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Abstract

Let G be an undirected graph with n vertices. Assume that a robot is
placed on a vertex and n − 2 obstacles are placed on the other vertices. A
vertex on which neither a robot nor an obstacle is placed is said to have
a hole. Consider a single player game in which a robot or obstacle can be
moved to adjacent vertex if it has a hole. The objective is to take the robot
to a fixed destination vertex using minimum number of moves. In general,
it is not necessary that the robot will take a shortest path between the
source and destination vertices in graph G. In this article we show that the
path traced by the robot coincides with a shortest path in case of Cartesian
product graphs. We give the minimum number of moves required for the
motion planning problem in Cartesian product of two graphs having girth 6
or more. A result that we prove in the context of Cartesian product of Pn

with itself has been used earlier to develop an approximation algorithm for
(n2 − 1)-puzzle.
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1. Introduction

Consider the following scenario: Given a graph, G, with a robot placed at one of
its vertex (labeled as s) and obstacles at some of the other vertices. A vertex at
which the robot or an obstacle is not placed is said to have a hole or equivalently
empty. Assume that we are allowed to slide an obstacle or the robot to an adjacent
vertex if it is empty. The objective is to find a minimum sequence of moves that
take the robot from s to a target vertex t. This problem of motion planning on
a graph was introduced in [10]. It is a simple abstraction of the robot motion
planning problem, where the geometry is replaced by the adjacency relation in the
graph. The problem and its variations has also been studied in [1,2,8,9,11,12,14].
In [10], Papadimitriou et al. have shown that the decision version of the problem
with arbitrary number of holes is NP-complete. The problem remains in the same
complexity class even when restricted to planar graphs.

In this article we investigate the problem of motion planning with a single
hole. In particular, we study this problem for a special class of graphs, the
Cartesian product of two given graphs. In general, a minimal set of moves that
take the robot to a fixed destination vertex will not take the robot through a
shortest path between the source and destination vertices in the given graph.
However, we show that this motion planning problem can be solved efficiently
when restricted to Cartesian product graphs. We give the minimum number of
moves required for the motion planning problem in Cartesian product of two
graphs having girth 6 or more. A result that we prove in the context of Cartesian
product of Pn with itself has been used earlier to develop an approximation
algorithm for (n2 − 1)-puzzle.

The rest of the paper is organized as follows. In next section we describe the
definitions and basic results. In Sections 3 and 4, we investigate the properties
with regard to local moves of the hole and trace of the robot, respectively, in
Cartesian product of two graphs. Then we use these results to find minimum
number of required moves in Section 5. Finally, conclusion and future work are
discussed in Section 6.

2. Background

Let G be a graph with vertex set V (G) and edge set E(G). We refer to |V (G)|
and |E(G)| as the order and the size of G, respectively. A graph G is called
non-trivial if |V (G)| > 1. The study in this article is restricted to simple finite
non-trivial graphs. For two vertices u, v ∈ V (G), let dG(u, v) denotes the distance
between u and v in G. When there is no confusion about the underlying graph G,
we use d(u, v) instead of dG(u, v) to represent the distance between the vertices u
and v in G. We denote the path, the cycle and the complete graph on n vertices
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by Pn, Cn and Kn, respectively. The number of edges in a path is called its
length. The girth of a graph G, denoted by g(G), is the length of a shortest cycle
contained in the graph G. For any graph G and u, v ∈ V (G), we use the notation
Cu
v to denote the configuration of the graph G with the robot at u, the hole at v

and obstacles in the remaining vertices. Also if u and v are adjacent in G, we use
v

r
←− u and v

o
←− u to denote respectively, the robot move and the obstacle move

from the vertex u to the adjacent vertex v with a hole. We refer to the book [5]
for the standard terms used in this article.

Given two graphs G and H, there are several ways to construct their product
having vertex set as the Cartesian product of the vertex sets of G and H. Many of
these graphs arise naturally in various contexts such as direct, Cartesian, strong
and the lexicographic products. These product graphs are widely used in network
design [3] and other fields. For details the reader may refer to monograph [6].

Definition Cartesian Product. The Cartesian product G�H of two graphs G

and H is a graph with vertex set V (G)× V (H) in which (ui, vj) and (up, vq) are
adjacent if one of the following conditions holds:

(i) ui = up and {vj , vq} ∈ E(H),

(ii) vj = vq and {ui, up} ∈ E(G).

The graphs G and H are known as the factors of G�H. Cartesian product has
been widely investigated and is arguably the most natural one among all products.
It is associative, commutative and distributes over disjoint union. Also the graph
G�H is connected if and only if both G and H are connected [4]. Now onwards,
G and H are connected finite simple graphs with V (G) = {1, 2, . . . ,m} unless
otherwise stated.

Suppose we are dealing with r-copies of a graph G and we are denoting these
r-copies of G by Gi, where i = 1, 2, . . . , r. Then, for each vertex u ∈ V (G) we
denote the corresponding vertex in the ith copy Gi by ui.

Example 1. Consider the Cartesian product of P2 with C4. The graph P2�C4

is shown in Figure 1. For clarity, P2 and C4 are displayed above and to the
right of the product graph, respectively. The dotted lines indicate the edges
corresponding to graph P2 in the product graph.

Remark 2. One well known fact about Cartesian product is that, we may also
view G�H as the graph obtained from G by replacing each vertex i ∈ V (G)
by a copy H i (say) of H and each of its edges {i, j} with |V (H)| edges joining
corresponding vertices of H i and Hj .

In view of Remark 2, for any vertex i ∈ V (G) we refer the copy of H, denoted by
H i, in G�H corresponding to the vertex i as the ith copy of H in G�H. Also for



210 B. Deb and K. Kapoor

bu1

b
v1

b

w1

b

x1

b
u2

b
v2

b w2

b

x2

bu

b
v

b w

b

x

C4

b
1

b
2P2

Figure 1. P2�C4.

any i ∈ V (G), we use ui to denote the vertex in H i corresponding to the vertex
u ∈ V (H). Also, commutativity of the Cartesian product allows us to view G�H

as the graph obtained from H by replacing each of its vertices by a copy of G
and each of its edges {u, v} with |V (G)| edges joining corresponding vertices of
G in the two copies Gu and Gv.

Observe that the Cartesian Product Pn�Pn is a grid graph on n2 vertices
that has been extensively studied in the context of (n2 − 1)-puzzle [7, 11–14].
Ranter and Warmuth [12] have shown that finding a solution with minimum
number of moves for the (n2−1)-puzzle is NP-hard. They give an approximation
algorithm that produces a solution of length at most constant times the length
of the optimum solution. Parberry, in [11], gives an algorithm that solves the
(n2 − 1)-puzzle in at most 5n3 + O(n2) moves. We show that some of the ideas
presented in [11,12] can be generalized to all Cartesian products (see Propositions
5, 7, 9 and 10). We apply these generalized results to compute the minimum
number of moves required in motion planning problem for the Cartesian product
of two given graphs.
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Figure 2. Path traced by robot moves is not a shortest path.

Example 3. Consider the configuration Cu
v as shown in Figure 2. It easy to see
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that the minimum number of moves required to take the robot from u to v is 21
and the path traced by the robot moves in any minimum sequence of moves is
not the shortest path from u to v. In fact, to move the robot from u to v along
the shortest path requires at least 45 moves.

Remark 4. In case of the Cartesian product graphs, the path traced by the
robot moves in a minimum sequence of moves that takes the robot from a source
vertex to a target vertex is a shortest path.

3. Local Moves of the Hole

Definition. An edge {ui, vj} in G�H is said to be a G-edge (respectively, H-
edge) if u = v and {i, j} ∈ E(G) (respectively, if i = j and {u, v} ∈ E(H)).

Definition. For any path P in G�H, by G-length and H-length of P we mean
the number of G-edges and H-edges in P , respectively. We use lG(P ) and lH(P )
to denote the G-length and H-length of P , respectively.

Definition. Given two graphs G and H. For any ui, vj ∈ V (G�H), we call the
distance between u and v in H to be the H-distance between ui and vj in G�H,
and the distance between i and j in G to be the G-distance between ui and vj in
G�H. We use dG(u

i, vj) and dH(ui, vj) to denote the G-distance and H-distance
between ui and vj in G�H, respectively.

As mentioned earlier, when there is no confusion about the underlying graph G,
we use d(u, v) instead of dG(u, v) to represent the distance between the vertices
u and v in G.

Proposition 5. Given two graphs G and H. Let {u, v}, {v, w} ∈ E(H) and

i ∈ V (G). Then dG�H−vi(u
i, wi) = min{dH−v(u,w), 4}.

Proof. Let P be a shortest path connecting ui and wi in G�H − vi. We need
to show that |P | = min{dH−v(u,w), 4}. We consider the following cases:

Case I. V (P ) ∩ V (H i) = V (P ). In this case V (P ) ⊆ V (H i − vi) and so
|P | = dH−v(u,w).

Case II. V (P ) ∩ V (H i) 6= V (P ). We claim that |P | = 4. Notice that for
any {i, j} ∈ E(G), the vertices xi, yj are adjacent in G�H if and only if x = y.
Therefore if we are moving away from the copy H i using the path P we must also
come back to the copy H i. Hence G-distance covered along the path P must be
at least two. Also d(u,w) = 2, otherwise {u,w} ∈ E(H) and this implies |P | = 1,
which is not possible. So H-distance traveled along the path P must be at least
two. Hence |P | ≥ 4. Now for any {i, j} ∈ E(G) the path [ui, uj , vj , wj , wi]
connects ui and wi in G�H. This proves our claim.
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Corollary 6. Given two graphs G and H. Let {u, v}, {v, w} ∈ E(H) and i ∈
V (G), where u, v, w are distinct. Then starting from the configuration Cvi

ui of

G�H, we require at least min{1+ dH−v(u,w), 5} moves to move the robot to wi.

In particular, if g(H) ≥ 6 then we need at least 5 moves to move the robot to wi.

Proof. Notice that, {ui, vi}, {vi, wi} ∈ E(G�H). In order to move the robot
from vi to wi, before it, the hole must be moved from ui to wi. This takes
min{dH−vi(u

i, wi), 4} moves, since dG�H−vi(u
i, wi) = min{dH−v(u,w), 4}. Then

the move vi
r
←− wi takes the robot from vi to wi. Hence the result follows.

If g(H) ≥ 6 then dH−v(u,w) ≥ 4 and so min{1 + dH−v(u,w), 5} = 5. Thus,
at least five moves are required to take the robot from vi to wi.

As Cartesian product of graphs is commutative, so the proof of the following
proposition can be drawn in the same line as that of Proposition 5.

Proposition 7. Given two non-trivial graphs G and H. Let {i, j}, {j, k} ∈ E(G)
and u ∈ V (H). Then dG�H−uj (ui, uk) = min{dG−j(i, k), 4}.

Corollary 8. Given two graphs G and H. Let {i, j}, {j, k} ∈ E(G) and u ∈
V (H). Then starting from the configuration Cuj

ui of G�H, we require at least

min{1+ dG−j(i, k), 5} moves to move the robot to uk. In particular, if g(G) ≥ 6,
then we need at least 5 moves to move the robot to uk.

Proposition 9. Given two graphs G and H. Let {i, j} ∈ E(G) and {u, v} ∈
E(H). Then, starting from the configuration Cuj

ui of G�H we need at least three

moves to move the robot to vj.

Proof. To move the robot from uj to vj , before it, the hole must be moved from
ui to vj . This takes two steps, since dG�H−uj (ui, vj) = 2. Then the move vj

r
←− uj

takes the robot to vj . Hence the result follows.

As Cartesian product of graphs is commutative, so the proof of the following
proposition can be drawn in the same line as that of Proposition 9.

Proposition 10. Given two graphs G and H. Let {i, j} ∈ E(G) and {u, v} ∈
E(H). Then starting from the configuration Cvi

ui , we need at least three moves to

move the robot to vj.

Definition. A robot move in G�H is said to be a G-move (respectively, H-move)
if the edge along which the move took place is a G-edge (respectively, H-edge).

Definition. Let S be a sequence of moves that take the robot from ui to vj in
G�H. An H-move (respectively G-move) in S of the robot preceded by another
H-move (respectively G-move) of the robot is said to be a secondary H-move
(respectively secondary G-move). An H-move (respectively G-move) of the robot
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preceded by a G-move (respectively H-move) of the robot is said to be a primary
H-move (respectivelyG-move). Also the edge corresponding to a primaryG-move
(respectively primary H-move) in S is said to be a primary G-edge (respectively
primary H-edge).

In view of the above definitions we summarize the results of this section in terms
of the following remark.

Remark 11. Given two graphs G and H, each having girth six or more.

(i) In view of Corollary 6 and Corollary 8, to perform each secondary G-move
(or H-move) of the robot we require at least five moves.

(ii) In view of the Propositions 9 and 10, to perform each primary G-move (or
H-move) of the robot we require at least three moves.

(iii) In a minimum sequence of moves, the robot should take as many primary
moves as possible.

4. Trace of the Robot

Proposition 12. Let G and H be two graphs such that i, j ∈ V (G) and u, v ∈
V (H). Further, let S be a sequence of moves that take the robot from ui to vj in

G�H. Then

(i) the number of H-moves of the robot in S is at least dH(u, v),

(ii) the number of G-moves of the robot in S is at least dG(i, j).

Proof. Let x ∈ V (H) and {r, s} ∈ E(G). Then we observe that

dH(xr, vj) = dH(xs, vj) = dH(x, v) and {xr, xs} ∈ E(G�H).

Thus a G-move of the robot from xr to xs does not alter the H-distance of the
robot from vj .

Also if r ∈ V (G) and {x, y} ∈ E(H) then,

dH(xr, vj)=







dH(yr, vj)− 1, if yr is on the shortest path connecting xr to vj ,
dH(yr, vj) + 1, if xr is on the shortest path connecting yr to vj ,
dH(yr, vj), otherwise.

Therefore any H-move of the robot can reduce its H-distance from vj at most
by one. Hence to take the robot from ui to vj we need at least dH(u, v) number
of H-moves. We can argue the second statement in similar manner because the
Cartesian product is commutative.
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Lemma 13. Consider the graphs G and H each having girth six or more. Let

i, j ∈ V (G) and {u, v}, {u,w} ∈ E(H). Then, each robot move in a minimum

sequence of moves that takes Cui

vi
to Cuj

wj in G�H is a G-move. Also, such a

minimum sequence involves exactly k number of G-moves and 5k moves in total,

where k = d(i, j) ≥ 1.

Proof. Let S be a sequence of moves that takes Cui

vi
to Cuj

wj in G�H. First
assume that the number of robot moves in S is t and each of these robot moves
in S is a G-move. By Proposition 10, we need at least three moves to accomplish
the first G-move of the robot. Notice that each of the remaining t − 1 robot
moves in S is a secondary G-moves. So by Remark 11, we need minimum 5(t−1)
moves to accomplish these t − 1 secondary G-moves. Now, if uj

r
←− uk is the tth

robot move in S, it will leave the graph G�H with the configuration Cuj

uk . Since

dG�H−uj (uk, wj) = 2, so we need minimum two more moves to take the hole from
uk to wj . Hence S involves minimum 5t moves. Notice that, the expression 5t
takes the minimum value when t is minimum.

Next, let d(i, j) = k and [i = i0, i1, . . . , ik = j] be a path of length k connect-
ing i and j in G. Then [ui = ui0 , ui1 , . . . , uik = uj ] is a path of length k in G�H

joining ui to uj . So, the sequence of moves

vi
o∗
←− ui1

r
←− ui0

o∗
←− ui2

r
←− ui1

o∗
←− ui3 · · ·uik−2

o∗
←− uik

r
←− uik−1

o∗
←− wj

takes the robot from ui to uj along this path and each move in this sequence is
a G-move. Also it involves exactly k number of G-moves of the robot. Therefore
by Proposition 12, a minimum sequence of moves S (not involving H-moves of
the robot) that takes the configuration Cui

vi
to Cuj

wj involves exactly 5k moves.

Finally, assume that the sequence S involves H-moves also and let p be the
number of primary H-moves in S. It is enough to show that the sequence S

involves more than 5k moves. We consider the following cases:

Case I. The first move of the robot is an H-move Note that to make the
first move of the robot requires at least one move. Since the first move of the
robot in S takes it away from Gu, and G-moves always keep the robot in the
same copy of G, so to bring the robot back to Gu we need one more H-move.
Therefore, minimality of S implies that S involves at least one primary H-move.
That is p ≥ 1. Also the maximum number of primary G-move possible in S

is p + 1 or p according as the last move of the robot is a G-move or H-move.
If the last move of the robot is a G-move then we will be required two more
moves to take the hole to wj . So the number of moves involved in S is at least
1+ 3p+3(p+1)+ 5(k− p− 1)+ 2 or 1+ 3p+3p+5(k− p) according as the last
move of the robot is a G-move or H-move. That is, S involves at least 5k+ p+1
moves if the first move of the robot is an H-move.
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Case II. The first move of the robot is a G-move. In this case the first move
of the robot requires at least three moves and the first H-move of the robot is
primary and so p ≥ 2. Also the maximum number of primary G-move possible
in S is p or p− 1 according as the last move is a G-move or a H-move. If the last
move is a G-move then we will be required two more moves to take the hole to
wj . So the number of moves required is at least 3 + 3p+ 3p+ 5(k− p− 1) + 2 or
3+ 3p+3(p− 1)+ 5(k− p) according as the last move is a G-move or a H-move.
That is, S involves at least 5k+p moves if the first move of the robot is a G-move.
Thus the number of moves in S is at least 5k + 2, if it involves H-moves of the
robot.

This completes the proof.

Since the Cartesian product of graphs is commutative, so proof of the following
lemma can be drawn in the same line as that of Lemma 13.

Lemma 14. Consider the graphs G and H each having girth six or more. Let

{i, j}, {i, k} ∈ E(G) and u, v ∈ V (H). Then, each robot move in a minimum

sequence of moves that takes Cui

uj to Cvi

vk
in G�H is an H-move. Also, such a

minimum sequence involves exactly p number of H-moves and 5p moves in total,

where p = d(u, v) ≥ 1.

The Lemma 15 gives the minimum number of moves required to take the robot
from a given factor to another factor of G�H. The proof of this lemma is
immediate from Lemma 13 and Lemma 14.

Lemma 15. Consider the graph G�H with the initial configuration Cui

vi
, where

G and H are connected and have girth six or more. Then

(i) to move the robot from H i to Hj we require l + 2 + 5(k − 1) moves.

(ii) to move the robot from the Gu to Gv we require at least l + 5(l − 1) moves,

where k = d(i, j) and l = d(u, v).

Definition. Let {u, v} ∈ E(H) and i, j ∈ V (G). Then a pair of moves of the
robot of the form vi

r
←− ui and uj

r
←− vj is said to be a pair of opposing H-moves

of the robot in G�H. Similarly, we can define a pair of opposing G-moves of the
robot in G�H.

Lemma 16. Given the graphs G and H each having girth six or more. Let S be

a sequence of moves that takes the robot from ui to vj in G�H. If S is minimum

then there is no opposing moves of the robot in S.

Proof. If possible suppose that S involves a pair of opposing H-moves of the
robot. Let this pair of moves be vi

r
←− ui and uj

r
←− vj . Let S1 be the subsequence

of S consisting of all moves starting from the move vi
r
←− ui up to the move

uj
r
←− vj . Clearly S1 takes the configuration Cui

vi
to the configuration Cuj

vj
and
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it involves the H-moves vi
r
←− ui and uj

r
←− vj of the robot, a contradiction (see

Lemma 13). Therefore S cannot involve a pair of opposing H-moves of the robot.
Similarly using the Lemma 14, we can conclude that S cannot involve a pair of
opposing G-moves of the robot.

Lemma 17. Consider the graphs G and H each having girth six or more. Let

S be a sequence of moves that takes the robot from ui to vj in G�H. Then the

H-moves (respectively, G-moves) of the robot in S trace a walk in H (respectively
in G). If S is minimum then these walks are paths and the number of H-moves

(respectively G-moves) of the robot in S is lH(P ) (respectively, lG(P )).

Proof. Let P be the sub-graph of H induced by the edges in H corresponding
to the H-moves of the robot in S. We claim that P is a walk in H connecting u

and v. Let xi
r
←− wi and zj

r
←− yj be two consecutive H-moves in S, i.e., all other

robot moves in S taken place between these two moves are G-moves. Clearly

{wi, xi}, {yj , zj} ∈ E(G�H) and hence {w, x}, {y, z} ∈ E(H). Notice that Cyj

zj

is reachable from Cxi

wi by means of H-moves and obstacle moves only, so x = y. So

the edges in P corresponding to two consecutive H-moves xi
r
←− wi and zj

r
←− yj

are incident with each other at x in H. It follows by similar argument that if
yp

r
←− xp and wq r

←− zq are the first and the last H-moves in S respectively, then
x = u and w = v. Therefore, P is a walk in H connecting u and v.

b

u
b

β
b

α
b b

v

b

b

b γ

Γ

Figure 3. The walk P (u, v) in H.

Now assume that S is minimum. We claim that P is a path. On the contrary,
assume that P contains a cycle, say Γ. While moving along P from u to v in H,
let α be the vertex on P at which it enters Γ, β be the vertex on P just before
entering Γ and γ be the vertex on Γ adjacent to α at which it reaches just before
re-entering α after moving along the cycle Γ (see Figure 3). Then there exist a
sub-sequence S1 of S such that for some for some r, s ∈ V (G), the sequence S1

takes the configuration Cαr

βr to Cαs

γs . Since Γ has at least three vertices, so the
sub-sequence S1 must involve at least one H-move, a contradiction (see Lemma
13). Therefore we can conclude that P is a path.

Since the graph Cartesian product is commutative so the proof of the re-
maining part of the lemma can be argued as above.

In view of the results obtained in this section we have the following concluding
remark.
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Remark 18. Given two graphs G and H each having girth six or more. Let S
be a minimum sequence of moves that takes the robot from ui to vj in G�H.
Then, by Lemmas 16 and 17, the robot moves in S traces a path P (ui, vj) in
G�H such that

(i) lH(P ) = the length of the uv-path in H traced by the H-moves in S,

(ii) lG(P ) = the length of the ij-path in G traced by the G-moves in S.

5. Minimum Number of Moves

Definition. Given a path P connecting ui and vj in G�H. By a minimal

sequence of moves with trace P we mean a sequence with minimum number of
moves that takes the robot from ui to vj along the path P in G�H.

Definition. By a minimal uivj-path in G�H we mean a uivj-path P such that
the G-edges in P induces a ij-path in G and the H-edges in P induces a uv-path
in H.

In view of the above definitions, we have the following remark.

Remark 19. Given two graphs G and H each having girth six or more.
(i) A shortest path in G�H is a minimal path but a minimal path in G�H

need not be a shortest path.

(ii) By Remark 18, the path traced by the robot moves in a minimum sequence
of moves in G�H is a minimal path.

Definition. Give two graphs G, H and a path P in G�H. By a primary edge in
P we mean an H-edge that is preceded by a G-edge or a G-edge that is preceded
by an H-edge. By a secondary edge in P we mean an H-edge that is preceded by
an H-edge or a G -edge that is preceded by a G-edge.

We now state the following lemma without proof. This lemma gives the maximum
number of primary edges that a path can have in G�H with given H-length and
G-length.

Lemma 20. Given two graphs G and H. Let P be a path connecting ui and vj

in G�H such that lG(P ) = a and lH(P ) = b. Then, the maximum number of

primary edges P can have is

(i) 2a− 1, if a = b,

(ii) 2b, if a > b and first edge in P is a G-edge,

(iii) 2b− 1, if a > b and first edge in P is an H-edge,

(iv) 2a, if b > a and first edge in P is an H-edge,
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(v) 2a− 1 if b > a and first edge in P is a G-edge.

Theorem 21. Given two graphs G and H each having girth six or more. Con-

sider the configuration Cui

vi
of G�H. For some j ∈ G�H, let P be a minimal

path connecting ui and vj in G�H. Let S be a minimal sequence with trace P .

If lG(P ) = a and lH(P ) = b, then S involves at least

(i) k + 5a+ 5b− 2m− 5 moves if the first move of the robot is an H-move,

(ii) k + 5a+ 5b− 2m− 3 moves if the first move of the robot is a G-move,

where m is the number of primary moves of the robot in S and k = d(u, v).

Proof. Since S is minimal so it involves exactly a+ b robot moves.

Case I. The first edge in P is an H-edge. In this case the first robot move is
an H-move, say wi r

←− ui. In order to realize this move, before it, the hole must
move from vi to wi. Therefore, we require k moves to realize the first robot move,
since dG�H−ui(vi, wi) = k− 1 (k− 1 moves to bring the hole at wi plus the robot

move wi r
←− ui). Since m is the number of primary moves in S, so the number of

secondary robot moves in S is a+ b−m− 1. Hence, by Remark 11, the number
of moves in S is k + 3m+ 5(a+ b−m− 1), i.e., k + 5a+ 5b− 2m− 5.

Case II. The first edge in P is a G-edge. In this case the first robot move is a
G-move. Let this move be uk

r
←− ui. So, to perform this move we must first take

the hole from vi to uk. Clearly dG�H−ui(vi, uk) = k + 1 and so we require k + 2
moves to perform the first robot move (k + 1 moves to bring the hole at uk plus
the robot move uk

r
←− ui). Since m is the number of primary moves in S, so the

number of secondary robot moves in S is a+b−m−1. Hence, by Remark 11, the
number of moves in S is k+2+3m+5(a+ b−m− 1), i.e., k+5a+5b− 2m− 3.

Notice that, among all minimal paths P with lG(P ) = a and lH(P ) = b, the two
expressions k+ 5a+ 5b− 2m− 5 and k+ 5a+ 5b− 2m− 3 in the above theorem
attains the minimum when P has the maximum number of primary edges. Thus,
we have the following corollary.

Corollary 22. Given two graphs G and H each having girth six or more. Con-

sider the configuration Cui

vi
of G�H. For some j ∈ G�H, let S be a minimum

sequence of moves that takes the robot from ui to vj. Let P be the trace of S, with

lG(P ) = a and lH(P ) = b. Then among all minimal paths P ′ with lG(P
′) = a

and lH(P ′) = b, the path P has maximum number of primary edges. Also, the

number of moves involved in S is

(i) k + 5a+ b− 3, if a ≥ b,

(ii) k + a+ 5b− 5, if a < b,

where k = d(u, v). Further, if a ≥ b then the first edge in P must be an H-edge.
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Proof. We consider the following cases:

Case I. a = b. In this case maximum number of primary moves possible is
2a − 1 and it is independent of the type of the first edge in P (see Lemma 20).
So, by Theorem 21, the first move of the robot in S must be an H-move and the
number of moves involved in S is k + 5a + 5b − 2(2a − 1) − 5, i.e., k + 6a − 3
moves.

Case II. a > b. In this case maximum number of primary moves S can have
is 2b or 2b− 1 according as the first edge in P is G-edge or a H-edge (see Lemma
20). And, by Theorem 21, in either case the number of moves involved in S is
k + 5a+ b− 3.

Case III. a < b. In this case maximum number of primary moves S can have
is 2a or 2a− 1 according as the first edge in P is an H-edge or a G-edge. So, by
Theorem 21, the first move in S must be an H-move and the number of moves
involved in S is k + a+ 5b− 5.

Hence the proof is complete.

Finally, the two expressions k+5a+ b−3 and k+a+5b−5 attains the minimum
when a and b are minimum. That is, when P is a shortest path with maximum
number of primary edges. Thus, we have the following corollary.

Corollary 23. Given two graphs G and H each having girth six or more. Con-

sider the configuration Cui

vi
of G�H. For some j ∈ G�H, let S be a minimum

sequence of moves that takes the robot from ui to vj. Let P be the trace of S,

with lG(P ) = a and lH(P ) = b. Then P is a shortest path with maximum number

of primary edges. Also, the number of moves involved in S is

(i) 5a+ 2b− 3, if a ≥ b,

(ii) a+ 6b− 5, otherwise.

Further, if a ≥ b then the first edge in P must be an H-edge.

6. Conclusion and Future Work

We have investigated the minimum number of moves required for the motion
planning problem in Cartesian product graphs. We summarize the results in this
article as the following theorem.

Theorem 24. Consider the graph G�H with the configuration Cui

vi
, where G

and H are connected and have girth six or more. Let S be a minimum sequence

of moves that takes the robot from ui to vj. If P is the path in G�H traced by

the robot moves in the sequence S, then

(i) P is a shortest path in G�H connecting ui and vj,
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(ii) among all shortest paths connecting ui and vj , P has the maximum number

of primary edges.

Also minimum number of moves required is 2d(u, v) + 5d(i, j) − 3 or 6d(u, v) +
d(i, j)− 5 according as d(i, j) ≥ d(u, v) or d(i, j) < d(u, v).

As future work, we plan to investigate other graph products, in particular strong,
lexicographic and direct products.
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