c$, we have

$$N(G, K_k) \ge |V(G) \setminus V_0|/(2k - 1 - \ell/k) \ge n,$$

a contradiction.

Case 1.2. $n(C_+) = 0$. In this case, V_i is one of types A_+ , B_+ , C_- for $1 \le i \le m$. Let us define a partition $V(G) \setminus V_0 = S \cup T \cup U$ such that

$$S = \bigcup_{1 \le i \le q} V_{p+i,1},$$

$$T = \bigcup_{1 \le i \le q} V_{p+i,2} \cup \bigcup_{1 \le i \le r} V_{p+q+i}$$

$$U = \bigcup_{1 \le i \le p} V_i,$$

s = |S|, t = |T|, u = |U|. Let $n_1 = u/(2k - 1 - \ell/k), n_2 = (s + t)/(2k - 1 - \ell/k)$. Since $|V_0| < c$, we have $n_1 + n_2 = |V(G) \setminus V_0|/(2k - 1 - \ell/k) \ge n$. Furthermore, by Claim 4, we have $N(G[U], K_\ell + \overline{K_{k-\ell}}) \ge n_1$ and $N(G[U], \overline{K_k}) \ge n_1$. On the other hand, since $s + t = (2k - 1 - \ell/k)n_2$, we have $s > (k - 2)n_2$ or $t > kn_2$.

If $s > (k-2)n_2$, by Claim 5, we have

$$N(G[S \cup T], K_{\ell} + \overline{K_{k-\ell}}) \ge \frac{s}{k-2} > n_2.$$

If $t > kn_2$, we have

$$N(G[T], \overline{K_k}) \ge \frac{t}{k} > n_2.$$

In any case, we have

$$N(G, \{K_{\ell} + \overline{K_{k-\ell}}, \overline{K_k}\}) > n_1 + n_2 \ge n,$$

a contradiction.

Case 2. $n(B_+) = 0$. For $1 \le i \le q$, let $V_{p+i} = V_{p+i,1} \cup V_{p+i,2}$ such that $|V_{p+i,j}| = \beta_j$, for j = 1, 2 and $\binom{V_{p+i,2}}{2} \subset E(G)$, $\binom{V_{p+i,1}}{2} \cup (V_{p+i,1} \times V_{p+i,2}) \subset E(\overline{G})$.

Case 2.1. $n(C_+) = 0$. In this case, V_i is one of types A_+ , B_- , C_- for $1 \le i \le m$. Hence, by Claim 4 and Claim 5, we have

$$N(G[V_i], \overline{K_k}) \ge |V_i|/(2k - 1 - \ell/k).$$

Therefore, since $|V_0| < c$, we have

$$N(G, \overline{K_k}) \ge |V(G) \setminus V_0|/(2k - 1 - \ell/k) \ge n,$$

a contradiction.

Case 2.2. $n(C_{-}) = 0$. In this case, V_i is one of types A_+ , B_- , C_+ for $1 \leq i \leq m$. We may assume $q \geq 1$ and $r \geq 1$. Indeed, if q = 0 or r = 0, as in Case 1 or in Case 2.1, we have a contradiction.

In order to show the assertion of the theorem, we will modify the original partition. Let us prepare two claims. Let $X = \bigcup_{1 \le i \le r} V_{p+q+i}$.

Claim 6. Suppose that $\ell < k/2$. Let V_i be of type B_- such that $V_i = V_{i,1} \cup V_{i,2}$, $|V_{i,j}| = \beta_j$ with j = 1, 2, $\binom{V_{i,2}}{2} \subset E(G)$, $\binom{V_{i,1}}{2} \cup (V_{i,1} \times V_{i,2}) \subset E(\overline{G})$. Let $s_0 = \beta_2 \ell/(k-\ell)$. Let $T \subset X \cup V_0$ such that $G[T] \cong K_{\gamma}$. Then we have partitions $V_{i,1} = S_0 \cup S_1 \cup \cdots \cup S_w$, $T = T_0 \cup T_1 \cup \cdots \cup T_w$ such that

- (1) $|S_0| = s_0$,
- (2) $|S_j| = \alpha_2 \ell, |T_j| = \alpha_2 (k \ell) \text{ for } 1 \le j \le w,$
- (3) $S_j \times T_j \subset E(\overline{G})$ for $1 \le j \le w$.

Proof. Since $\ell < k/2$, we have $\beta_1 = \beta_2$. By the definition of β_2 and γ , we have $s_0 = \beta_2 \ell/(k-\ell) \ge R_2(\alpha_2 k)$ and $\gamma \ge R_3(\alpha_2 k, \beta_1)$. Hence, by Lemma 8, we have partitions $V_{i,1} = S_0 \cup S_1 \cup \cdots \cup S_w$, $T = T_0 \cup T_1 \cup \cdots \cup T_w$ such that (1) $|S_0| = s_0$, (2) $|S_j| = \alpha_2 \ell$, $|T_j| = \alpha_2(k-\ell)$ for $1 \le j \le w$, and (3') $S_j \times T_j \subset E(G)$ or $S_j \times T_j \subset E(\overline{G})$ for $1 \le j \le w$. If $S_j \times T_j \subset E(G)$ for some j, we have a set of type A_+ in $T_j \cup S_j \cup V_{i,2}$, which contradicts the property (P3) of the partition. Thus we have $S_j \times T_j \subset E(\overline{G})$ for $1 \le j \le w$, as claimed.

Claim 7. Let V_i be of type A_+ such that $V_i = V_{i,1} \cup V_{i,2} \cup V_{i,3}$, $|V_{i,j}| = \alpha_j$ with $1 \leq j \leq 3$, $\binom{V_{i,1}}{2} \cup (V_{i,1} \times V_{i,2}) \cup \binom{V_{i,3}}{2} \subset E(G)$, $\binom{V_{i,2}}{2} \cup (V_{i,2} \times V_{i,3}) \subset E(\overline{G})$. Let $T \subset X \cup V_0$ such that $G[T] \cong K_{\gamma}$. Let $s_0 = \alpha_3 \ell / (k - \ell)$. Then we have partitions $V_{i,2} = S_0 \cup S_1 \cup \cdots \cup S_w$, $T = T_0 \cup T_1 \cup \cdots \cup T_w$ such that

- (1) $|S_0| = s_0$,
- (2) $|S_j| = \varepsilon \ell, |T_j| = \varepsilon (k \ell)$ for $1 \le j \le w$,
- (3) $S_j \times T_j \subset E(\overline{G})$ for $1 \le j \le w$.

Proof. Let $\lambda = \max\{\alpha_2, R_3(\varepsilon k, \alpha_2)\}$. Let $V_{p+1} = V_{p+1,1} \cup V_{p+1,2}$ such that $|V_{p+1,j}| = \beta_j$, for j = 1, 2 and $\binom{V_{p+1,2}}{2} \subset E(G)$, $\binom{V_{p+1,1}}{2} \cup (V_{p+1,1} \times V_{p+1,2}) \subset E(\overline{G})$. Since $|V_{p+1,1}| = \beta_1 \ge R_2(\lambda)$ and $|T| = \gamma \ge R_2(\lambda)$, by Fact 2, we have $V'_{p+1,1} \subset V_{p+1,1}$, $T' \subset T$ with $|V'_{p+1,1}| = |T'| = \lambda$ such that $T' \times V'_{p+1,1} \subset E(\overline{G})$.

If $T' \times V'_{p+1,1} \subset E(G)$, we have a set of type A_+ in $T' \cup V'_{p+1,1} \cup V_{p+1,2}$, which contradicts the property (P3) of the partition. Hence, we have $T' \times V'_{p+1,1} \subset E(\overline{G})$.

Since $s_0 = \alpha_3 \ell/(k-\ell) \ge R_2(\varepsilon k)$ and $|T'| = \lambda \ge R_3(\varepsilon k, \alpha_2)$, by Lemma 8, we have partitions $V_{i,2} = S_0 \cup S_1 \cup \cdots \cup S_w$, $T' = T_0 \cup T_1 \cup \cdots \cup T_w$ such that (1) $|S_0| = s_0, (2) |S_j| = \varepsilon \ell, |T_j| = \varepsilon (k-\ell)$ for $1 \le j \le w$, and (3') $S_j \times T_j \subset E(G)$ or $S_j \times T_j \subset E(\overline{G})$ for $1 \le j \le w$. If $S_j \times T_j \subset E(G)$ for some j, we have a $\mathcal{B}_{k,\ell}$ -good subgraph in $G[V'_{p+1,1} \cup T_j \cup S_j \cup V_{i,3}]$, a contradiction. Hence, we have $S_j \times T_j \subset E(\overline{G})$ for $1 \le j \le w$, as claimed.

Under the situation of Claim 6, we have $N(G[V_i \cup T], \overline{K_\ell} \cup K_{k-\ell}) \ge |V_{i,1}|/\ell$, and under the situation of Claim 7, we have $N(G[V_i \cup T], \overline{K_\ell} \cup K_{k-\ell}) \ge |V_{i,2}|/\ell$. By using Claims 6 and 7, let us modify the partition $V = V_0 \cup V_1 \cup \cdots \cup V_m$ according to the following algorithm.

Algorithm 1.

Step 0. $X_0 = (X \setminus V_m) \cup V_0$. If $\ell < k/2$, then put y = p + q, otherwise put y = p. Set 1 to *i*.

Step 1. If i > y, then set 0 to x and stop.

Step 2. If there exists $W \subset X_0$ such that $G[W] \cong K_{\gamma}$, then take W, otherwise set 1 to x, set i - 1 to y' and stop.

Step 3. For V_i and W, take $T_1, T_2, \ldots, T_w \subset W$ satisfying the condition of Claim 6 or 7. Let $Z_i = T_1 \cup \cdots \cup T_w$. Set $X_0 = X_0 \setminus Z_i$. Add 1 to *i*. Go to Step 1.

Note that in the procedure of the algorithm, $G[X_0]$ contains no $\overline{K_{\gamma}}$ as a subgraph. Indeed, if there exists $W \subset X_0$ with $G[W] \cong \overline{K_{\gamma}}$, since $\gamma \ge R_2(\beta_1)$, by Fact 2, we have $V'_m \subset V_m$ and $W' \subset W$ such that $V'_m \cup W'$ is of type B_+ or B_- , a contradiction to (P4) of the original partition.

After executing the algorithm, we consider the two subcases according to the return status x.

Case 2.2.1. x = 0. Let us take a partition $X_0 = W_0 \cup W_1 \cup \cdots \cup W_{\mu}$ such that $G[W_i] \cong K_{\gamma}$ for $1 \le i \le \mu$ and $|W_0| < R_1(\gamma)$. Let us define

$$S = \bigcup_{1 \le i \le p} V_{i,2} \cup \bigcup_{1 \le i \le q} V_{p+i,1},$$

$$T = \bigcup_{1 \le i \le p} (V_{i,1} \cup V_{i,3}) \cup \bigcup_{1 \le i \le q} V_{p+i,2} \cup \bigcup_{1 \le i \le y} Z_i \cup \bigcup_{1 \le i \le \mu} W_i \cup V_m,$$

s = |S|, t = |T|. Then we have $s + t \ge (2k - 1 - \ell/k)n$.

On the other hand, we have $n > N(G[S \cup T], \overline{K_{\ell}} \cup K_{k-\ell}) \ge s/\ell$. Hence, we have $\ell n > s$. Furthermore, we have $n > N(G[T], K_k) \ge t/k$. Hence, we have kn > t. Therefore, we have $(k + \ell)n > s + t \ge (2k - 1 - \ell/k)n$, a contradiction.

Case 2.2.2. x = 1. Let us define

$$S = \bigcup_{1 \le i \le q} V_{p+i,1},$$

$$T = \bigcup_{1 \le i \le q} V_{p+i,2} \cup \bigcup_{1 \le i \le y'} Z_i,$$

$$U = \bigcup_{1 < i \le p} V_i,$$

s = |S|, t = |T|, u = |U|. Let $n_1 = u/(2k - 1 - \ell/k), n_2 = (s + t)/(2k - 1 - \ell/k)$. Then we have $n_1 + n_2 \ge n$, since $|V(G) \setminus (S \cup T \cup U)| = |V_m \cup X_0| < \gamma + R_1(\gamma) = c$.

By a similar argument to that in Case 1.2, if $s \ge (k-1)n_2$, we have $N(G[S \cup T], \overline{K_k}) = s/(k-1) \ge n_2$, a contradiction. Hence, we have $s < (k-1)n_2$. Therefore, we have

(1)
$$\left(k - \frac{\ell}{k}\right)n_2 < t.$$

In the same way, we have $N(G[T], K_k) + N(G[U], K_k) < n$. Hence, by Claim 4, we have

(2)
$$\frac{t}{k} + \left(1 + \frac{\ell}{k^2(k-1)}\right)n_1 < n.$$

By (1) and (2), we have

$$(3) n < kn_2$$

On the other hand, by using Claim 4, we have $n > N(G, \overline{K_{\ell}} \cup K_{k-\ell}) \ge t/(k-\ell) + (1-\ell/k(k-\ell))n_1$. Hence, we have

(4)
$$kt - (k^2 - k\ell - \ell)n_2 < \ell n.$$

By (3) and (4), we have $t < (k - \ell/k)n_2$, a contradiction to (1). This completes the proof.

4. Concluding Remarks

Let \mathcal{G}_k be the family of all graphs with k vertices, as defined in Section 1. For $k \geq 4$, $f(n, \mathcal{G}_k)$ is not known well. For k = 4, let $G = K_{2n-1} \cup (K_{n-1} + \overline{K_{3n-1}})$. Then we have $N(G, \mathcal{G}_4) < n$. It follows that $f(n, \mathcal{G}_4) \geq 6n - 2$. On the other hand, from Theorem 5 by substituting 4 for k and 2 for ℓ , we have $f(n, \mathcal{G}_4) \leq f(n, \mathcal{B}_{4,2}) = (13/2)n + O(1)$. It is conjectured that $f(n, \mathcal{G}_4) = 6n + O(1)$ ([5]).

References

- S.A. Burr, On the Ramsey numbers r(G, nH) and r(nG, nH) when n is large, Discrete Math. 65 (1987) 215–229. doi:10.1016/0012-365X(87)90053-7
- [2] S.A. Burr, On Ramsey numbers for large disjoint unions of graphs, Discrete Math. 70 (1988) 277–293. doi:10.1016/0012-365X(88)90004-0
- [3] S.A. Burr, P. Erdős and J.H. Spencer, *Ramsey theorems for multiple copies of graphs*, Trans. Amer. Math. Soc. **209** (1975) 87–99. doi:10.1090/S0002-9947-1975-0409255-0
- [4] R.L. Graham, B.L. Rothschild and J.H. Spencer, Ramsey Theory, 2nd Edition (Wiley, New York, 1990).
- T. Nakamigawa, Vertex disjoint equivalent subgraphs of order 3, J. Graph Theory 56 (2007) 159–166. doi:10.1002/jgt.20263

Received 22 May 2012 Revised 21 February 2013 Accepted 4 March 2013