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Abstract

Let G = (V,E) be a graph of order n and let D ⊆ {0, 1, 2, 3, . . .}. For
v ∈ V, let ND(v) = {u ∈ V : d(u, v) ∈ D}. The graph G is said to be
D-vertex magic if there exists a bijection f : V (G) → {1, 2, . . . , n} such
that for all v ∈ V,

∑

u∈ND(v) f(u) is a constant, called D-vertex magic
constant. O’Neal and Slater have proved the uniqueness of the D-vertex
magic constant by showing that it can be determined by theD-neighborhood
fractional domination number of the graph. In this paper we give a simple
and elegant proof of this result. Using this result, we investigate the existence
of distance magic labelings of complete r-partite graphs where r ≥ 4.
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1. Introduction

By a graph G = (V,E) we mean a finite, undirected graph with neither loops nor
multiple edges. We further assume that G has no isolated vertices. The order
|V | and the size |E| are denoted by n and m, respectively. For graph theoretic
terminology we refer to Chartrand and Lesniak [3].

The concept of distance magic labeling has been motivated by the construc-
tion of magic squares. A magic square of order n is an n× n array whose entries
are an arrangement of the integers 1, 2, 3, . . . , n2 in which all elements in any row,
any column, the main diagonal or the main back diagonal add to the same sum
r. Now if we label the vertices of a complete n-partite graph with parts |Vi| = n,

1 ≤ i ≤ n in such a way that the vertices of Vi are labeled with the integers in
the ith row of the magic square, then the sum of the labels of all the vertices
in the open neighborhood of each vertex is the same and is equal to r(n − 1).
Motivated by this observation Vilfred [10] in his doctoral thesis introduced the
following concept of Σ-labeling.

Definition 1.1. A Σ-labeling of a graph G = (V,E) of order n is a bijection
f : V → {1, 2, . . . , n} such that

∑

u∈N(v) f(u) = k for all v ∈ V, where N(v) is
the open neighborhood of v. The constant k is called the magic constant of the
labeling f. A graph which admits a Σ-labeling is called a Σ-graph.

The same concept was introduced and studied by different authors with different
terminology. Miller et al. [6] used the term 1-vertex magic labeling and Sugeng
et al. [9] used the term distance magic labeling for the same concept. Beena
[2] introduced the concept of Σ′-labeling in which the closed neighborhood sums
are all equal. O’Neal and Slater [7] introduced the following concept of D-vertex
magic labeling, which includes the notion of distance magic labeling as well as
Σ′-labeling as special cases.

Definition 1.2. Let G = (V,E) be a graph of order n and let D ⊆ {0, 1, 2, 3, . . .}.
For v ∈ V, the set ND(v) = {u ∈ V : d(u, v) ∈ D} is called the D-neighborhood
of v. A bijection f : V (G) → {1, 2, . . . , n} is called a D-vertex magic labeling of G
if
∑

u∈ND(v) f(u) = k for all v ∈ V . The constant k is called the D-vertex magic
constant and a graph which admits a D-vertex magic labeling is called D-vertex
magic graph.

If D = {1}, then ND(v) is the open neighborhood N(v) and the D-vertex magic
labeling is the usual distance magic labeling. If D = {0, 1}, then ND(v) is the
closed neighborhood N [v] and the corresponding D-vertex magic labeling is the
Σ′-labeling.

The first author posed the following problem in his talk in IWOGL 2010 at
the University of Minnesota, Duluth, U.S.A.
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Problem 1.3 [1]. Does there exist a distance magic graph with two different

distance magic labelings having different magic constants?

In the revision note given in [1], we have given a simple and short proof, using
algebraic concepts, that for any distance magic graph, the distance magic constant
is unique, thus answering Problem 1.3. The same proof technique gives the
uniqueness of the D-vertex magic constant for any D-vertex magic graph.

O’Neal and Slater obtained a formula for the D-vertex magic constant in
terms of a fractional domination parameter of the graph, which implies the
uniqueness of the magic constant.

Definition 1.4. Let G = (V,E) be a graph. A function f : V (G) → [0, 1] is said
to be a D-neighborhood fractional dominating function if for every vertex v ∈
V (G),

∑

u∈ND(v) f(u) ≥ 1. The D-neighborhood fractional domination number
of a graph is denoted by γf (G;D) and is defined as γf (G;D)= min {|f | : f is
a D-neighborhood fractional dominating function}, where |f |=

∑

v∈V (G) f(v). If
D-neighborhood fractional dominating function for G does not exist, then we
define γf (G;D) = ∞.

Also it is clear from the definition that when D = {0, 1}, γf (G;D) = γf (G) is
the fractional domination number and when D = {1}, γf (G;D) = γft(G) is the
fractional total domination number. The concepts of fractional domination and
fractional total domination have been investigated by several authors and for a
survey on these topics we refer to Chapter 3 of Haynes et al. [5].

O’Neal and Slater have proved the following:

Theorem 1.5 [8]. If a graph G is D-vertex magic, then its D-vertex magic

constant k = n(n+1)
2γf (G;D) .

In this paper we give a simple and elegant proof of the above theorem. We use
this result to prove the existence and non-existence of distance magic labelings
for complete r-partite graphs with r ≥ 4.

2. Main Results

Definition 2.1. Let G = (V,E) be a graph of order n with V = {v1, v2, . . . , vn}.
Let D ⊆ {0, 1, 2, . . . }. The n× n matrix AD = (aij) defined by

aij =

{

1 if d(vi, vj) ∈ D,
0 otherwise,

is called the D-distance matrix of G.
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Theorem 2.2. If a graph G admits a distance magic labeling f with magic con-

stant k, then k = n(n+1)
2γft

.

Proof. Let G = (V,E) be a graph of order n. Let A be its adjacency matrix.
Let h : V → {1, 2, . . . , n} be a distance magic labeling of G with magic constant
k. Then AX = ku, where X = (h(v1), h(v2), . . . , h(vn))

T and u = (1, 1, . . . , 1)T

is a n× 1 matrix. Now let g be a fractional total dominating function of G with
|g| =

∑n
i=1 g(vi) = γft(G). Then AY ≥ 1 where Y = (g(v1), g(v2), . . . , g(vn))

T .

Let AY = M = (l1, l2, . . . , ln)
T , so that each li ≥ 1. Now, XTAY is a 1×1 matrix

and hence XTAY = (XTAY )T = Y TAX. Thus

XTAY = Y TAX = Y T (AX) = Y Tku = kY Tu

= k(g(v1) + g(v2) + · · ·+ g(vn)) = kγft.

Also

XTAY = XTM = (h(v1), h(v2), . . . , h(vn))(l1, l2, . . . , ln)
T

=
∑n

i=1
h(vi)li ≥

∑n

i=1
h(vi) =

n(n+ 1)

2
.

Thus, XTAY ≥ n(n+1)
2 . Hence it follows that kγft ≥

n(n+1)
2 . Thus k ≥ n(n+1)

2γft
.

We now prove the reverse inequality. Define θ : V → [0, 1] by θ(v) = h(v)
k

.

Since h is a distance magic labeling of G, it follows that 0 <
h(v)
k

≤ 1. Also
for any v ∈ V,

∑

u∈N(v) θ(u) =
1
k

∑

u∈N(v) h(u) = 1. Thus θ is a fractional total

dominating function of G. Hence γft(G) ≤ |θ| =
∑

v∈V (G) θ(v) =
∑

v∈V (G)
h(v)
k

=
n(n+1)

2k . Thus k ≤ n(n+1)
2γft

.

Theorem 2.3. If a graph G is D-vertex magic, then its D-vertex magic constant

k = n(n+1)
2γf (G;D) .

Proof. Replace A by AD in the proof of Theorem 2.2.

Theorem 2.3 serves as a powerful tool in proving the existence and nonexistence
of Σ′-labelings as well as distance magic labelings for graphs, which we illustrate
in the following theorems.

Theorem 2.4. The hypercube Qn is not a Σ′-graph when n is even and n > 0.

Proof. Since Qn is an n-regular graph of order 2n, we have γf (Qn) = 2n

n+1
([4]). If Qn admits a Σ′-labeling, then by Theorem 2.3, the magic constant

k = 2n(2n+1)
2γf (Qn)

= (n+1)(2n+1)
2 , which is not an integer when n is even. Hence Qn is

not a Σ′-graph when n is even.
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Theorem 2.5. Let G be a graph of order 2n consisting of two edge disjoint cycles

C1 = (v1, v2, v3, . . . , v2n−1, v2n, v1) and C2 = (v2, v4, v6, . . . , v2n−2, v2n, v2). Then
the graph G is not distance magic.

Proof. The function f : V (G) → [0, 1] defined by

f(vi) =

{

0 if i is odd,
1
2 if i is even,

is a fractional total dominating function of G and hence γft(G) ≤ |f | = n
2 . Now

let g be any fractional total dominating function of G with g(vi) = bi, 1 ≤ i ≤ 2n.
Since N(v2i+1) = {v2i, v2i+2} for each i = 1, 2, . . . , n it follows that b2i+b2i+2 ≥ 1,
for all i = 1, 2, . . . , n, where the addition in the suffix is taken modulo 2n. Adding
these n inequalities we obtain 2

∑n
i=1 b2i ≥ n. Thus |g| ≥

∑n
i=1 b2i ≥ n

2 and
hence γft(G) = n

2 . Now, if G is distance magic, then by Theorem 2.3, the magic
constant k = 2(2n+ 1). However the maximum possible weight for any vertex of
degree 2 is 4n− 1. Hence G is not distance magic.

Beena [2] characterized complete bipartite graphs which are distance magic. Also
Miller et al. [6] characterized complete tripartite graphs which are distance magic.
The problem of characterizing complete k-partite graphs which are distance magic
remains open for k ≥ 4. We prove some results in this direction.

Theorem 2.6. Let G = Ka1,a2,a3,...,ar , 2 ≤ a1 ≤ a2 ≤ a3 ≤ · · · ≤ ar be a complete

r-partite graph with r ≥ 4. If G is distance magic, then 2r|n(n+ 1).

Proof. First we prove that γft(G) = r
r−1 . Let V1, V2, V3, . . . , Vr be the partite

sets with |Vi| = ai. Define f : V (G) → [0, 1] by f(vi) =
1

ai(r−1) if vi ∈ Vi. Clearly f

is a fractional total dominating function. Hence γft(G) ≤ |f | =
∑

v∈V (G) f(v) =
r

r−1 . Now, let f be any fractional total dominating function of G. Then |f | −
∑

v∈Vi
f(v) ≥ 1 for i = 1, 2, . . . , r. Adding these r inequalities we get r|f |−|f | ≥ r.

Therefore |f | ≥ r
r−1 . Thus γft(G) ≥ r

r−1 . Hence γft(G) = r
r−1 . Now, if G is

distance magic, then by Theorem 2.3, k = n(n+1)(r−1)
2r . Hence 2r|n(n+ 1).

Corollary 2.7. If G is a complete 4-partite distance magic graph of order n,

then n ≡ 0 or 7(mod 8).

Corollary 2.8. If G is a complete 5-partite distance magic graph of order n,

then n ≡ 0 or 4(mod 5).

Corollary 2.9. The complete r-partite graph G = Ka,a,...,a,a+1, a ≥ 2 and r ≥ 4,
is not distance magic.
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Proof. If G is distance magic, then the magic constant k = (ra+1)(ra+2)(r−1)
2r . If

r is a power of 2, then trivially k is not an integer. If r is not a power of 2, let p
be an odd prime factor of r. Then p does not divide (ra+ 1)(ra+ 2)(r − 1) and
hence k is not an integer. Thus G is not distance magic.

We now proceed to characterize complete r-partite distance magic graphs of small
order for r = 4 and r = 5. Let G be a complete 4-partite distance magic graph
of order n with partite sets Vi, 1 ≤ i ≤ 4. By Corollary 2.7, n ≡ 0 or 7(mod 8).
If n = 7, then k = 21 and G = K1,2,2,2. Also V1 = {7}, V2 = {1, 6}, V3 = {2, 5}
and V4 = {3, 4} gives a distance magic labeling of G. If n = 8, then k = 27, so
that the sum of the labels of the vertices in each partite set is 9. In this case
G = K2,2,2,2 and V1 = {1, 8}, V2 = {2, 7}, V3 = {3, 6} and V4 = {4, 5} gives a
distance magic labeling of G.

Theorem 2.10. A complete 4-partite graph of order 15 is distance magic if and

only if it is isomorphic to one of the graphs K4,4,4,3, K5,4,3,3 and K6,3,3,3.

Proof. Let G be a complete 4-partite distance magic graph of order 15. By
Theorem 2.6, we have k = 90. Thus sum of the labels in each partite set is 30.
Thus |Vi| ≥ 3 and G is isomorphic to one of the graphs K4,4,4,3, K5,4,3,3 and
K6,3,3,3.

To prove the converse, we take V1 = {6, 7, 8, 9}, V2 = {2, 3, 12, 13}, V3 =
{4, 5, 10, 11} and V4 = {1, 14, 15} if G = K4,4,4,3; V1 = {2, 3, 4, 10, 11}, V2 =
{6, 7, 8, 9}, V3 = {5, 12, 13} and V4 = {1, 14, 15} if G = K5,4,3,3; V1 = {2, 3, 4,
6, 7, 8}, V2 = {5, 12, 13}, V3 = {1, 14, 15} and V4 = {9, 10, 11} if G = K6,3,3,3.
This gives a distance magic labeling of G.

Theorem 2.11. A complete 4-partite graph of order 16 is distance magic if and

only if it is isomorphic to one of the graphs K7,3,3,3, K6,4,3,3, K5,5,3,3, K5,4,4,3 and

K4,4,4,4.

Proof. Let G be a complete 4-partite graph of order 16. If G is distance magic,
then by Theorem 2.6 we have k = 102. Thus sum of the labels in each partite set
is 34. Thus |Vi| ≥ 3 and G is isomorphic to one of the graphs K7,3,3,3, K6,4,3,3,

K5,5,3,3, K5,4,4,3 and K4,4,4,4.

To prove the converse, we take V1 = {1, 2, 4, 5, 6, 7, 9}, V2 = {3, 15, 16},
V3 = {10, 11, 13} and V4 = {8, 12, 14} if G = K7,3,3,3; V1 = {1, 4, 5, 7, 8, 9},
V2 = {2, 6, 12, 14}, V3 = {3, 15, 16} and V4 = {10, 11, 13} if G = K6,4,3,3;
V1 = {1, 4, 7, 8, 14}, V2 = {2, 5, 6, 9, 12}, V3 = {3, 15, 16} and V4 = {10, 11, 13}
if G = K5,5,3,3; V1 = {2, 5, 6, 9, 12}, V2 = {4, 7, 8, 15}, V3 = {1, 3, 14, 16} and
V4 = {10, 11, 13} if G = K5,4,4,3; V1 = {5, 6, 10, 13}, V2 = {1, 3, 14, 16},
V3 = {4, 7, 8, 15} and V4 = {2, 9, 11, 12} if G = K4,4,4,4. This gives a distance
magic labeling of G.
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The proofs of the following theorems are similar to that of Theorem 2.11.

Theorem 2.12. A complete 4-partite graph of order 24 is distance magic if and

only if it is isomorphic to one of the graphs K11,5,4,4, K10,6,4,4, K10,5,5,4, K9,7,4,4,

K9,5,5,5, K9,6,5,4, K8,8,4,4, K8,7,5,4, K8,6,6,4, K8,6,5,5, K7,7,5,5, K7,7,6,4, and K6,6,6,6.

Let G be a complete 5-partite distance magic graphs of order n with partite sets
Vi, 1 ≤ i ≤ 5. By Corollary 2.8, n ≡ 0 or 4(mod 5). If n = 9, then k = 36 and
G = K1,2,2,2,2. If n = 10, then k = 44 and G = K2,2,2,2,2.

Theorem 2.13. A complete 5-partite graph of order 14 is distance magic if and

only if it is isomorphic to one of the graphs K6,2,2,2,2, K5,3,2,2,2, K4,4,2,2,2, K4,3,3,2,2

and K3,3,3,3,2.

Proof. Let G be a complete 5-partite graph of order 14. It follows from Theorem
2.6, that k = 84. Thus sum of the labels in each partite set is 21. Thus |Vi| ≥ 2
and G is isomorphic to one of the graphs K6,2,2,2,2, K5,3,2,2,2, K4,4,2,2,2, K4,3,3,2,2

and K3,3,3,3,2.

To prove the converse, we take V1 = {1, 2, 3, 4, 5, 6}, V2 = {10, 11}, V3 =
{9, 12}, V4 = {8, 13} and V5 = {7, 14} if G = K6,2,2,2,2; V1 = {1, 2, 3, 5, 10}, V2 =
{4, 6, 11}, V3 = {9, 12}, V4 = {8, 13} and V5 = {7, 14} if G = K5,3,2,2,2; V1 =
{2, 3, 6, 10}, V2 = {1, 4, 5, 11}, V3 = {9, 12}, V4 = {8, 13} and V5 = {7, 14} if
G = K4,4,2,2,2; V1 = {2, 3, 6, 10}, V2 = {1, 9, 11}, V3 = {4, 5, 12}, V4 = {8, 13} and
V5 = {7, 14} if G = K4,3,3,2,2; V1 = {3, 8, 10}, V2 = {1, 9, 11}, V3 = {4, 5, 12}, V4 =
{2, 6, 13} and V5 = {7, 14} if G = K3,3,3,3,2. This gives a distance magic labeling
of G.

The proofs of the following theorems are similar to that of Theorem 2.11.

Theorem 2.14. A complete 5-partite graph of order 15 is distance magic if and

only if it is isomorphic to one of the graphs K6,3,2,2,2, K5,4,2,2,2, K5,3,3,2,2, K4,4,3,2,2,

K4,3,3,3,2 and K3,3,3,3,3.

Theorem 2.15. A complete 5-partite graph of order 19 is distance magic if and

only if it is isomorphic to one of the graphs K7,3,3,3,3, K6,4,3,3,3, K5,5,3,3,3, K5,4,4,3,3

and K4,4,4,4,3.

Theorem 2.16. A complete 5-partite graph of order 20 is distance magic if and

only if it is isomorphic to one of the graphs K8,3,3,3,3, K7,4,3,3,3, K6,5,3,3,3, K5,5,4,3,3,

K6,4,4,3,3, K5,4,4,4,3 and K4,4,4,4,4.

3. Conclusion and Scope

In this paper we have given a simple and elegant proof of a formula for the dis-
tance magic constant k of a distance magic graph in terms of the fractional total
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domination number. We have also illustrated the use of this result in determin-
ing whether a given graph is distance magic or not. One can further explore the
application of this technique for getting new results on Σ′-graphs and distance
magic graphs.
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[1] S. Arumugam, D. Fronček and N. Kamatchi, Distance magic graphs—A survey , J.
Indones. Math. Soc., Special Edition (2011) 11–26.

[2] S. Beena, On Σ and Σ′ labelled graphs, Discrete Math. 309 (2009) 1783–1787.
doi:10.1016/j.disc.2008.02.038

[3] G. Chartrand and L. Lesniak, Graphs & Digraphs, 4th Edition (Chapman and Hall,
CRC, 2005).

[4] D. Grinstead and P.J. Slater, Fractional domination and fractional packings in

graphs, Congr. Numer. 71 (1990) 153–172.

[5] T.W. Haynes, S.T. Hedetniemi and P.J. Slater, Domination in Graphs, Advanced
Topics (Marcel Dekker, Inc., 1998).

[6] M. Miller, C. Rodger and R. Simanjuntak, Distance magic labelings of graphs, Aus-
tralas. J. Combin. 28 (2003) 305–315.

[7] A. O’Neal and P.J. Slater, An introduction to distance D magic graphs, J. Indones.
Math. Soc., Special Edition (2011) 91–107.

[8] A. O’Neal and P.J. Slater, Uniqueness of vertex magic constants , SIAM J. Discrete
Math. 27 (2013) 708–716.
doi:10.1137/110834421

[9] K.A. Sugeng, D. Fronček, M. Miller, J. Ryan and J. Walker, On distance magic

labeling of graphs, J. Combin. Math. Combin. Comput. 71 (2009) 39–48.

[10] V. Vilfred, Σ-labelled graph and circulant graphs, Ph.D. Thesis, University of
Kerala, Trivandrum, India, 1994.

Received 21 September 2012
Revised 14 March 2013

Accepted 14 March 2013

Powered by TCPDF (www.tcpdf.org)

http://dx.doi.org/10.1016/j.disc.2008.02.038
http://dx.doi.org/10.1137/110834421
http://www.tcpdf.org

