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Abstract

Let k and ℓ be positive integers with ℓ ≤ k − 2. It is proved that there
exists a positive integer c depending on k and ℓ such that every graph of
order (2k−1−ℓ/k)n+c contains n vertex disjoint induced subgraphs, where
these subgraphs are isomorphic to each other and they are isomorphic to one
of four graphs: (1) a clique of order k, (2) an independent set of order k, (3)
the join of a clique of order ℓ and an independent set of order k − ℓ, or (4)
the union of an independent set of order ℓ and a clique of order k − ℓ.
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1. Introduction

Let G and H denote finite undirected graphs without multiple edges and loops.
For a graph G, let V (G) and E(G) denote the set of vertices of G and the set of
edges of G. For a subset S ⊂ V (G), the subgraph of G induced by S is denoted
by G[S].

For two graphs G and H, let us define N(G,H) as the maximum integer n
such that there exists a vertex partition V (G) = V0∪V1∪· · ·∪Vn satisfyingG[Vi] ∼=
H for 1 ≤ i ≤ n. For a family of graphs H, let us define N(G,H) as the maximum
of N(G,H) over H ∈ H. Furthermore, for a positive integer n, we define an
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integer valued function f(n,H) as the minimum integer s such that N(G,H) ≥ n
for every graph G with |V (G)| ≥ s. By the definition, f(1, {Kk,Kℓ}) is the
classical Ramsey number of 2-edge colored graphs, where Kℓ is the complement
of Kℓ.

We remark that if H does not contain Kk or Kk for all k ≥ 1, then f(n,H) is
not determined as a finite value, because we have N(Ks,H) = 0 or N(Ks,H) = 0
for s ≥ 1. Hence, in the following, we always assume that {Kk,Kℓ} ⊂ H for some
k and ℓ.

Our aim is to study f(n,H) for some family of graphs H with n sufficiently
large. In order to explain related results, let us introduce a few more notations.
For two graphs G1 and G2, the union G1∪G2 is the graph such that V (G1∪G2) =
V (G1)∪V (G2) and E(G1∪G2) = E(G1)∪E(G2). The join G1+G2 is the graph
such that V (G1 +G2) = V (G1) ∪ V (G2) and E(G1 +G2) = (V (G1)× V (G2)) ∪
E(G1) ∪ E(G2).

Let Gk be the family of all graphs with k vertices. It is not difficult to see that
f(n,G2) = 3n− 1 for n ≥ 1. Indeed, the inequality 3n− 1 ≤ f(n,G2) is followed
by the fact N(K2n−1 ∪Kn−1,G2) ≤ n− 1. The following result is a classical one
in the graph Ramsey theory.

Theorem 1 [3]. Let n ≥ 2. Then f(n, {K3,K3}) = 5n.

The above result is extended for complete graphs with any number of vertices.

Theorem 2 [1, 2]. Let k, ℓ ≥ 2. Then

f(n, {Kk,Kℓ}) = (k + l − 1)n+ f(1, {Kk−1,Kℓ−1})− 2 for n sufficiently large.

Let Ak = {Kk,Kk,K1,k−1,K1,k−1} for k ≥ 3. Recently, the author proved the
following result.

Theorem 3 [5]. Let k ≥ 3. Then f(n,Ak) =

(

2k − 1−
1

k

)

n+O(1).

Since G3 = A3, we have an immediate consequence of Theorem 3.

Corollary 4. f(n,G3) =
14

3
n+O(1).

We will discuss shortly f(n,G4) in Section 4.

2. Main Results

For 1 ≤ ℓ ≤ k − 2, let Bk,ℓ = {Kk,Kk,Kℓ +Kk−ℓ,Kℓ ∪Kk−ℓ}. The main result
of the paper is as follows.

Theorem 5. Let k and ℓ be positive integers with 2 ≤ ℓ ≤ k−2. Then f(n,Bk,ℓ) =
(

2k − 1−
ℓ

k

)

n+O(1).
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The proof of Theorem 5 will be given in Section 3. Since Bk,1 = Ak for k ≥ 3, by
combining Theorem 3 and Theorem 5, we have f(n,Bk,ℓ) = (2k−1−ℓ/k)n+O(1)
for 1 ≤ ℓ ≤ k − 2.

In this problem, Bk,ℓ is in a special position.

Proposition 6. Let k ≥ 3. Let H be a family of graphs having k vertices such that

H∩Bk,ℓ = {Kk,Kk} for 1 ≤ ℓ ≤ k−2. Then we have f(n,H) = (2k−1)n+O(1).
In particular, for a graph H with k vertices such that H 6∈ Bk,ℓ for 1 ≤ ℓ ≤

k − 2, we have f(n, {Kk,Kk, H,H}) = (2k − 1)n+O(1).

Proof. It suffices to prove the claim in the first half. For a lower bound, let
G = K(k−1)n−1 + Kkn−1. Then we have N(G,Kk) = N(G,Kk) = n − 1 and

N(G,H) = N(G,H) = 0 for H ∈ H \ {Kk,Kk}. Hence, we have f(n,H) >
|V (G)| = (2k − 1)n− 2. For an upper bound, by Theorem 2, we have f(n,H) ≤
f(n, {Kk,Kk}) = (2k − 1)n+ f(1, {Kk−1,Kk−1})− 2 for n sufficiently large.

3. Proof of Theorem 5

Proof. Lower bound. Let G = Km + (K(k−ℓ)n−1 ∪ K(k−1)n−1), where m =
⌊(ℓ− ℓ/k)n⌋.

Claim. N(G,Bk,ℓ) < n.

Proof. Let V (G) = V1 ∪ V2 ∪ V3 such that |V1| = m, |V2| = (k − ℓ)n − 1,
|V3| = (k − 1)n− 1 and E(G) =

(

V1

2

)

∪
(

V2

2

)

∪ (V1 × V2) ∪ (V1 × V3).
Firstly, we have N(G,Kn) < n. Indeed, each Kk of G contains at least k− 1

vertices of V3. Hence, we have N(G,Kk) ≤ ⌊|V3|/(k − 1)⌋ = n− 1.
In the same manner, we have N(G,Kℓ ∪Kk−ℓ) < n. Indeed, each Kℓ ∪Kk−ℓ

of G contains at least k − ℓ vertices of V2. Hence, we have N(G,Kℓ ∪Kk−ℓ) ≤
⌊|V2|/(k − ℓ)⌋ = n− 1.
Next, we show that N(G,Kℓ+Kk−ℓ) < n. Indeed, each Kℓ+Kk−ℓ of G contains
at least ℓ vertices of V1. Hence, we have N(G,Kℓ +Kk−ℓ) ≤ ⌊|V1|/ℓ⌋ < n.

Lastly, we show that N(G,Kk) < n. For v ∈ V (G), let us assign a weight
w(v) such that w(v) = 1/(k− 1) for v ∈ V1, w(v) = 1/k for v ∈ V2, and w(v) = 0
for v ∈ V3. Furthermore, for S ⊂ V (G), let w(S) =

∑

v∈S w(v). Then we have
w(S) ≥ 1 for any S ⊂ V (G) such that G[S] ∼= Kk. On the other hand, the total
weight is calculated as

w(V (G)) =
|V1|

k − 1
+

|V2|

k

≤
1

k − 1

(

ℓ−
ℓ

k

)

n+
1

k
((k − ℓ)n− 1) = n−

1

k
.

Hence, we have N(G,Kk) < n. Therefore, we have N(G,Bk,ℓ) < n.
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By the claim, we have f(n,Bk,ℓ) > |V (G)| > (2k − 1− ℓ/k)n− 3.

Upper bound. Before we start the proof, let us show its outline. The main
idea of the proof is a variant of a “bow tie argument”, which is originated from
the proof of Theorem 1([3], see also [4]). A bow tie is a graph with 5 vertices
containing both K3 and K3. Let us summarize how to prove f(n, {K3,K3}) ≤ 5n
by a bow tie argument. Let G be an underlying graph with 5n vertices. What
we want to show is that N(G, {K3,K3}) ≥ n. If G contains no bow tie, it turns
out that the structure of G becomes very simple, and we can easily show that
N(G, {K3,K3}) ≥ n. Otherwise, let S be a bow tie of G. We partition G into
two graphs G[S] and G′ = G[V (G) \ S]. Since |V (G′)| = 5(n − 1), by inductive
hypothesis, we have N(G′, {K3,K3}) ≥ n − 1. Then with an additional K3 or
K3 in G[S], we have N(G, {K3,K3}) ≥ n, as required.

Now, we go back to the proof of Theorem 5. We will show that for n ≥ 1,
there exists a positive constant c = c(k, ℓ) depending on k and ℓ, such that
f(n,Bk,ℓ) ≤ (2k−1− ℓ/k)n+ c. We will define the value of c just after Lemma 8.
Suppose to a contradiction that G is a counterexample with the smallest number
of vertices. We assume |V (G)| ≥ (2k − 1− ℓ/k)n+ c and N(G,Bk,ℓ) < n.

Let us introduce a family of graphs, Bk,ℓ-good graphs, which is considered as
a variant of a bow tie. We call a graph G0 Bk,ℓ-good if there exists a positive
integer n0 such that (1) |V (G0)| = (2k − 1 − ℓ/k)n0 and (2) N(G0, H) ≥ n0 for
all H ∈ Bk,ℓ. Then a crucial observation is that a smallest counterexample G
contains no Bk,ℓ-good graph as an induced subgraph. Indeed, if G contains a
Bk,ℓ-good induced subgraph G0 with |V (G0)| = (2k− 1− ℓ/k)n0, let us partition
G into two graphs G0 and G1 = G[V (G) \ V (G0)]. Then we have |V (G1)| ≥
(2k−1−ℓ/k)(n−n0)+c. Furthermore, since N(G0, H) ≥ n0 and N(G,H) < n for
all H ∈ Bk,ℓ, we have N(G1,Bk,ℓ) < n− n0. Hence, G1 is also a counterexample,
a contradiction to the minimality of G.

The following lemma is a key for the proof.

Lemma 7. Let n0 = k2(k − 1)ℓ(k − ℓ). Let G0 be a graph with (2k − 1− ℓ/k)n0

vertices. Suppose that there exists a vertex partition V (G0) = V1 ∪ V2 ∪ V3 ∪ V4

such that |V1| = (ℓ − 1)n0, |V2| = ℓn0, |V3| = (k − ℓ)n0, |V4| = (k − ℓ − ℓ/k)n0,

and E(G0) ⊃
(

V1

2

)

∪ (V1 × V2)∪
(

V3

2

)

∪ (V3 × V4), E(G0) ⊃
(

V2

2

)

∪ (V2 × V3)∪
(

V4

2

)

.

Then both G0 and G0 are Bk,ℓ-good.

Proof. Since Bk,ℓ-goodness is symmetric for a graph and its complement, it
suffices to show that N(G0, H) ≥ n0 for all H ∈ Bk,ℓ.

For H = Kk, we have

N(G0,Kk) ≥
|V1|

k − 1
+

|V3|

k − 1
=

ℓ− 1

k − 1
n0 +

k − ℓ

k − 1
n0 = n0.
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For H = Kk, we have

N(G0,Kk) ≥
|V2|

k − 1
+

|V4|

k
=

ℓ

k − 1
n0 +

k − ℓ− ℓ/k

k
n0 > n0.

For H = Kℓ +Kk−ℓ, we have

N(G0,Kℓ +Kk−ℓ)

≥min

{

|V1|

ℓ
,
|V2|

k − ℓ

}

+min

{

|V3|

ℓ
,
|V4|

k − ℓ

}

= min

{

|V1|

ℓ
+

|V3|

ℓ
,
|V1|

ℓ
+

|V4|

k − ℓ
,
|V2|

k − ℓ
+

|V3|

ℓ
,
|V2|

k − ℓ
+

|V4|

k − ℓ

}

≥min

{

k − 1

ℓ
,
ℓ− 1

ℓ
+

k − ℓ− 1

k − ℓ
,

ℓ

k − ℓ
+

k − ℓ

ℓ
,
k − 1

k − ℓ

}

n0 ≥ n0.

Finally, for H = Kℓ ∪Kk−ℓ, we have

N(G0,Kℓ ∪Kk−ℓ) ≥
|V2|
ℓ = n0.

Hence, we have N(G0,Bk,ℓ) ≥ n0.

We also use the following basic facts on graph Ramsey theory. (For example, see
[4].)

Fact 1. Let k ≥ 1. There exists a positive integer N1 depending on k such that
for any n ≥ N1, every graph with n vertices contains Kk or Kk as a subgraph.

Fact 2. Let k ≥ 1. There exists a positive integer N2 depending on k such that
for any n ≥ N2, every bipartite graph G = G(A,B) with |A| = |B| = n, where
A and B are bipartitions of G, contains two sets of vertices A′ ⊂ A and B′ ⊂ B
with |A′| = |B′| = k satisfying A′ ×B′ ⊂ E(G) or A′ ×B′ ⊂ E(G).

By R1(k) or R2(k) we denote, respectively, the minimum integers N1 in Fact 1
and N2 in Fact 2.

Lemma 8. Let k, k1, k2, s, s0, w be positive integers such that max{k1, k2} ≤ k,
R2(k)−k1 ≤ s0 and s− s0 = k1w. Let G be a graph. Let S ⊂ V (G) with |S| = s.
Then there exists a positive integer N3 depending on k and s such that for any

t ≥ N3 and for any T ⊂ V (G) with S ∩ T = ∅, |T | = t, we have partitions

S = S0 ∪ S1 ∪ · · · ∪ Sw and T = T0 ∪ T1 ∪ · · · ∪ Tw satisfying that

(1) |S0| = s0,

(2) |Si| = k1, |Ti| = k2 for 1 ≤ i ≤ w, and

(3) Si × Ti ⊂ E(G) or Si × Ti ⊂ E(G) for 1 ≤ i ≤ w.
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Proof. LetN3 be a positive integer such thatN3 ≥ k(s+k). Then, for 1 ≤ i ≤ w,
we have

|S| − (i− 1)k1 ≥ s− (w − 1)k1 ≥ R2(k),
and

|T | − (i− 1)k2 ≥ t− (w − 1)k2 = t−

(

s− s0
k1

− 1

)

k2

≥ t− (s− s0)k ≥ (s0 + k)k ≥ R2(k).

Hence, by using Fact 2 w times, we can take subsets Si ⊂ S and Ti ⊂ T one by
one such that |Si| = k1, |Ti| = k2, and Si × Ti ⊂ E(G) or Si × Ti ⊂ E(G) for
1 ≤ i ≤ w.

By R3(k, s) we denote the minimum integer N3 in Lemma 8. In the proof of
Theorem 5, we use the existence of R1(k), R2(k) and R3(k, s), but we will not
need their exact values.

Let n0 = k2(k − 1)ℓ(k − ℓ), which is appeared in Lemma 7. Let us define
positive integers ε, α1, α2, α3, β1, β2, and γ satisfying the following conditions:

• ε = kn0,

• α1, α2, α3, β1, β2, γ are multiples of εk(2k − 1− ℓ/k),

•
α1

ℓ
=

α2

k − 1
=

α3

k − ℓ− ℓ/k
,

• αi ≥ R2(ε) for 1 ≤ i ≤ 3,

•
ℓ

k − ℓ
α3 ≥ R2(εk),

• α2 −
α3ℓ

k − ℓ
is a multiple of εℓ,

•
β1

max{k/2, ℓ}
=

β2
min{k/2, k − ℓ}

,

•
ℓ

k − ℓ
β2 ≥ R2(α2k),

• β2 ≥ R2(max{α2, R3(εk, α2)}),

• β1 −
β2ℓ

k − ℓ
is a multiple of α2ℓ,

• γ ≥ R2(β1),

• γ ≥ R3(α2k, β1).

Finally, we define a positive integer c as c = R1(γ) + γ. Next, we define a family
of subsets of the vertices.

A subset S ⊂ V (G) is called of type A+ if there exists a partition S =
S1 ∪S2 ∪S3 such that |Si| = αi for 1 ≤ i ≤ 3 and

(

S1

2

)

∪ (S1×S2)∪
(

S3

2

)

⊂ E(G),
(

S2

2

)

∪ (S2 × S3) ⊂ E(G).
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A subset S ⊂ V (G) is called of type B+ if there exists a partition S = S1 ∪ S2

such that |Si| = βi for 1 ≤ i ≤ 2 and
(

S1

2

)

∪ (S1 × S2) ⊂ E(G),
(

S2

2

)

⊂ E(G).

A subset S ⊂ V (G) is called of type C+ if G[S] ∼= Kγ .

Furthermore, a subset S ⊂ V (G) is called of type A−, B−, C−, if in the
complement G, S is of type A+, B+, C+, respectively.

Let us consider a vertex partition V (G) = V0 ∪ V1 ∪ · · · ∪ Vm such that

(P1) for 1 ≤ i ≤ m, Vi is one of the six types A+, A−, B+, B−, C+, C−,

(P2) V0 contains no subset S of these six types,

(P3) n(A+) + n(A−) is maximum with respect to (P1) and (P2),

(P4) n(B+) + n(B−) is maximum with respect to (P1), (P2) and (P3),

where for a type X, n(X) denotes the number of indices i with 1 ≤ i ≤ m such
that Vi is of type X.

We call a partition V (G) = V0 ∪V1 ∪ · · · ∪Vm satisfying the above properties
from (P1) to (P4) a standard partition.

Firstly, we remark that if there exists a partition V (G) = V ′
0 ∪ V1 ∪ · · · ∪ Vs

such that Vi is one of the six types for 1 ≤ i ≤ s, then we can extend the partition
to V (G) = V0 ∪V1 ∪ · · · ∪Vs ∪Vs+1 ∪ · · · ∪Vm satisfying (P1) and (P2), by taking
suitable subsets greedily from V ′

0 . In particular, starting from s = 0, any graph
admits at least one standard partition.

We also remark that for a standard partition V (G) = V0 ∪ V1 ∪ · · · ∪ Vm, we
have |V0| < c. Indeed, if c ≤ |V0|, we have R1(γ) < c ≤ |V0|. Hence, by Fact 1,
we have Kγ or Kγ in G[V0], a contradiction to (P2).

Let V (G) = V0∪V1∪· · ·∪Vm be a standard partition. First, we show Claims
1, 2 and 3, which reduce the number of possible combinations of the types of
subsets in the partition.

Claim 1. n(C+) = 0 or n(C−) = 0.

Proof. Suppose to a contradiction that n(C+) > 0 and n(C−) > 0. Without
loss of generality, we may assume V1 is of type C+ and V2 is of type C−. Since
|V1| = |V2| = γ ≥ R2(β1), by Fact 2, for 1 ≤ i ≤ 2, we have V ′

i ⊂ Vi with
|V ′

i | = β1 such that V ′
1 × V ′

2 ⊂ E(G) or V ′
1 × V ′

2 ⊂ E(G). Therefore, we have a
subset S ⊂ V ′

1 ∪ V ′
2 of type B+ or B−, a contradiction to (P4).

Claim 2. n(B+) = 0 or n(B−) = 0.

Proof. Suppose to a contradiction that n(B+) > 0 and n(B−) > 0. Without
loss of generality, we may assume V1 is of type B+ and V2 is of type B−. For
1 ≤ i ≤ 2, let Vi = Vi1 ∪ Vi2 such that

(

V11

2

)

∪ (V11 × V12) ⊂ E(G),
(

V12

2

)

⊂ E(G),
(

V22

2

)

⊂ E(G),
(

V21

2

)

∪(V21×V22) ⊂ E(G). By the definition of β1 and β2, we have
|V11| = |V21| = β1 ≥ β2 and β2 ≥ R2(α2). Hence, by Fact 2, for 1 ≤ i ≤ 2, we
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have V ′
i1 ⊂ Vi1 with |V ′

i1| = α2 such that V ′
11 × V ′

21 ⊂ E(G) or V ′
11 × V ′

21 ⊂ E(G).
If V ′

11 × V ′
21 ⊂ E(G), then we have a subset S ⊂ V ′

11 ∪ V ′
21 ∪ V22 of type A+, and

if V ′
11 × V ′

21 ⊂ E(G), then we have a subset S ⊂ V ′
21 ∪ V ′

11 ∪ V12 of type A−, a
contradiction to (P3).

Claim 3. n(A+) = 0 or n(A−) = 0.

Proof. Suppose to a contradiction that n(A+) > 0 and n(A−) > 0. Without
loss of generality, we may assume V1 is of type A+ and V2 is of type A−. For
1 ≤ i ≤ 2, let Vi = Vi1 ∪ Vi2 ∪ Vi3 such that

(

V11

2

)

∪ (V11 × V12) ∪
(

V13

2

)

⊂ E(G),
(

V12

2

)

∪(V12×V13) ⊂ E(G),
(

V22

2

)

∪(V22×V23) ⊂ E(G),
(

V21

2

)

∪(V21×V22)∪
(

V23

2

)

⊂
E(G). Since |V11| = |V21| = α1 ≥ R2(ε), by Fact 2, for 1 ≤ i ≤ 2, we have
V ′
i1 ⊂ Vi1 with |V ′

i1| = ε such that V ′
11 × V ′

21 ⊂ E(G) or V ′
11 × V ′

21 ⊂ E(G). If
V ′
11×V ′

21 ⊂ E(G), then we have a subset S ⊂ V ′
11∪V

′
21∪V22∪V23 such that G[S] is

Bk,ℓ-good, and if V ′
11×V ′

21 ⊂ E(G), then we have a subset S ⊂ V ′
21∪V

′
11∪V12∪V13

such that G[S] is Bk,ℓ-good, a contradiction.

Next, we prepare Claims 4 and 5, which count the number of disjoint copies of
induced subgraphs isomorphic to H ∈ Bk,ℓ in a subset of type A+ and type B+.

Claim 4. Let S ⊂ V (G) be of type A+. Let a = |S|/(2k − 1 − ℓ/k). Then we

have

(1) N(G[S],Kk) ≥

(

1 +
ℓ

k2(k − 1)

)

a,

(2) N(G[S],Kk) ≥ a,

(3) N(G[S],Kℓ +Kk−ℓ) ≥ a,

(4) N(G[S],Kℓ ∪Kk−ℓ) ≥

(

1−
ℓ

k(k − ℓ)

)

a.

Proof. Indeed, let S = S1 ∪ S2 ∪ S3 such that |Si| = αi for 1 ≤ i ≤ 3 and
(

S1

2

)

∪ (S1×S2)∪
(

S3

2

)

⊂ E(G),
(

S2

2

)

∪ (S2×S3) ⊂ E(G). By the definition of α1,
α2 and α3, we have |S1| = ℓa, |S2| = (k − 1)a and |S3| = (k − l − ℓ/k)a. Hence,
we have

N(G[S],Kk) ≥
|S1|
k−1 + |S3|

k = ℓ
k−1a+ k−ℓ−ℓ/k

k a =
(

1 + ℓ
k2(k−1)

)

a,

N(G[S],Kk) ≥
|S2|
k−1 = a,

N(G[S],Kℓ +Kk−ℓ) ≥
|S1|
ℓ = a,

and

N(G[S],Kℓ ∪Kk−ℓ) ≥
|S3|
k−ℓ =

k−ℓ−ℓ/k
k−ℓ a =

(

1− ℓ
k(k−ℓ)

)

a,

as required.
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Claim 5. Let S ⊂ V (G) be of type B+. Let S = S1 ∪ S2 such that |Si| = βi for
i = 1, 2 and

(

S1

2

)

∪ (S1 × S2) ⊂ E(G),
(

S2

2

)

⊂ E(G). Let a = |S|/(2k − 1− ℓ/k).
Then we have

(1) N(G[S],Kk) ≥ a,

(2) N(G[S],Kℓ +Kk−ℓ) ≥
|S1|

k − 2
.

Proof. By the definition of β1 and β2, if ℓ ≥ k/2 then |S1| = ℓ|S|/k and |S2| =
(k− ℓ)|S|/k, and if ℓ < k/2 then |S1| = |S2| = |S|/2. Hence, in any case, we have
|S1| ≥ |S|/2. Then we have

N(G[S],Kk) =
|S1|

k − 1
≥

|S|

2(k − 1)
≥ a.

Furthermore, for ℓ ≥ k/2, we have

N(G[S],Kℓ +Kk−ℓ) =
|S1|

ℓ
,

and for ℓ < k/2, we have

N(G[S],Kℓ +Kk−ℓ) =
|S2|

k − ℓ
=

|S1|

k − ℓ
.

Hence, in any case, we have N(G[S],Kℓ +Kk−ℓ) ≥ |S1|/(k − 2).

By Claim 3, without loss of generality, we may assume n(A−) = 0. Suppose that
m = p + q + r and V1, . . . , Vp are of type A+, Vp+1, . . . , Vp+q are of type B+ or
B−, Vp+q+1, . . . , Vp+q+r are of type C+ or C−.

For 1 ≤ i ≤ p, let Vi = Vi1 ∪ Vi2 ∪ Vi3 such that |Vij | = αj for 1 ≤ j ≤ 3 and
(

Vi1

2

)

∪ (Vi1 × Vi2) ∪
(

Vi3

2

)

⊂ E(G),
(

Vi2

2

)

∪ (Vi2 × Vi3) ⊂ E(G).

Case 1. n(B−) = 0. For 1 ≤ i ≤ q, let Vp+i = Vp+i,1 ∪ Vp+i,2 such that

|Vp+i,j | = βj , for j = 1, 2 and
(Vp+i,1

2

)

∪ (Vp+i,1×Vp+i,2) ⊂ E(G),
(Vp+i,2

2

)

⊂ E(G).

Case 1.1. n(C−) = 0. In this case, Vi is one of types A+, B+, C+ for
1 ≤ i ≤ m. Hence, by Claims 4 and 5, we have

N(G[Vi],Kk) ≥ |Vi|/(2k − 1− ℓ/k).

Therefore, since |V0| < c, we have

N(G,Kk) ≥ |V (G) \ V0|/(2k − 1− ℓ/k) ≥ n,

a contradiction.
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Case 1.2. n(C+) = 0. In this case, Vi is one of types A+, B+, C− for
1 ≤ i ≤ m. Let us define a partition V (G) \ V0 = S ∪ T ∪ U such that

S =
⋃

1≤i≤q
Vp+i,1,

T =
⋃

1≤i≤q
Vp+i,2 ∪

⋃

1≤i≤r
Vp+q+i,

U =
⋃

1≤i≤p
Vi,

s = |S|, t = |T |, u = |U |. Let n1 = u/(2k− 1− ℓ/k), n2 = (s+ t)/(2k− 1− ℓ/k).
Since |V0| < c, we have n1 + n2 = |V (G) \ V0|/(2k − 1− ℓ/k) ≥ n. Furthermore,
by Claim 4, we have N(G[U ],Kℓ +Kk−ℓ) ≥ n1 and N(G[U ],Kk) ≥ n1. On the
other hand, since s+ t = (2k − 1− ℓ/k)n2, we have s > (k − 2)n2 or t > kn2.

If s > (k − 2)n2, by Claim 5, we have

N(G[S ∪ T ],Kℓ +Kk−ℓ) ≥
s

k − 2
> n2.

If t > kn2, we have

N(G[T ],Kk) ≥
t

k
> n2.

In any case, we have

N(G, {Kℓ +Kk−ℓ,Kk}) > n1 + n2 ≥ n,

a contradiction.

Case 2. n(B+) = 0. For 1 ≤ i ≤ q, let Vp+i = Vp+i,1 ∪ Vp+i,2 such that

|Vp+i,j | = βj , for j = 1, 2 and
(Vp+i,2

2

)

⊂ E(G),
(Vp+i,1

2

)

∪ (Vp+i,1×Vp+i,2) ⊂ E(G).

Case 2.1. n(C+) = 0. In this case, Vi is one of types A+, B−, C− for
1 ≤ i ≤ m. Hence, by Claim 4 and Claim 5, we have

N(G[Vi],Kk) ≥ |Vi|/(2k − 1− ℓ/k).

Therefore, since |V0| < c, we have

N(G,Kk) ≥ |V (G) \ V0|/(2k − 1− ℓ/k) ≥ n,

a contradiction.

Case 2.2. n(C−) = 0. In this case, Vi is one of types A+, B−, C+ for
1 ≤ i ≤ m. We may assume q ≥ 1 and r ≥ 1. Indeed, if q = 0 or r = 0, as in
Case 1 or in Case 2.1, we have a contradiction.

In order to show the assertion of the theorem, we will modify the original
partition. Let us prepare two claims. Let X =

⋃

1≤i≤r Vp+q+i.
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Claim 6. Suppose that ℓ < k/2. Let Vi be of type B− such that Vi = Vi,1 ∪ Vi,2,

|Vi,j | = βj with j = 1, 2,
(Vi,2

2

)

⊂ E(G),
(Vi,1

2

)

∪ (Vi,1 × Vi,2) ⊂ E(G). Let

s0 = β2ℓ/(k− ℓ). Let T ⊂ X ∪ V0 such that G[T ] ∼= Kγ. Then we have partitions

Vi,1 = S0 ∪ S1 ∪ · · · ∪ Sw, T = T0 ∪ T1 ∪ · · · ∪ Tw such that

(1) |S0| = s0,

(2) |Sj | = α2ℓ, |Tj | = α2(k − ℓ) for 1 ≤ j ≤ w,

(3) Sj × Tj ⊂ E(G) for 1 ≤ j ≤ w.

Proof. Since ℓ < k/2, we have β1 = β2. By the definition of β2 and γ, we have
s0 = β2ℓ/(k − ℓ) ≥ R2(α2k) and γ ≥ R3(α2k, β1). Hence, by Lemma 8, we have
partitions Vi,1 = S0∪S1∪ · · · ∪Sw, T = T0∪T1∪ · · · ∪Tw such that (1) |S0| = s0,
(2) |Sj | = α2ℓ, |Tj | = α2(k − ℓ) for 1 ≤ j ≤ w, and (3’)Sj × Tj ⊂ E(G) or
Sj × Tj ⊂ E(G) for 1 ≤ j ≤ w. If Sj × Tj ⊂ E(G) for some j, we have a set of
type A+ in Tj ∪ Sj ∪ Vi,2, which contradicts the property (P3) of the partition.
Thus we have Sj × Tj ⊂ E(G) for 1 ≤ j ≤ w, as claimed.

Claim 7. Let Vi be of type A+ such that Vi = Vi,1 ∪ Vi,2 ∪ Vi,3, |Vi,j | = αj with

1 ≤ j ≤ 3,
(Vi,1

2

)

∪ (Vi,1 × Vi,2) ∪
(Vi,3

2

)

⊂ E(G),
(Vi,2

2

)

∪ (Vi,2 × Vi,3) ⊂ E(G). Let

T ⊂ X ∪V0 such that G[T ] ∼= Kγ. Let s0 = α3ℓ/(k− ℓ). Then we have partitions

Vi,2 = S0 ∪ S1 ∪ · · · ∪ Sw, T = T0 ∪ T1 ∪ · · · ∪ Tw such that

(1) |S0| = s0,

(2) |Sj | = εℓ, |Tj | = ε(k − ℓ) for 1 ≤ j ≤ w,

(3) Sj × Tj ⊂ E(G) for 1 ≤ j ≤ w.

Proof. Let λ = max{α2, R3(εk, α2)}. Let Vp+1 = Vp+1,1 ∪ Vp+1,2 such that
|Vp+1,j | = βj , for j = 1, 2 and

(Vp+1,2

2

)

⊂ E(G),
(Vp+1,1

2

)

∪ (Vp+1,1 × Vp+1,2) ⊂
E(G). Since |Vp+1,1| = β1 ≥ R2(λ) and |T | = γ ≥ R2(λ), by Fact 2, we have
V ′
p+1,1 ⊂ Vp+1,1, T

′ ⊂ T with |V ′
p+1,1| = |T ′| = λ such that T ′ × V ′

p+1,1 ⊂ E(G) or

T ′ × V ′
p+1,1 ⊂ E(G).

If T ′×V ′
p+1,1 ⊂ E(G), we have a set of type A+ in T ′∪V ′

p+1,1∪Vp+1,2, which

contradicts the property (P3) of the partition. Hence, we have T ′×V ′
p+1,1 ⊂ E(G).

Since s0 = α3ℓ/(k− ℓ) ≥ R2(εk) and |T ′| = λ ≥ R3(εk, α2), by Lemma 8, we
have partitions Vi,2 = S0 ∪ S1 ∪ · · · ∪ Sw, T

′ = T0 ∪ T1 ∪ · · · ∪ Tw such that (1)
|S0| = s0, (2) |Sj | = εℓ, |Tj | = ε(k − ℓ) for 1 ≤ j ≤ w, and (3’) Sj × Tj ⊂ E(G)
or Sj × Tj ⊂ E(G) for 1 ≤ j ≤ w. If Sj × Tj ⊂ E(G) for some j, we have a
Bk,ℓ-good subgraph in G[V ′

p+1,1 ∪ Tj ∪ Sj ∪ Vi,3], a contradiction. Hence, we have

Sj × Tj ⊂ E(G) for 1 ≤ j ≤ w, as claimed.

Under the situation of Claim 6, we have N(G[Vi ∪ T ],Kℓ ∪Kk−ℓ) ≥ |Vi,1|/ℓ, and
under the situation of Claim 7, we have N(G[Vi ∪ T ],Kℓ ∪Kk−ℓ) ≥ |Vi,2|/ℓ.
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By using Claims 6 and 7, let us modify the partition V = V0 ∪ V1 ∪ · · · ∪ Vm

according to the following algorithm.

Algorithm 1.

Step 0. X0 = (X \Vm)∪V0. If ℓ < k/2, then put y = p+q, otherwise put y = p.
Set 1 to i.
Step 1. If i > y, then set 0 to x and stop.
Step 2. If there exists W ⊂ X0 such that G[W ] ∼= Kγ , then take W , otherwise
set 1 to x, set i− 1 to y′ and stop.
Step 3. For Vi and W , take T1, T2, . . . , Tw ⊂ W satisfying the condition of Claim
6 or 7. Let Zi = T1 ∪ · · · ∪ Tw. Set X0 = X0 \ Zi. Add 1 to i. Go to Step 1.

Note that in the procedure of the algorithm, G[X0] contains no Kγ as a subgraph.
Indeed, if there exists W ⊂ X0 with G[W ] ∼= Kγ , since γ ≥ R2(β1), by Fact 2,
we have V ′

m ⊂ Vm and W ′ ⊂ W such that V ′
m ∪ W ′ is of type B+ or B−, a

contradiction to (P4) of the original partition.
After executing the algorithm, we consider the two subcases according to the

return status x.

Case 2.2.1. x = 0. Let us take a partition X0 = W0 ∪ W1 ∪ · · · ∪ Wµ such
that G[Wi] ∼= Kγ for 1 ≤ i ≤ µ and |W0| < R1(γ).
Let us define

S =
⋃

1≤i≤p
Vi,2 ∪

⋃

1≤i≤q
Vp+i,1,

T =
⋃

1≤i≤p
(Vi,1 ∪ Vi,3) ∪

⋃

1≤i≤q
Vp+i,2 ∪

⋃

1≤i≤y
Zi ∪

⋃

1≤i≤µ
Wi ∪ Vm,

s = |S|, t = |T |. Then we have s+ t ≥ (2k − 1− ℓ/k)n.
On the other hand, we have n > N(G[S ∪ T ],Kℓ ∪Kk−ℓ) ≥ s/ℓ. Hence, we

have ℓn > s. Furthermore, we have n > N(G[T ],Kk) ≥ t/k. Hence, we have
kn > t. Therefore, we have (k + ℓ)n > s+ t ≥ (2k − 1− ℓ/k)n, a contradiction.

Case 2.2.2. x = 1. Let us define

S =
⋃

1≤i≤q
Vp+i,1,

T =
⋃

1≤i≤q
Vp+i,2 ∪

⋃

1≤i≤y′
Zi,

U =
⋃

1≤i≤p
Vi,

s = |S|, t = |T |, u = |U |. Let n1 = u/(2k− 1− ℓ/k), n2 = (s+ t)/(2k− 1− ℓ/k).
Then we have n1+n2 ≥ n, since |V (G)\(S∪T ∪U)| = |Vm∪X0| < γ+R1(γ) = c.

By a similar argument to that in Case 1.2, if s ≥ (k−1)n2, we have N(G[S∪
T ],Kk) = s/(k − 1) ≥ n2, a contradiction. Hence, we have s < (k − 1)n2.
Therefore, we have

(

k −
ℓ

k

)

n2 < t.(1)
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In the same way, we have N(G[T ],Kk) +N(G[U ],Kk) < n. Hence, by Claim 4,
we have

t

k
+

(

1 +
ℓ

k2(k − 1)

)

n1 < n.(2)

By (1) and (2), we have

n < kn2.(3)

On the other hand, by using Claim 4, we have n > N(G,Kℓ ∪ Kk−ℓ) ≥ t/(k −
ℓ) + (1− ℓ/k(k − ℓ))n1. Hence, we have

kt− (k2 − kℓ− ℓ)n2 < ℓn.(4)

By (3) and (4), we have t < (k − ℓ/k)n2, a contradiction to (1). This completes
the proof.

4. Concluding Remarks

Let Gk be the family of all graphs with k vertices, as defined in Section 1. For
k ≥ 4, f(n,Gk) is not known well. For k = 4, let G = K2n−1 ∪ (Kn−1 +K3n−1).
Then we have N(G,G4) < n. It follows that f(n,G4) ≥ 6n − 2. On the other
hand, from Theorem 5 by substituting 4 for k and 2 for ℓ, we have f(n,G4) ≤
f(n,B4,2) = (13/2)n+O(1). It is conjectured that f(n,G4) = 6n+O(1) ([5]).
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