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Abstract

Let D be a digraph with the vertex set V (D) and the arc set A(D). A
subset N of V (D) is k-independent if for every pair of vertices u, v ∈ N , we
have d(u, v), d(v, u) ≥ k; it is l-absorbent if for every u ∈ V (D) − N there
exists v ∈ N such that d(u, v) ≤ l. A k-kernel of D is a k-independent and
(k − 1)-absorbent subset of V (D). A 2-kernel is called a kernel.

It is known that the problem of determining whether a digraph has a
kernel (“the kernel problem”) is NP-complete, even in quite restricted fam-
ilies of digraphs. In this paper we analyze the computational complexity of
the corresponding 3-kernel problem, restricted to three natural families of
digraphs.

As a consequence of one of our main results we prove that the kernel
problem remains NP-complete when restricted to 3-colorable digraphs.

Keywords: kernel, 3-kernel, NP-completeness, multipartite tournament,
cyclically 3-partite digraphs, k-quasi-transitive digraph.
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1. Introduction

We will denote by D a finite digraph without loops or multiple arcs in the same
direction, with vertex set V (D) and arc set A(D). All walks, paths and cycles
will be considered to be directed. For undefined concepts and notation we refer
the reader to [1] and [5].
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Let u and v be distinct vertices of a digraph D. We say that u is k-absorbed
by v if d(u, v) ≤ k. We say that v absorbs u if u is 1-absorbed by v, that is, if
(u, v) ∈ A(D). We denote this by u → v, and u 6→ v denotes that (u, v) /∈ A(D).
We also use S → S′ to denote that u → v for all u ∈ S, v ∈ S′, where S and S′

are sets of vertices of D; if S or S′ consists of only a vertex v we use the notation
v → S′ respectively S → v. For an integer k ≥ 1, we define the k-closure Ck(D)
of the digraph D to be the digraph with vertex set V (Ck(D)) = V (D) and arc
set A(Ck(D)) such that (u, v) ∈ A(Ck(D)) if and only if u is k-absorbed by v in
D.

If D is a digraph, the underlying graph of D is the unique graph UG(D) with
vertex set V (D) and edge set E(UG(D)) such that xy ∈ E(UG(D)) if and only
if x → y or y → x.

For a subset X ⊆ V (D) and an integer k ≥ 1 we define N+k[X] to be the
set X ∪ {u ∈ V (D) : d(X,u) ≤ k}. For a vertex v ∈ V (D) and an integer k ≥ 1
we define N+k(v) as the set {u ∈ V (D) : 0 < d(v, u) ≤ k}; in particular, when
k = 1 we call N+1(v) the out-neighborhood N+(v) of v. The out-degree d+(v)
of a vertex v is defined as d+(v) = |N+(v)|. Definitions of in-neighborhood and
in-degree of a vertex v are analogous. The degree d(v) of a vertex v is defined to
be d(v) = d+(v) + d−(v). A sink will be a vertex v ∈ V (D) such that d+(v) = 0.
An arc (u, v) ∈ A(D) is a symmetric arc of D if (v, u) ∈ A(D).

A set X of vertices of a digraph D is a homogeneous set if all vertices of X
have the same out-neighbourhood and the same in-neighbourhood outside of the
set X, i.e., for any v 6∈ X the set N+(v) either contains X or is disjoint from X,
and similarly for N−(v).

For a walk W = (x0, x1, . . . , xn) let xiWxj , 0 ≤ i < j ≤ n, denote the sub-
walk (xi, xi+1, . . . , xj−1, xj). Union of walks will be denoted by concatenation or
with ∪. The circumference of a digraph D is the length of a longest cycle in D,
or infinity if there are no cycles in D.

A biorientation of a graph G is a digraph obtained from G by replacing each
edge xy ∈ E(G) by either the arc (x, y) or the arc (y, x) or the pair of symmetric
arcs (x, y), (y, x). An orientation of G is a biorientation without symmetric arcs.
A semicomplete digraph is a biorientation of a complete graph; a tournament

is an orientation of a complete graph. A semicomplete multipartite digraph is
a biorientation of a complete m-partite graph for some m ≥ 2; a multipartite

tournament is an orientation of a complete m-partite graph for some m ≥ 2. In
either case, we replace multipartite by m-partite if the value of m needs to be
emphasized.

A digraph D is cyclically m-partite if there is a homomorphism of D to the di-
rected cycle on m vertices, or equivalently, if there exists a partition (V0, . . . , Vm−1)
of the vertices of D such that for every arc (u, v) ∈ A(D), we have u ∈ Vi if and
only if v ∈ Vi+1 (mod m). We again say that D is cyclically multipartite if it is
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cyclically m-partite for some m ≥ 2. It is easy to see that the length of any cycle
in a cyclically m-partite digraph is divisible by m.

When m = 2, a semicomplete 2-partite digraph is a biorientation of a com-
plete bipartite graph, while a cyclically 2-partite graph is a biorientation of any
bipartite graph. Thus the second class contains the first one, and it is known that
each digraph in the second class has a kernel [16]. However, when m = 3, these
two families of biorientations of 3-partite graphs present an interesting contrast.
In the semicomplete 3-partite case, the orientations are completely arbitrary, but
the underlying graph is complete 3-partite. In the cyclically 3-partite case, the
underlying graph is an arbitrary 3-partite graph, but the orientations of the edges
are restricted to go only from the first partite set to the second partite set, from
the second partite set to the third partite set, and from the third partite set to
the first partite set. Thus neither class contains the other one, and, as we will
see, neither is guaranteed to contain a 3-kernel.

A digraph D is transitive if (u,w) ∈ A(D) whenever (u, v, w) is a path in D,
and quasi-transitive if (u,w) ∈ A(D) or (w, u) ∈ A(D) whenever (u, v, w) is a
path in D. A digraph is t-quasi-transitive if (u0, ut) ∈ A(D) or (ut, u0) ∈ A(D)
whenever (u0, . . . , ut) is a path in D. (Thus 2-quasi-transitive digraphs are just
quasi-transitive digraphs.)

A digraph is strongly connected (or strong) if for every pair of vertices u, v ∈
V (D), there exists a uv-path. A strong component (or component) of D is a
maximal strong subdigraph of D. The condensation of D is the digraph D⋆ with
V (D⋆) equal to the set of all strong components of D, and such that (S, T ) ∈
A(D⋆) if and only if there is an ST -arc in D. A terminal component of D is a
strong component T of D such that d+D⋆(T ) = 0.

In [6] Chvátal proved that recognizing digraphs that have a kernel is an NP-
complete problem; later, Fraenkel proved in [7] that this so-called kernel problem

remains NP-complete even when restricted to planar digraphs with d+ ≤ 2, d− ≤
2, and d ≤ 3. We propose to investigate the complexity of the analogous k-
kernel problem, i.e., the problem of recognizing digraphs that have a k-kernel.
Although there are many known sufficient conditions for the existence of k-kernels
in digraphs [9, 14, 10, 11, 12], very little is known about the complexity of the
k-kernel problem for k ≥ 3.

In this paper we focus on the complexity of the 3-kernel problem, and its
restriction to three natural families of digraphs. In Section 2, we will prove that
the 3-kernel problem is polynomial-time solvable when restricted to semicomplete
multipartite digraphs (and if a 3-kernel exists, it can be found also in polynomial
time). In particular, this means that the 3-kernel problem is polynomial time
solvable in the first of the classes alluded to above, that of semicomplete 3-partite
digraphs. By contrast, we prove in Section 3 that the 3-kernel problem is NP-
complete in the second of these classes, namely the class of cyclically 3-partite
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digraphs. In fact, the 3-kernel problem remains NP-complete even when restricted
to cyclically 3-partite digraphs of circumference 6. On the other hand, it follows
from a result in Section 4, that a cyclically 3-partite digraph of circumference 3
always has a 3-kernel. (Recall that the circumference has to be divisible by 3, so
the circumference 6 constraint is best possible.) In fact, we prove in Section 4
that any digraph in which every cycle has length 3 has a 3-kernel. We also prove
in Section 4 that a cyclically 3-partite digraph has a 3-kernel provided at least
one of its partite sets (in some cyclic partition) has no sinks. Thus, the 3-kernel
problem in natural further restrictions of the class of cyclically 3-partite digraphs
is trivial, because a 3-kernel always exists. Finally, in Section 5 we discuss k-
kernels in the class of k-quasi-transitive digraphs. It is known that transitive
digraphs always have a kernel [3]; we show that for quasi-transitive digraphs the
existence of a kernel can be recognized in polynomial time. Analogously, we
prove that the 3-kernel problem is polynomial time solvable when restricted to
3-quasi-transitive digraphs, and ask whether a corresponding general statement
holds for k-kernels and k-quasi-transitive digraphs.

We note that as a byproduct of one of our proofs we deduce the fact that the
kernel problem remains NP-complete when restricted to 3-colorable digraphs.

2. Multipartite Tournaments

In [9] the following theorem is proved.

Theorem 1. Let T be a multipartite tournament. Then the following assertions

are equivalent:

(1) T has a 3-kernel.

(2) There is a vertex v ∈ V (T ) such that {v} is a 2-absorbing set of T−(X\{v}),
where X is the partite set of T that contains v.

(3) There is a vertex v ∈ V (T ) such that every vertex x ∈ T−(X\{v}) contained
in a directed 4-cycle of T is 2-absorbed by {v} in T , where X is the partite

set of T that contains v.

It is easy to derive a polynomial time algorithm to recognize multipartite tour-
naments with a 3-kernel, based on condition (2). We first extend this result to
semicomplete multipartite digraphs.

Making a simple observation elaborating on Theorem 1 we obtain the follow-
ing lemma.

Lemma 2. Let D be a semicomplete multipartite digraph. Let v ∈ V (D) and X
be the partite set of D that contains v. If {v} is a 2-absorbing set of D−(X\{v}),
then either {v} is a 3-kernel of D, or there is a vertex w ∈ X not 2-absorbed by
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v such that {w} is a 3-kernel of D, or there is a homogeneous set of vertices

K ⊆ X such that K is a 3-kernel of D.

Proof. Let v ∈ V (D) and X ⊆ V (D) be like in the hypothesis. If {v} is not
a 3-kernel of D, then the set N1 ⊆ X of vertices not 2-absorbed by {v} is non-
empty. Let w be a vertex of minimum out-degree among the vertices of maximum
in-degree of N1. If {w} is not a 3-kernel of D, then the set N2 ⊆ V (T ) of vertices
not 2-absorbed by {w} is non-empty. We will show that K = N2 ∪ {w} is a
homogeneous set of T .

First, it is easy to observe that N−(v) ⊆ N−(w). Since w is not 2-absorbed by
v, if x → v for some x ∈ V (D)\X, then x → w, otherwise w would be 2-absorbed
by v. Since N−(v) ⊆ N−(w), any vertex 2-absorbed by v is also 2-absorbed by
w, and hence N2 ⊆ N1. With an argument similar to the one previously used
for v and w, we see that for every x ∈ N2 we have N−(w) ⊆ N−(x). Hence,
for every x ∈ N2 it is clear that d−(w) ≤ d−(x). Since w was chosen to have
the maximum in-degree in N1, and N2 ⊆ N1, we have d−(w) = d−(x), and thus
N−(w) = N−(x), for every x ∈ N2. From here it is clear that if x ∈ N2 is
arbitrarily chosen, then N+(x) ∩ N−(x) = ∅, otherwise, x would be 2-absorbed
by w. Finally, since w was chosen with minimum out-degree among the vertices
of maximum in-degree, we also have N+(w) ∩ N−(w) = ∅. Recalling that D is
semicomplete multipartite we conclude that N+(x) = N+(y) for every x, y ∈ K.
Therefore, K is a homogeneous set.

Since {w} is 2-absorbent in D− (X \ {w}), we have that K is 2-absorbent in
D. Besides, since K is homogeneous, with N+(x) ∩N−(x) = ∅ for every x ∈ K,
it is also 3-independent. So, K is a 3-kernel of D.

From here, it is easy to obtain a characterization theorem for semicomplete mul-
tipartite digraphs having a 3-kernel.

Theorem 3. Let D be a semicomplete multipartite digraph. Then D has a 3-
kernel if and only if there is a vertex v ∈ V (D) such that {v} is a 2-absorbing set

of D − (X \ {v}), where X is the partite set of D containing v.

Proof. For the implication not covered by Lemma 2, let K be a 3-kernel of D
and v ∈ K an arbitrarily chosen vertex. Since K is an independent set, it is
contained in some partite set X of D; let u be any vertex of V (D) \X. If u 6→ v,
then v → u. Also, there must exist x ∈ K such that d(u, x) ≤ 2. If x = v we are
done. If x 6= v it follows from the 3-independence of K that u 6→ x, otherwise
d(v, x) = 2. Hence, there must exist y ∈ V (D) \X such that u → y → x. Since
D is a semicomplete multipartite digraph, v → y or y → v. The 3-independence
of K prevents the former case from happening, hence y → v and d(u, v) = 2.
Therefore, {v} is a 2-absorbing set of D − (X \ {v}).
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This result yields a polynomial time algorithm for the 3-kernel problem in semi-
complete multipartite digraphs.

Corollary 4. The 3-kernel problem can be decided in polynomial time when re-

stricted to the class of semicomplete multipartite digraphs.

It will be seen below that our algorithm actually finds a 3-kernel (if one exists)
in the claimed time.

Proof of Corollary 4. By virtue of Theorem 3, to determine whether a semi-
complete m-partite digraph D has a 3-kernel it suffices to conduct a backwards
Breadth First Search (BFS) from every vertex v to determine if a 2-absorbing
vertex exists in D − (X \ {v}), where X is the partite set of D containing v. If
|V (D)| = n and |A(T )| = m, this can be performed in time O(nm).

If such a vertex v exists, and the backwards BFS shows that {v} is a 3-kernel,
then we are done. Otherwise, we can choose a vertex w of minimum out-degree
among the vertices with maximum in-degree not 2-absorbed by v and check with
a backwards BFS whether or not w is a 3-kernel of D. If not, according to Lemma
2, the set of vertices of maximum in-degree not absorbed by w together with w, is
a 3-kernel of D. Let us observe that this work can be accomplished by performing
at most n backwards BFS searches, hence, a 3-kernel of D, if it exists, can be
found in time O(nm).

In the special case of semicomplete bipartite digraphs the structure of a 3-kernel
is simple enough to obtain a linear time recognition algorithm.

Theorem 5. Let D = (X,Y ) be a semicomplete bipartite digraph. A 3-kernel of
D consists either of all the sinks of D, or of a vertex v ∈ X such that Y → v, or
of a vertex v ∈ Y such that X → v.

Proof. Due to the 3-independence of a 3-kernel K of D, it must be the case that
K ⊆ X or K ⊆ Y .

Let Z = {v ∈ V (D) : d+(v) = 0}. If Z 6= ∅, then Z ⊆ X or Z ⊆ Y , because D
is semicomplete bipartite. Let us assume without loss of generality that Z ⊆ X.
Clearly Z is 3-independent. Also, Y → Z and, if x ∈ X \Z, then x → y for some
y ∈ Y . Since x → y → Z, the vertex x is 2-absorbed by Z, and Z is a 3-kernel of
D.

If Z = ∅ and K is a 3-kernel of D, let us assume without loss of generality
K ⊆ X, and let v ∈ K. If there is some y ∈ Y such that y 6→ v, then there must
be v′ ∈ X ∩K such that y → v′. Since D is semicomplete bipartite, and y 6→ v
implies v → y, we must have v → y → v′, contradicting the 3-independence of
K. As a consequence, Y → v. Also, since Z = ∅, for every v 6= x ∈ X there is
y ∈ Y such that x → y. Recalling that Y → v, it is now clear that K = {v}.
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Let us observe that in the previous proof we have shown that, in general, if Z = ∅
and v ∈ X is a vertex such that Y → v, then {v} is a 3-kernel of D. So, we have
found a way to determine if a semicomplete bipartite digraph has a 3-kernel and,
at the same time, to find a 3-kernel.

Corollary 6. It can be determined in linear time whether a semicomplete bipar-

tite digraph has a 3-kernel.

In this case also our algorithm actually finds a 3-kernel (if one exists) in the
claimed time.

Proof of Corollary 6. Assume that |X| = n1 and |Y | = n2. By Theorem 5,
to decide if D has a 3-kernel, we only have to determine if a sink exists in D, or
if a vertex with in-degree equal to n2 exists in X, or if a vertex with in-degree
equal to n1 exists in Y . This can be done in time O(|V (D)| + |A(D)|).

If there are no sinks in D, then finding a vertex in the remaining cases will
give us the 3-kernel we want. If there is a sink in D, then we have to find all such
vertices, which also can be performed in time O(|V (D)| + |A(D)|).

If we restrict our analysis to bipartite tournaments, we can be more precise. We
have the following simple corollary.

Corollary 7. Let T be a bipartite tournament. Then T has a 3-kernel if and
only if there is a sink in T .

Proof. In a bipartite tournament T = (X,Y ), a vertex v ∈ X can only absorb
vertices in Y at odd distances, hence, if it 2-absorbs Y , it absorbs Y . The result
follows directly from Theorem 5 and the fact that T is a bipartite tournament.

We wonder whether one can obtain linear time recognition algorithms for semi-
complete m-partite digraphs with a 3-kernel also for m ≥ 3.

3. An NP-completness Proof

A classical result in kernel theory states that every bipartite digraph has a kernel
[16]. Since bipartite digraphs are cyclically 2-partite digraphs, it is natural to ask
if every cyclically k-partite digraph has a k-kernel. The answer is no. The digraph
depicted in Figure 1 is given in [17] as an example of a cyclically 3-partite digraph
without a 3-kernel. So, the next natural question is to ask for the complexity of
the k-kernel problem restricted to the class of cyclically k-partite digraphs. As
we have already observed, for k = 2 a cyclically 2-partite digraph is simply a
bipartite digraph, which always has a kernel [16]. Hence, the 2-kernel problem
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Figure 1. The digraph H, a cyclically 3-partite digraph without a 3-kernel.

can be decided in constant time for the family of cyclically 2-partite digraphs. In
this section and the next one we will explore the case when k = 3.

The following lemma is proved in [17].

Lemma 8. The digraph H of Figure 1 does not have a 3-kernel.

This section is devoted to prove the following result.

Theorem 9. The 3-kernel problem for the class of cyclically 3-partite digraphs

is NP-complete, even when restricted to cyclically 3-partite digraphs of circum-

ference 6.

We will provide a reduction from the 3-coloring problem to the 3-kernel problem.
Given a graph G, we will construct a cyclically 3-partite digraph DG with circum-
ference 6 and such that G has a 3-coloring if and only if DG has a 3-kernel. So, for
every vertex v ∈ V (G) we will consider the digraph Dv depicted in Figure 2. The
digraph Dv consists of the digraph Hv

∼= H joined towards a directed triangle
Tv = (v0, v1, v2, v0). The three depicted types of vertices (circles, triangles and
squares) represent the cyclical partition of Dv. (The arcs go from the vertices
that are circles to the triangles to the squares and then back to the circles.)

Observation 10. The digraph in Figure 2 has exactly three distinct 3-kernels,
each of them consisting of one vertex v of the directed triangle, one vertex, in the

same partite set as v (triangle, square or circle), of the directed 6-cycle and all

the sinks. One of these 3-kernels is represented by the black vertices in Figure 2.
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Figure 2. Dv: gadget for every v ∈ V (G).

Proposition 11. If D is a digraph with a 3-kernel and having Dv (Figure 2)
as an induced subdigraph such that the vertices in Hv are incident to no other

vertices in D, at least one vertex in the directed triangle Tv of Dv must be chosen

in such a 3-kernel.

The previous observation is clear, since, otherwise, a 3-kernel should be chosen
for Hv, which, in virtue of Lemma 8, cannot be done. Also, the 3-independence of
a 3-kernel implies that at most one vertex of Tv can be chosen. So, for v ∈ V (G),
exactly one vertex of Tv will be chosen for a 3-kernel. The obvious interpretation
is that the vertex v is colored with color i if and only if the vertex chosen for the
3-kernel in Tv belongs to the i-th partite set of the cyclical partition of Dv.

Hence, for an edge uv ∈ E(G), we need to link Du and Dv in such a way
that ui and vi cannot be chosen at the same time for a 3-kernel. We will begin by

choosing an arbitrary acyclic orientation for G,
−→
G . Then, for every (u, v) ∈ E(G),

we will consider the construction D(u,v) depicted in Figure 3. For the sake of
clarity, some vertices have been omitted from Figure 3: every crossed vertex
should have a “tail” of length 2, like in Figure 2.

Thus for every graph G we can construct in polynomial time the digraph DG

as follows.

1. Obtain
−→
G orienting G acyclically.

2. For every v ∈ V (G), construct the digraph Dv.
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Figure 3. D(u,v): gadget for every (u, v) in the acyclic orientation of G.
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3. For every (u, v) ∈ A(
−→
G), join Du and Dv using D(u,v).

Hence the digraph DG depends on the acyclic orientation
−→
G . Nonetheless, all the

results we will prove about DG remain valid regardless of which acyclic orientation
is chosen, so we will consider that an arbitrary acyclic orientation has been already
chosen whenever we talk about DG.

Lemma 12. Let G be a graph. Then DG is a cyclically 3-partite digraph with

circumference 6.

Proof. The digraph D(u,v) has a cyclical 3-partition depicted in Figure 3: each
partite set consists of all the vertices with the same shape (circles, triangles or
squares). Clearly, these cyclical 3-partitions are compatible for every pair of

adjacent arcs of
−→
G and thus, the union of the corresponding partite sets can be

taken to obtain a cyclical 3-partition for the digraph DG.

Also, since
−→
G is acyclic, every directed cycle of D is contained in some Dv.

It is easy to confirm that the longest directed cycle of Dv has length 6. Hence,
DG has circumference 6.

Lemma 13. Let D be a digraph with a 3-kernel K. If D(u,v) is an induced

subdigraph of D such that only the vertices ui, vi may be incident to other vertices

in D, then for every i ∈ {0, 1, 2} the following statements hold”.

(i) If vi ∈ K, then ui /∈ K.

(ii) If ui ∈ K, then vi /∈ K.

Proof. We will prove the statements for v0 and u0, the remaining cases have
similar proofs. If v0 ∈ K, then the vertex x6 is 2-absorbed by v0 and hence cannot
be included in K. Note that N+(x4) = {x5} and N+(x5) = {x6}. Since x5 is
also already absorbed by K (recall that we are omitting the “tails” pending from
the crossed vertices in Figure 3), the only possibility is that x4 ∈ K (otherwise
x4 would not be 2-absorbed by K). Now, x2, x3 and u0 are 2-absorbed by x4.
Thus, u0 /∈ K.

If u0 ∈ K, then x4 /∈ K, because d(u0, x4) = 2. If x2 ∈ K, then x3 cannot be
included in K and also, no vertex that 2-absorbs x3 can be included in K. So,
x2 /∈ K and the only possibility is that x3, x6 ∈ K. Finally d(x6, v0) = 2 and
thus v0 /∈ K.

Lemma 14. Let G be a graph and K a 3-kernel of DG. Then, for every vertex

v ∈ G, exactly one vertex vi of Tv ⊂ Dv, i ∈ {0, 1, 2}, belongs to K. Moreover,

if for every such vi ∈ K the vertex v ∈ V (G) is colored with color i, we obtain a

3-coloring of G.
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Proof. The first statement is just Observation 11. The second statement follows
directly from Lemma 13.

Lemma 15. Let G be a graph with a 3-coloring f : V (G) → {0, 1, 2}. The set

{vf(v)}v∈V (G) consisting in exactly one vi of every Tv in DG can be extended in

a unique way to a 3-kernel of DG.

Proof. Let v ∈ V (G) be arbitrarily chosen. It follows from Observation 10 that
a 3-kernel containing vf(v) can be chosen for Dv.

If there is u ∈ V (G) such that (u, v) ∈ A(
−→
G), we can assume without loss of

generality that f(v) = 0. It can be directly verified that the set {v0, x4, y3, y6, z3,
z6, uf(u)} together with all the sinks of D(u,v) and the necessary vertices to com-
plete a 3-kernel for Dv and Du, form a 3-kernel for D(u,v).

Also, using an argument similar to the one for Lemma 13, it can be shown

that this is the only way to extend {vf(v), uf(u)} to a 3-kernel of D(u,v). Since
−→
G

is acyclic, it is easy to observe that a unique 3-kernel containing {vf(v)}v∈V (G)

can be built for DG.

Lemma 16. Let G be a graph. There is a one to one correspondence between

the 3-colorings of G and the 3-kernels of DG.

Proof. This now follows from Lemmas 14 and 15.

We are now ready to prove Theorem 9.

Proof of Theorem 9. If D is a digraph and K ⊆ V (D), it can be verified in
polynomial time whether or not K is a 3-kernel of D. Also, Lemma 16 shows
a polynomial reduction from the 3-coloring problem to the 3-kernel problem re-
stricted to the class of cyclically 3-partite digraphs with circumference 6.

To obtain the last result of this section we will use the following theorem, which
can be found in [15].

Theorem 17. Let D be a digraph and k ≥ 2 an integer. Then K ⊆ V (D) is a

k-kernel of D if and only if K is a kernel of Ck−1(D).

Now, we are ready to derive the following fact about the kernel problem as a
byproduct.

Corollary 18. The kernel problem restricted to the class of 3-colorable digraphs

is NP-complete.
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Proof. Let G be a graph. Lemma 16 shows that G has a 3-coloring if and only
if DG has a 3-kernel. Since DG is a cyclically 3-partite digraph, the 2-closure of
D, C2(D), is 3-colorable. Also, Theorem 17 guarantees that C2(D) has a kernel
if and only if D has a 3-kernel if and only if G has a 3-coloring. Hence, we have
found a polynomial reduction of the 3-coloring problem to the kernel problem
restricted to the class of 3-colorable digraphs.

4. Two Sufficient Conditions for the Existence of 3-kernels in

Cyclically 3-partite Digraphs

In the previous section we have shown that the 3-kernel problem is NP-complete,
even when restricted to the class of cyclically 3-partite digraphs of circumfer-
ence 6. In this section we will show that, with very simple additional conditions,
the 3-kernel problem restricted to the family of cyclically 3-partite digraphs be-
comes trivial, because a 3-kernel always exists. Our first condition involves the
distribution of the sinks in the digraph.

We will denote by Z the family of cyclically 3-partite digraphs that admit a
cyclic 3-partition D = (V0, V1, V2) in which at least one Vi, for i ∈ {0, 1, 2}, has
no sink.

Theorem 19. If D belongs to Z, then D has a 3-kernel K.

Proof. Let X0 = {v ∈ V (D) : d+(v) = 0} ⊆ V (D). If X0 = ∅, then V0, V1 and
V2 are 3-kernels of D. If X0 ⊆ Vi for some 0 ≤ i ≤ 2, then Vi is a 3-kernel of D.
So, let us suppose that X0 ⊆ V0 ∪ V1 and X0 ∩ V0 6= ∅ 6= X0 ∩ V1.

We will construct a subset of V (D) that must be contained in every 3-kernel
of D. We begin by recursively defining a family of subdigraphs of D and a family
of subsets of V (D).

• D0 = D.

• X0 = {v ∈ V (D) : d+(v) = 0} ⊆ V (D).

• Dn+1 = D[V (Dn) \N−2
Dn

[Xn]].

• Xn+1 =
{

v ∈ V (Dn+1) : d+Dn+1
(v) = 0

}

.

Clearly, X =
⋃

n∈NXn must be contained in every 3-kernel of D (otherwise, no
other vertex could absorb a vertex in X). Also, we have by construction that X
is 3-independent. A very important observation is that X ⊆ V0 ∪ V1. Proceeding
by induction on n we can observe that X0 ⊆ V0 ∪ V1 by hypothesis. Now, let us
suppose that Xn−1 ⊆ V0 ∪ V1. If v ∈ V2 ∩ V (Dn), and d+Dn

(v) = 0, then every
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out-neighbor of v in Dn is 2-absorbed by Xn−1. Note that Xn−1 ⊆ V0 ∪ V1, and
N+

Dn

(v) ⊆ V0. Recalling that D is cyclically 3-partite, we can conclude that every
out-neighbor of v is absorbed (at distance 1) by Xn−1. Thus, v is 2-absorbed by
Xn−1 and, by construction, v /∈ V (Dn), a contradiction. Since the contradiction
arose from the assumption d+Dn

(v) = 0, then v /∈ Xn. As v was arbitrarily chosen
in V2 ∩ V (Dn), we can conclude that Xn ∩ V2 = ∅, i.e., Xn ⊆ V0 ∪ V1, as we
desired.

Set D′ =
⋂

n∈NDn. Now V (D′) is conformed by precisely those vertices in
D that are not 2-absorbed by X. So, if V (D′) = ∅, then X is a 3-kernel of D.
Otherwise, we can consider V ′

0 = V0 ∩ V (D′). Since V ′

0 ⊆ V0, V
′

0 is 3-independent
in D. Also by construction, X ∪ V ′

0 is 3-independent. So, let v ∈ V (D′) \ V ′

0 be
arbitrarily chosen.

If v ∈ V2, and there is no u ∈ V ′

0 such that v → u, then there must exist
u ∈ V0 \ V ′

0 and w ∈ V ′

1 = V1 ∩ V (D′) such that v → u → w. Otherwise,
d+Dn+1

(v) = 0 and v should be in Xi for some i ∈ N. Hence, u is 2-absorbed by X.

Since u ∈ V0 and X ⊆ V0 ∪ V1, so u is absorbed (at distance 1) by X. Therefore,
there must exist i ∈ N such that u is absorbed by Xi, and then, v is 2-absorbed
by Xi. This implies that v /∈ Di+1, implying that v /∈ D′, a contradiction. Thus
for every v ∈ V2 ∩V (D′) there is u ∈ V ′

0 such that v → u. Finally, if v ∈ V ′

1 , then
d+D′(v) 6= 0, so v is 2-absorbed by V ′

0 , and so, V ′

0 is 2-absorbent in D′.

We have proved that X ∪ V ′

0 is a 3-kernel of D.

Our second restriction is on the length of the directed cycles of D. The next fact
is easy to see.

Lemma 20. Let D be a digraph with circumference k. If (u, v) ∈ A(D) and there

is a vu-directed path in D, then d(v, u) ≤ k − 1.

Next we note the following fact.

Lemma 21. Let D be a digraph with circumference 3. Then, every 3-cycle in

H = C2(D) has at least one symmetric arc.

Proof. Let C = (v0, v1, v2, v0) be a directed cycle in H. By Lemma 20, if any
arc of C is an arc of D, then it is symmetric in H.

So, we can assume that none of the arcs of C is an arc of D, then there are ver-
tices vij such that (vi, vij , vj) are directed paths in D for (i, j)∈{(0, 1),(1, 2),(2, 0)}.

If v01 = v12 = v20, then (v1, v12, v0) is a directed path in D and (v1, v0) ∈
A(H). If v01 6= v12, then either (v01, v1, v12, v2, v01), (v0, v01, v1, v12, v0) or (v0, v01,
v1, v12, v2, v20, v0) (depending whether v01 = v20, v12 = v20 or v01 6= v20 6= v12,
respectively) is a directed cycle of length greater than three, which results in a
contradiction. Analogous arguments apply in the remaining cases.
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To prove our next result we will use the following theorem, which can be found
in [4].

Theorem 22. Let D be a digraph. If every directed cycle of D has at least one

symmetric arc, then D has a kernel.

Now we are ready to prove our second sufficient condition for the existence of
3-kernels in digraphs.

Theorem 23. If D is a digraph such that every directed cycle of D has length

exactly 3, then D has a 3-kernel.

Proof. According to Theorems 17 and 22, it suffices to prove that every directed
cycle in the 2-closure of D has at least one symmetric arc. Let H = C2(D) and
C = (v0, v1, . . . , vn−1, v0) be a directed cycle of H. The case n = 3 is covered by
Lemma 21.

According to Lemma 20 we may assume that A(C) ∩A(D) = ∅ when n ≥ 4.
So, there exist vertices vi(i+1) such that (vi, vi(i+1), vi+1) is a directed path in D
for 0 ≤ i ≤ n− 1, (mod k). We affirm that there are 0 ≤ i 6= j ≤ n− 1 such that
either vi(i+1) = vj(j+1) or vi(i+1) = vj . Otherwise,

⋃n−1
i=0 (vi, vi(i+1), vi+1) would be

a directed cycle of length greater than 3 in D.
Now, let 0 ≤ i 6= j ≤ n− 1 be such that vi(i+1) = vj(j+1) or vi(i+1) = vj and

|j − i| is minimal with this property. We will assume without loss of generality
that i = 0. There are two cases.

If v01 = vj(j+1) then we have again two cases. If j = 1, then v01 = v12, but
this would imply that (v01, v1, v01) is a directed 2-cycle in D, contradicting our
hypothesis.

Hence, j ≥ 2 and, for every 0 < k 6= l < j, we have vk(k+1) 6= vl(l+1),
vk(k+1) 6= v01 6= vl(l+1) and vj 6= vk(k+1) 6= vl, if not, the minimality of |j − i|
would be contradicted. Therefore, C ′ = (v01, v1, v12, v2, . . . , v(j−1)j , vj , vj(j+1)) is
a directed cycle in D. Recall that every directed cycle in D has length 3, and C ′

has even length, a contradiction.
If v01 = vj , then j ≥ 3, because A(C) ∩ A(D) = ∅. Also, for every

0 < k 6= l < j, we have vk(k+1) 6= vl(l+1), vk(k+1) 6= v01 6= vl(l+1) and vj 6=
vk(k+1) 6= vl, if not, the minimality of |j − i| would be contradicted. Hence,
C ′ = (v1, v12, v2, . . . , v(j−1)j , vj , v1) is a directed cycle in D of lenght at least 5,
which results in a contradiction.

Since the contradiction arose from the assumption A(C)∩A(D) = ∅, at least
one arc of C is an arc of D and Lemma 20 implies that such an arc is symmetric
in H.

We can observe that Theorem 23 is not restricted to cyclically 3-partite digraphs.
Nonetheless, in the case of cyclically 3-partite digraphs, it follows from Theorem
23 that the circumference constraint in Theorem 9 cannot be improved.
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5. k-quasi-transitive Digraphs

It is well known that a transitive digraph must always have a kernel [3]. We
first observe that the kernel problem can be solved in polynomial time for quasi-
transitive digraphs. The following result can be found in [2].

Lemma 24. Let D be a strong quasi-transitive digraph on at least two vertices.

Then the following holds:

(i) UG(D) is disconnected;

(ii) If S and S′ are two connected components of UG(D), then either V (S′) →
V (S) or V (S) → V (S′), or both V (S′) → V (S) and V (S) → V (S′) in which

case |V (S)| = |V (S′)| = 1.

From here, it is easy to derive the following lemma.

Lemma 25. Let D be a strong quasi-transitive digraph. Then D has a kernel if

and only if there is an absorbing vertex in D.

Proof. We only prove the non-trivial implication. Let K be a kernel of D. Since
K is independent, it follows from Lemma 24 that it must be contained in V (S) for
some connected component S of UG(D). Recalling that D is strongly connected,
there must be at least one connected component S′ 6= S of UG(D) such that
V (S) → V (S′). Since K ⊆ S, it must be the case that V (S′) → V (S). Hence,
Lemma 24 implies that |V (S)| = 1, and thus |K| = 1. If K = {v}, then v is an
absorbing vertex of D.

In [14] it is observed that, in order for a k-quasi-transitive digraph D to have a
k-kernel, it suffices to construct a k-kernel for every terminal strong component
of D. In particular, this applies to kernels and quasi-transitive digraphs, and it
allows us to conclude the following theorem.

Theorem 26. The kernel problem restricted to the class of quasi-transitive di-

graphs can be solved in polynomial time.

In this case also our algorithm actually finds a 3-kernel (if one exists) in the
claimed time.

Proof of Theorem 26. Let D = (V,A) be a digraph such that |V | = n and
|A| = m. The condensation of D can be obtained in time O(n + m) and it can
have at most O(n) terminal strong components. For every terminal component
C, it can be verified in time O(n + m) if an absorbing vertex exists: it suffices
to construct the out-degree sequence of C. Hence, the kernel problem can be
decided in time O(n2 +nm). If D has a kernel, it can be found in the same time.
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This suggests a natural generalization.

Problem 27. Is the k-kernel problem polynomial time solvable for k-quasi-
transitive digraphs?

We prove this is true for k = 3 (as well as k = 2, as per the above theorem).

Let Fn be the digraph with vertex set {x0, . . . , xn} and arc set {(x0, x1),
(x1, x2), (x2, x0)} ∪ {(x0, xi+3), (xi+3, x1) : 0 ≤ i ≤ n− 3}, where n ≥ 3. In [8],
it is proved that every strong 3-quasi-transitive digraph is either semicomplete,
or semicomplete bipartite, or isomorphic to Fn for some n ≥ 3. Also, we know
that Fn has a 3-kernel for every n ≥ 3 (it is enough to choose {x2}); and every
semicomplete digraph has also a 3-kernel, consisting of a vertex of maximum
in-degree. So, the 3-kernel problem for 3-quasi-transitive digraphs is reduced to
semicomplete bipartite digraphs (we have already mentioned that, in order for D
to have a 3-kernel it suffices to construct a 3-kernel for every terminal component
of D).

Corollary 28. The 3-kernel problem restricted to the class of 3-quasi-transitive
digraphs can be decided in polynomial time.

In this case also our algorithm actually finds a 3-kernel (if one exists) in the
claimed time.

Proof of Corollary 28. Let D = (V,A) be a digraph such that |V | = n and
|A| = m. The condensation of D can be obtained in time O(n + m) and it
can have at most O(n) terminal strong components. For every semicomplete
bipartite terminal component, according to Corollary 6, it can be verified if it
has a 3-kernel and, if so, a 3-kernel can be found, both in time O(n+m). For each
semicomplete terminal component, a 3-kernel can be found in time O(n + m).
For every terminal component isomorphic to Fn, a 3-kernel can be constructed in
constant time. Hence, the 3-kernel problem can be decided in time O(n2 + nm).
If D has a 3-kernel, it can be found in the same time.

It is interesting to note that the k-kernel problem is trivial for (k − 2)-quasi-
transitive digraphs: every (k− 2)-quasi-transitive digraph has a k-kernel [14, 13]
(for k ≥ 4). For (k−1)-transitive digraphs, it has been conjectured that a k-kernel
also always exists.

Conjecture 29 [14]. If D is a (k − 1)-quasi-transitive digraph then D has a

k-kernel.

This has been verified for k = 3 and k = 4, [14, 12]. More generally, we may ask
the following.
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Problem 30. Determine the complexity of the k-kernel problem in (k−1)-quasi-
transitive digraphs.
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