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Abstract

A cut-vertex in a graph G is a vertex whose removal increases the number
of connected components of G. An end-block of G is a block with a single
cut-vertex. In this paper we establish upper bounds on the numbers of
end-blocks and cut-vertices in a 4-regular graph G and claw-free 4-regular
graphs. We characterize the extremal graphs achieving these bounds.
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1. Introduction

It is well known that a connected graph with n vertices contains at most n − 2
cut-vertices and at most n − 1 cut-edges. The unique connected graphs with
n− 2 cut-vertices are paths, while trees are unique connected graphs with n− 1
cut-edges. However, if additional constraints on graphs are given, then the prob-
lem of determining the maximum number of cut-vertices or cut-edges becomes
nontrivial. Many interesting results were obtained for the case of regular graphs.
Rao [6, 7] determined the bounds on the number of cut-vertices and the number
of cut-edges in a graph of order n and size m. These problems with additional
constraints on the degree such as ∆(G) ≤ d and δ(G) ≥ d were also considered
in Rao [7, 8]. For a connected graph G of order n and δ(G) ≥ d, the maximum
number of cut-vertices was determined in Clark and Entringer [3] for d ≥ 5 and
in Albertson and Berman [1] for d ≥ 2. Nirmala and Rao [4] obtained the upper
bounds on the number of cut-vertices in a d-regular graph with odd d ≥ 5 and
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even d ≥ 6. In [5] and [9], the authors determined the maximum number of
cut-edges in a connected d-regular graph of order n.

Although there have been many results on the problem for regular graphs, the
upper bounds on the number of cut-vertices have not been considered explicitly
for 4-regular graphs. In order to investigate the maximum number of cut-vertices
in 4-regular graphs, we need to consider the maximum number of their end-
blocks. In this paper we present the upper bounds on the numbers of end-blocks
and cut-vertices for 4-regular graphs and claw-free 4-regular graphs, respectively,
and we characterize the extremal graphs achieving these bounds.

2. Basic Notation and Terminology

Let G = (V (G), E(G)) be a finite simple graph with vertex set V (G) and edge
set E(G) of order |V (G)| and size |E(G)|. The open neighborhood of a vertex v
is N(v) = {u : uv ∈ E} and the closed neighborhood of v is N [v] = {u : uv ∈
E} ∪ {v}. The degree dG(v) of a vertex v, or simply d(v), is the number of edges
incident to v, that is, dG(v) = |N(v)|. The maximum and minimum degrees of G
are denoted by ∆(G) and δ(G), respectively. A graph G is said to be k-regular
if dG(v) = k for v ∈ V (G). For a subset S ⊆ V (G), the subgraph induced by
S is denoted by G[S]. With Kn and Cn we denote the n-vertex complete graph
and n-vertex cycle graph. With Km,n we denote a complete bipartite graph with
partitions of size m and n. The graph K1,3 is also called a claw and K3 a triangle.
For a given graph F , we say that a graph G is F -free if it does not contain F as an
induced subgraph. In particular, if G contains no K1,3 as an induced subgraph,
we say that G is a K1,3-free graph or claw-free graph.

For a given graph G, a cut-vertex of G is a vertex whose removal increases
the number of connected components in G. Cut-edge is defined in a similar way.
With c(G) we denote the number of cut-vertices in G. A block of G is a maximal
subgraph without a cut-vertex. A block with a single cut-vertex is called an
end-block and its cut-vertex is called an end-vertex. With eb(G) we denote the
number of end-blocks in G. For other graph theoretic notation and terminology,
we follow [2].

3. 4-regular Graphs

In this section, we present a sharp upper bound on the number of end-blocks
and cut-vertices in a connected 4-regular graph, respectively. Furthermore, we
characterize the extremal graphs achieving these bounds.

Before we present the main results, we will need the following lemma.
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Lemma 1. If G is a 4-regular graph, then G has no cut-edge.

Proof. IfG has a cut-edge, deleting it leaves two induced subgraphs whose degree
sum is odd. This is impossible, since the degree sum in every graph is even.

For characterizing the extremal graphs achieving these bounds, we need the fol-
lowing constructions.

A cactus graph is a connected graph in which any two cycles have at most
one vertex in common. Equivalently, every block is an edge or a cycle. Let F6

be the graph obtained from the complete graph K5 by subdividing one edge.
Let I11 denote the graph obtained from the disjoint union of two copies of F6

by identifying their two end-vertices (i.e., vertices of degree 2). Clearly, I11 is a
4-regular graph of order 11.

Construction 1. Let

H = {H : H is a cactus graph in which each block is a triangle and ∆(H) ≤ 4}.

Let H̃ be the family of 4-regular graphs obtained from disjoint union of any
graph H in H and copies of F6 by identifying each degree-2 vertex of H with the
end-vertex of an F6. Further, let

G = {G : G = I11 or G ∈ H̃}.

Construction 2. Let M be the family of 4-regular graphs obtained from the
disjoin union of the cycle Ck (k ≥ 3) and k copies of F6 by identifying each vertex
in Ck with the end-vertex of a copy of F6.

It is easy to see that F6 has the minimum number of vertices among all graphs
in which one vertex is of degree 2, while the other vertices are of degree 4. Thus,
F6 is the smallest possible end-block in a 4-regular graph.

Theorem 2. If G is a connected 4-regular graph of order n ≥ 12, then eb(G) ≤
n/6 with equality if and only if G ∈ M.

Proof. If G contains no cut-vertex, then eb(G) = 0 and the assertion holds.
Therefore, we may assume that G contains at least one cut-vertex. This implies
that G contains at least two end-blocks. Let G′ be the graph obtained from G
by contracting each end-block to a single vertex. Obviously, G′ is connected. By
Lemma 1, each end-block of G is contracted to a vertex of degree 2 in G′. Thus
δ(G′) ≥ 2. Let n′ = |V (G′)| and m′ = |E(G′)|. Hence m′ ≥ n′. The degree-sum
formula implies that

4n′ − 2eb(G) = 2m′ ≥ 2n′.(1)

Thus

eb(G) ≤ n′.(2)
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As mentioned earlier, each end-block has at least 6 vertices, so

n′ ≤ n− 5eb(G).(3)

Combining the inequalities (2), (3), we have eb(G) ≤ n′ ≤ n− 5eb(G), so eb(G) ≤
n/6.

We next show that eb(G) = n/6 if and only if G ∈ M for a connected
4-regular graph of order n.

Suppose G ∈ M. Then there exists an integer k ≥ 3 such that G is a 4-
regular graph obtained from the disjoint union of the cycle Ck (k ≥ 3) and k
copies of F6 by identifying each vertex in Ck with the end-vertex of a copy of F6.
Thus eb(G) = k = n/6.

Conversely, suppose that eb(G) = n/6 for a connected 4-regular graph of
order n. Then all the inequalities in equations (1)–(3) are equalities. Thus
n − 5eb(G) = n′ = eb(G) = m′. This implies that G′ is a cycle, since δ(G′) ≥ 2.
So G ∈ M.

Remark. For a connected 4-regular graph G of order n, if n ≤ 11 and G has no
cut-vertex, then eb(G) = 0 ≤ n/6. But if G contains cut-vertices, then G = I11
and eb(G) = 2, so the assertion is not true.

Theorem 3. If G is a connected 4-regular graph of order n ≥ 8, then c(G) ≤
(2n− 15)/7. Equality holds if and only if G ∈ G.

Proof. We apply induction on n. For c(G) = 0, the assertion is trivial, so let
c(G) ≥ 1. Since F6 is the smallest possible end-block in G, I11 is the smallest
possible 4-regular graph with a single cut-vertex and so n ≥ 11. If c(G) = 1, then
clearly the assertion holds. Now let G be given with n > 11 and c(G) ≥ 2, and
assume the assertion holds for 4-regular graphs with fewer vertices.

Let v be a cut-vertex in G. By Lemma 1, G − v has two connected compo-
nents, denoted by G1 and G2. For i = 1, 2 let G′

i be the graph obtained from G
by replacing G[V (Gi)∪{v}] with the graph F6. Now, the cut-vertices of G are the
cut-vertices from Gi, i = 1, 2, together with vertex v. Since v is a cut-vertex in
both G′

1
and G′

2
, and F6 contains no cut-vertex, we have c(G) = c(G′

1
)+c(G′

2
)−1.

With ni = |V (G′

i)| for i = 1, 2, we have n = n1 + n2 − 11.

If neither G[V (G1) ∪ {v}] nor G[V (G2) ∪ {v}] is isomorphic to F6, then G′

1

and G′

2
have fewer vertices than G. By the induction hypothesis, we have

c(G) = c(G′

1) + c(G′

2)− 1 ≤ (2n1 − 15)/7 + (2n2 − 15)/7− 1 = (2n− 15)/7,

and the assertion holds. Otherwise, every cut-vertex of G is an end-vertex of a
copy of F6. So each cut-vertex is the end-vertex of a unique copy of F6. Since
c(G) ≥ 2, we have c(G) = eb(G). If c(G) = 2, then n ≥ 16 by Lemma 1.
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Hence the assertion follows. If c(G) ≥ 3, then n ≥ 18. By Theorem 2, we have
c(G) = eb(G) ≤ n/6 ≤ (2n− 15)/7, as desired.

We next show that c(G) = (2n− 15)/7 if and only if G ∈ G for a connected
4-regular graph of order n ≥ 8.

Suppose G ∈ G and G has n vertices. We show that c(G) = (2n− 15)/7 by
induction on n. Obviously, n ≥ 11. If n = 11, then G = I11 and the equality
follows. Now let n > 11, and assume that the assertion holds for graphs with
fewer vertices. Since G 6= I11, G ∈ H̃. Let H be the graph obtained from G
by contracting each end-block of G to a single vertex. Then H ∈ H and there
exists a triangle G[{x, y, z}] such that dH(x) = dH(y) = 2. If H is a triangle,
then it is easy to check that the equality holds. Otherwise, let H ′ = H − {x, y}.
Then dH′(z) = 2. Let G′ be the graph obtained from H ′ by attaching F6 to each
vertex of degree 2 of H ′. Then G′ ∈ G, |V (G′)| = n− 7 and c(G′) = c(G)− 2. By
the induction hypothesis, we have c(G′) = (2|V (G′)| − 15)/7. This implies that
c(G) = (2|V (G)| − 15)/7, as desired.

Conversely, let c(G) = (2n− 15)/7 for a connected 4-regular graph of order
n ≥ 8. We will show that G ∈ G. Note that c(G) is odd. If c(G) = 1, then n = 11.
Obviously, G = I11 ∈ G. If G contains a cut-vertex that does not lie in a copy
of F6, then the equality holds for both G′

1
and G′

2
. By the induction hypothesis,

G′

1
, G′

2
∈ G. This implies that G ∈ G. If c(G) = eb(G), then n/6 = (2n− 15)/7,

and so n = 18. In this case, the graph G is obtained from the disjoint union of a
triangle and three copies of F6 by identifying each degree-2 vertex of H with the
degree-2 vertex (end-vertex) of F6. Clearly G ∈ G.

4. Claw-free 4-regular Graphs

In this section we discuss analogous results for a connected claw-free 4-regular
graph. We establish an upper bound on the numbers of end-blocks and cut-
vertices for a connected claw-free 4-regular graph, respectively. Moreover, we
characterize the extremal graphs achieving these bounds.

As before, for characterizing the extremal graphs achieving these bounds, we
give the following construction.

Construction 3. The graphs F7 and I13 are exhibited in Figure 1. H is con-
structed as described in Construction 1. Let H̃1 be the family of the 4-regular
graphs obtained from disjoint union of any graph H in H and copies of F7 by
identifying each degree-2 vertex of H with the end-vertex of an F7. Further, let

G′ = {G : G = I13 or G ∈ H̃1}.
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Figure 1. F7 and I13

Lemma 4. For a connected claw-free 4-regular graph G containing at least one

cut-vertex, F7 is the end-block of G with the smallest number of the vertices.

Proof. Let B be an end-block of G and v an end-vertex lying in B. By Lemma 1
and the claw-freeness of G, v must be the common vertex of two triangles whose
edges are disjoint. This implies that B−v contains two adjacent degree-3 vertices,
while every other vertex has degree 4. It is easy to see that |V (B−v)| ≥ 6. Hence
|V (B)| ≥ 7. When |V (B)| = 7, it is not difficult to check that B = F7.

Theorem 5. If G is a connected claw-free 4-regular graph of order n, then

eb(G) ≤ (n+ 3)/8 with equality if and only if G ∈ G′.

Proof. Let G′ be the graph obtained from G by contracting each end-block of G
to a single vertex. Obviously, G′ is connected and each end-block ofG corresponds
to a vertex of degree 2 in G′. Let V2 denote the set of vertices of degree 2 of G′.
Obviously, each vertex of V2 lies in a unique triangle of G′ by the claw-freeness
of G. If G′[V2] is a triangle, then it is easy to verify that G′ = G′[V2]. Otherwise,
each component of G′[V2] is either an isolated vertex or K2.

Let n′ = |V (G′)| and m′ = |E(G′)|. First, we have the following claim.

Claim 1. m′ ≥ n′ + eb(G)− 3.

Proof. We apply induction on n′. If n′ = 1, then m′ = 0 and eb(G) ≤ 2, the
assertion holds. Next let n′ > 1 and assume the assertion holds for smaller n′.
We distinguish the following three cases depending on G′[V2].

Case 1. G′[V2] is a triangle. As mentioned above, we know that G′ = G′[V2]
is a triangle. In this case, G is the graph obtained from disjoint union of a
triangle and three end-blocks by identifying each vertex of the triangle with the
end-vertex of an end-block. Then m′ = 3 = n′ + eb(G)− 3, as claimed.

Case 2. G′[V2] contains a component that is isomorphic to K2. Let K2 =
G′[{u, v}] and let u, v lie in the triangle G′[{u, v, w}] of G′. Then dG′(w) = 4.
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Let G′

1
= G′ − {u, v} and let G1 be the 4-regular graph obtained from G′

1
by

attaching F7 to each vertex of degree 2 of G′

1
. Let n′

1
= |V (G′

1
)| and m′

1
=

|E(G′

1
)|. Then n′

1
= n′ − 2 < n′, m′

1
= m′ − 3, eb(G) = eb(G1) + 1. By the

induction hypothesis, we have m′

1
≥ n′

1
+ eb(G1)− 3. Thus m′ ≥ n′ + eb(G)− 3,

as claimed.

Case 3. Each component of G′[V2] is an isolated vertex, i.e., V2 is an inde-
pendent set of G′. Choose any isolated vertex u in V2 and let it be the end-vertex
of an end-block B. Then u lies in a unique triangle, say G′[{u, v, w}], in G′.
Obviously, dG′(v) = dG′(w) = 4. We consider the following three subcases.

Subcase 3.1. NG′(v)∩NG′(w)−{u} = ∅. Let G1 be the graph obtained from
G by removing the vertices of B, the edge vw and identifying v and w. Let G′

1

be the graph obtained from G1 by contracting each end-block to a single vertex
and let n′

1
= |V (G′

1
)| and m′

1
= |E(G′

1
)|. Then n′

1
= n′ − 2 < n′, m′

1
= m′ − 3,

eb(G) = eb(G1)+1. By the induction hypothesis, we have m′

1
≥ n′

1
+ eb(G1)− 3.

Thus m′ ≥ n′ + eb(G)− 3, as claimed.

Subcase 3.2. |NG′(v) ∩ NG′(w) − {u}| = 1. Let G′

1
= G′ − u − vw. Then v

and w have degree 2 in G′

1
. Now let G1 be the 4-regular graph obtained from

G′

1
by attaching F7 to each vertex of degree 2 of G′

1
. Let n′

1
= |V (G′

1
)| and

m′

1
= |E(G′

1
)|. Then n′

1
= n′ − 1 < n′, m′

1
= m′ − 3, eb(G) = eb(G1)− 1. By the

induction hypothesis, we have m′

1
≥ n′

1
+ eb(G1)− 3. Thus m′ > n′ + eb(G)− 3,

as claimed.

Subcase 3.3. |(NG′(v)∩NG′(w))−{u}| = 2. Let NG′(v)−{u,w} = NG′(w)−
{u, v} = {x, y}. Then xy ∈ E(G) by claw-freeness of G.

Suppose that N(x)−{v, w, y} = N(y)−{v, w, x} = {z}. Let G1 be the graph
obtained from G by deleting the vertices v, w, x, y of G and identifying u and z.
Let G′

1
be the graph obtained from G1 by contracting each end-block of G1 to

a single vertex. Let n′

1
= |V (G′

1
)| and m′

1
= |E(G′

1
)|. Then n′

1
= n′ − 5 < n′,

m′

1
= m′ − 10, eb(G) = eb(G1). By the induction hypothesis, we have m′

1
≥

n′

1
+ eb(G1)− 3. Thus m′ > n′ + eb(G)− 3, as claimed.

Otherwise, we have N(x)−{v, w, y} 6= N(y)− {v, w, x}. Let N(x)−{v, w, y}
= {z1} and N(y) − {v, w, x} = {z2}. By Lemma 1, none of x, y, z1 and z2 is a
cut-vertex of G.

If z1z2 6∈ E(G), let G1 be the graph obtained from G by deleting the vertices
of V (B) ∪ {v, w, x, y} and adding edge z1z2. Then G1 is a claw-free 4-regular
graph. Let G′

1
be the graph obtained from G1 by contracting each end-block

of G1 to a single vertex and let n′

1
= |V (G′

1
)| and m′

1
= |E(G′

1
)|. Then n′

1
=

n′ − 5 < n′, m′

1
= m′ − 9, eb(G) = eb(G1) + 1. By the induction hypothesis, we

have m′

1
≥ n′

1
+ eb(G1)− 3. Thus m′ ≥ n′ + eb(G)− 3 + 3 > n′ + eb(G)− 3, the

desired claim follows.

If z1z2 ∈ E(G), let G1 be the graph obtained from G by deleting the vertices
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v, w, x, y and adding edges uz1, uz2. Then G1 is a claw-free 4-regular graph. Let
G′

1
be the graph obtained from G1 by contracting each end-block of G1 to a single

vertex and let n′

1
= |V (G′

1
)| and m′

1
= |E(G′

1
)|. Obviously, n′

1
= n′ − 4 < n′,

m′

1
= m′ − 8, eb(G) = eb(G1). By applying the induction hypothesis to G′

1
, we

have m′

1
≥ n′

1
+ eb(G1) − 3. Thus m′ > n′ + eb(G)− 3, and the claim follows

immediately.

Claim 1 and the degree-sum formula yields that

4n′ − 2eb(G) = 2m′ ≥ 2(n′ + eb(G)− 3).(4)

Thus

2eb(G)− 3 ≤ n′.(5)

Since each end-block of G has at least 7 vertices, we have

n′ ≤ n− 6eb(G).(6)

Combining the inequalities (5), (6), we obtain 2eb(G)− 3 ≤ n′ ≤ n− 6eb(G), so
eb(G) ≤ (n+ 3)/8.

We next show that if G is a connected claw-free 4-regular graph of order n,
then eb(G) = (n+ 3)/8 if and only if G ∈ G′.

Suppose that G ∈ G′ and G has n vertices. We show that eb(G) = (n+ 3)/8
by induction on n. Obviously, n ≥ 13. If n = 13, then G = I13 and the equality
follows. Now let n > 13, and assume that the assertion holds for graphs in G′

with fewer vertices. Since G 6= I13, G ∈ H̃1. Let H be the graph obtained from
G by contracting each end-block of G to a single vertex. Then H ∈ H and there
exists a triangle G[{x, y, z}] such that dH(x) = dH(y) = 2. If H is a triangle,
then clearly the equality holds. Otherwise, let H ′ = H−{x, y}. Then dH′(z) = 2.
Let G′ be the graph obtained from H ′ by attaching F7 to each vertex of degree 2
of H ′. It is easy to see that G′ ∈ G, |V (G′)| = n− 8 and eb(G′) = eb(G)− 1. By
the induction hypothesis, we have eb(G′) = (|V (G′)| + 3)/8. This implies that
eb(G) = (|V (G)|+ 3)/8, as desired.

Conversely, supposing that eb(G) = (n+ 3)/8 for a connected claw-free
4-regular graph of order n, we show that G ∈ G′. By the above proof, we
know that all the inequalities in equations (4)–(6) are equalities. That is, m′ =
n′ + eb(G)− 3, 2eb(G) = n′+3 and n′ = n− 6eb(G). The second equality implies
that n′ is odd, and the last equality implies that every end-block of G is F7. If
n′ = 1, then clearly eb(G) = 2, and since G = I13 ∈ G′, we are done. It suffices
to show that G′ ∈ H for n′ ≥ 3.

Next we show that G′ ∈ H by induction on n′ for n′ ≥ 3. For n′ = 3, we have
eb(G) = 3 and so G′ is a triangle, the assertion holds. Let n′ > 3 and assume the
assertion holds for smaller n′. Noting that V2 6= ∅, we let u ∈ V2. We distinguish
the following two cases.
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Case 1. u is an isolated vertex of G′[V2]. Then u lies in a unique triangle,
say G′[{u, v, w}], in G′. Obviously, dG′(v) = dG′(w) = 4. Note that m′ =
n′ + eb(G)− 3. By Case 3 of the proof of Claim 1, it follows that NG′(v) ∩
NG′(w) − {u} = ∅. Let G1 be the graph obtained from G by removing the
vertices of F7, the edge vw and identifying v and w. Let G′

1
be the graph obtained

from G1 by contracting each end-block to a single vertex and let n′

1
= |V (G′

1
)|,

m′

1
= |E(G′

1
)|. Then n′

1
= n′ − 2 < n′, eb(G) = eb(G1) + 1. Obviously, m′

1
=

n′

1
+ eb(G1) − 3 and 2eb(G1) = n′

1
+ 3. By the induction hypothesis, we have

G′

1
∈ H. Thus G ∈ H.

Case 2. u is in a component K2 of G′[V2]. Let K2 = G′[{u, v}] and let u, v
lie in the triangle uvw of G′. Then dG′(w) = 4. Let G′

1
= G′ − {u, v} and let

G1 be the 4-regular graph obtained from G′

1
by attaching an F7 to each vertex

of degree 2 of G′

1
. Let n′

1
= |V (G′

1
)|, m′

1
= |E(G′

1
)|. Then n′

1
= n′ − 2 < n′,

eb(G) = eb(G1) + 1. Obviously, m′

1
= n′

1
+ eb(G1)− 3 and 2eb(G1) = n′

1
+ 3. By

the induction hypothesis, we have G′

1
∈ H. Thus G ∈ H.

The proof of the following theorem is analogous to that of Theorem 3 and is
omitted.

Theorem 6. If G is a connected claw-free 4-regular graph of order n ≥ 9, then
c(G) ≤ (n− 9)/4 with equality if and only if G ∈ G′.
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