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Abstract

Tree-like partial cubes were introduced in [B. Brešar, W. Imrich, S. Klav-
žar, Tree-like isometric subgraphs of hypercubes, Discuss. Math. Graph The-
ory, 23 (2003), 227–240] as a generalization of median graphs. We present
some incorrectnesses from that article. In particular we point to a gap in
the proof of the theorem about the dismantlability of the cube graph of a
tree-like partial cube and give a new proof of that result, which holds also for
a bigger class of graphs, so called tree-like partial Hamming graphs. We in-
vestigate these graphs and show some results which imply previously-known
results on tree-like partial cubes. For instance, we characterize tree-like par-
tial Hamming graphs and prove that every tree-like partial Hamming graph
G contains a Hamming graph that is invariant under every automorphism of
G. The latter result is a direct consequence of the result about the disman-
tlability of the intersection graph of maximal Hamming graphs of a tree-like
partial Hamming graph.
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1. Introduction

Median and quasi-median graphs are well studied classes of graphs, cf. [3, 4, 11,
15, 16, 17, 18, 19, 24]. One of the well-known characterizations of median graphs
is that they constitute the class of retracts of hypercubes, see Bandelt [1]. On the
other hand, regular median graphs are precisely hypercubes [18]. For a survey
of many different aspects of median graphs, the reader is referred to [16]. Quasi-
median graphs have been introduced by Mulder [19] as a natural nonbipartite
extension of median graphs. Chung, Graham, and Saks [11] and independently
Wilkeit [24] proved that they are the weak retracts of Hamming graphs. On the
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other hand, Hamming graphs are the regular quasi-median graphs [19]. In [3] a
survey of characterizations of quasi-median graphs is given including some new
ones.

Partial cubes, that is, isometric subgraphs of hypercubes, have been first
investigated by Graham and Pollak [12], see also [25]. A nonbipartite extension
of this class are isometric subgraphs of Hamming graphs, called partial Hamming
graphs, see [10, 13, 23]. Since (weak) retracts are isometric subgraphs, quasi-
median graphs are partial Hamming graphs and median graphs are partial cubes.

Median graphs have many interesting properties, cf. [4, 16, 17, 18], but not
a lot of them can be extended to partial cubes. Brešar, Imrich and Klavžar [8]
introduced a class of tree-like partial cubes which lies between median graphs
and partial cubes and possesses many of the properties of median graphs. The
authors characterized tree-like partial cubes and listed several properties which
are shared with median graphs.

Tree-like partial Hamming graphs which we introduce in this paper are de-
fined with an expansion procedure. There are also many other classes of graphs
defined or characterized with a certain type of expansion. The most investi-
gated such classes are median graphs, quasi-median graphs, partial cubes and
partial Hamming graphs [10, 19]. But there are also several subclasses of partial
cubes and partial Hamming graphs with nice (maybe just partial) results using
expansions [7, 14]. Because of those nice results one could ask whether graphs
characterized with an expansion procedure have also other interesting properties.

In this paper we consider tree-like partial cubes and their generalizations.
In the next section we introduce tree-like partial Hamming graphs and recall
some well-known definitions and results. We follow with a section in which we
detect a mistake in the proof of the result from [8] about dismantlability of the
cube graph of a tree-like partial cube. We also present a counterexample of the
assertion from [8] that convex subgraphs of a tree-like partial cubes are tree-like
partial cubes. We continue with a section in which we extend some results on
tree-like partial cubes to a bigger class of tree-like partial Hamming graphs. In
particular we show that Hamming graphs are the only regular tree-like partial
Hamming graphs and that any gated subgraph of a graph from this class is
also in this class, which implies a characterization of tree-like partial Hamming
graphs. Finally we prove a result about dismantlability of the intersection graph
of maximal Hamming graph s of a tree-like partial Hamming graph which gives
a corrected proof of the result from [8] about dismantlability of the cube graph
of a tree-like partial cube.

2. Notation and Preliminary Results

All graphs G = (V,E) occurring in this paper are undirected and without loops
or multiple edges. The distance d(u, v) = dG(u, v) between two vertices u and v
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is the length of a shortest (u, v)-path, and the interval I(u, v) between u and v
consists of all vertices on shortest (u, v)-paths, that is, of all vertices (metrically)
between u and v: I(u, v) = {x ∈ V : d(u, x) + d(x, v) = d(u, v)}. For a set U of
vertices of a graph G we denote with 〈U〉 the subgraph of G induced with the
vertices of U . A subgraph H of G is called isometric if dH(u, v) = dG(u, v) for
all u, v ∈ V (H). An induced subgraph of G (or the corresponding vertex set)
is called convex if it includes the interval of G between any pair of its vertices.
An induced subgraph H of a graph G is said to be gated if for every vertex x
outside H there exists a vertex x′ (the gate of x) in H such that each vertex y
of H is connected with x by a shortest path passing through the gate x′ (i.e.,
x′ ∈ I(x, y)). Clearly gated subgraphs are convex and convex subgraphs are
isometric.

The Cartesian product [15] G = G1� · · ·�Gn of n graphs G1, . . . , Gn has
the n-tuples (x1, . . . , xn) as its vertices (with vertex xi from Gi) and an edge
between two vertices x = (x1, . . . , xn) and y = (y1, . . . , yn) if and only if, for
some i, the vertices xi and yi are adjacent in Gi, and xj = yj for the remaining
j 6= i. The subgraph Gu

i induced by all vertices that differ from a given vertex u
only in the ith coordinate is isomorphic to Gi and called the Gi-layer through u.
The Cartesian product of k copies of K2 is a hypercube or k-cube Qk. If all the
factors in a Cartesian product are complete graphs then G is called Hamming

graph. Isometric subgraphs of hypercubes are called partial cubes and isometric
subgraphs of Hamming graphs are partial Hamming graphs.

A graph G is a median graph if there exists a unique vertex x to every triple
of vertices u, v, and w such that x lies simultaneously on a shortest u, v-path, a
shortest u,w-path, and a shortest w, v-path. Median graphs are partial cubes,
cf. [19, 15].

Binary expansion was first defined in [17] and a generalization of binary
expansion using more covering sets was first introduced in [19]. We will use the
definition of general expansion introduced by Chepoi [10] in the following way.

Let G be a connected graph and let W1,W2, . . . ,Wn be subsets of V (G) such
that:

1. Wi ∩Wj 6= ∅ for all i, j ∈ {1, . . . , n};

2.
⋃n

i=1Wi = V (G);

3. there are no edges between sets Wi\Wj and Wj \Wi for all i, j ∈ {1, . . . , n};

4. subgraphs 〈Wi〉 , 〈Wi ∪Wj〉 are isometric in G for all i, j ∈ {1, . . . , n}.

Then to each vertex x ∈ V (G) we associate a set {i1, i2, . . . , it} of all indices
ij , where x ∈ Wij . A graph G′ is called an expansion of G relative to the sets
W1,W2, . . . ,Wn if it is obtained from G in the following way:
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1. replace each vertex x of G with a clique with vertices xi1 , xi2 , . . . , xit ;

2. if an index is belongs to both sets {i1, . . . , it}, {i
′

1, . . . , i
′

l} corresponding to
adjacent vertices x and y in G then let xisyis ∈ E(G′).

If U = Wi ∩ Wj is convex in G for all i, j ∈ {1, . . . , n}, we speak of a convex

expansion and if the intersection is isometric in G, then the expansion is called
isometric. Contraction is the operation inverse to the expansion. If n = 2 then
the expansion is called binary expansion.

Let U be an isometric subset of a graph G and n ≥ 2. If W1 = V (G),W2 =
W3 = · · · = Wn = U then the expansion is called peripheral expansion of G
along U (see Figure 1). Peripheral expansion was first introduced in [20] under
the name extremal expansion. In this case G′ consists of the union of graphs
induced by V (G), U, . . . , U

︸ ︷︷ ︸

n−1

where the copies of U (one such copy is contained also

in V (G)) induce a subgraph isomorphic to Kn�U. We say that a graph G is a
tree-like partial Hamming graph if it can be obtained from K1 by a sequence of
peripheral expansions. If n = 2 in each step of the expansion procedure then G is
called a tree-like partial cube introduced in [8]. Thus every tree-like partial cube
is also a tree-like partial Hamming graph.

G

UU

G′

Figure 1. Peripheral expansion of G along U .

Partial cubes were characterized as graphs that can be obtained from K1 by a
sequence of binary expansions [10] and median graphs are graphs that can be
obtained from K1 by a sequence of binary convex expansions [17, 19]. Moreover,
by a result of Mulder [20], these expansions can be assumed to be peripheral.
Hence, by definition, every median graph is also a tree-like partial cube and
every tree-like partial cube is also a partial cube. From the result of Chepoi
[10], who proved that partial Hamming graphs are exactly the graphs that can
be obtained from K1 by a sequence of expansions, it follows that every tree-like
partial Hamming graph is also a partial Hamming graph.

Let G = (V,E) be a connected graph and ab an edge of G. Then we use the
following notation:

Wab = {w ∈ V : dG(a, w) < dG(b, w)},

Uab = {w ∈ Wab : w has a neighbor in Wba},



Tree-like Partial Hamming Graphs 141

Fab = {e ∈ E : e is an edge between Wab and Wba}.

As in [23] we denote for a subgraph H of a graph G,

W (H) = {x ∈ V (G) : for each a ∈ H, d(a, x) = d(H,x)}.

Note that in bipartite graphs Wab and Wba are disjoint, V = Wab ∪ Wba and
W (〈{a, b}〉) = ∅ for any edge ab in G.

A graph G is an amalgam of two subgraphs G′ and G′′ if G′ ∪G′′ = G,G′ ∩
G′′ 6= ∅, and there are no edges between G′ \ G′′ and G′′ \ G′. We also say that
G is obtained by an amalgamation along the common subgraph G′ ∩ G′′ of G′

and G′′. The amalgamation is called isometric if the intersection G′ ∩ G′′ is an
isometric subgraph of G′ and G′′.

A subgraph V ′ of G is called peripheral if there exist graphs G′, V, U such
that G is an isometric amalgam of G′ and V along U , where V ∼= Kn�U for some
n ≥ 2 and V ′ = V \ U. It is clear that V ′ ∼= Kn−1�U . The corresponding vertex
set of V ′ is called periphery. Peripheral subgraphs were first introduced in [20]
under the name extremal subgraphs. A peripheral subgraph was also used by
Brešar [6], where the amalgamation was gated instead of isometric. To simplify
the notation let U denote also the corresponding vertex set of U and let V ′ denote
also the corresponding vertex set of V ′.

Every tree-like partial Hamming graph G can be obtained with an expansion
procedure. Therefore we will use the following notation. Let G be obtained by
peripheral expansion from a tree-like partial Hamming graph G′ along U and
let V ′ be the subgraph of G obtained in this expansion step. Then G is also
isometric amalgam of G′ and the graph induced with the vertices of V ′∪U along
U . Since V = Kn�U and V ′ = V \U , V ′ is peripheral subgraph of G. Thus every
tree-like partial Hamming graph contains a periphery. Note also that U = Uab

and 〈Uba ∪W (〈{a, b}〉)〉 = V ′ for any edge ab between G′ and V ′.

3. Tree-like Partial Cubes

Here is the main characterization of tree-like partial cubes proved in [8].

Theorem 1 [8]. A partial cube G is tree-like if and only if every gated subgraph

of G contains a periphery.

The authors of [8] remarked that Theorem 1 implies that convex subgraphs of
tree-like partial cubes are tree-like partial cubes. We claim that this is not always
true. Indeed if H is convex subgraph of G then a gated subgraph of H is not
necessary gated in G. We reject the result also with the counterexample depicted
on Figure 2, where the outer six-cycle (periphery Uab) is convex but it is not a
tree-like partial cube.
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a

b

Figure 2. Tree-like partial cube with convex C6.

We continue with pointing to an error in the proof of the following theorem
from [8].

Theorem 2 [8]. Every weak retract of a tree-like partial cube is a tree-like partial

cube.

In the proof of this theorem the authors used that a periphery U of a tree-like
partial cube G is a tree-like partial cube which is not always true. Furthermore
let u and x be two adjacent vertices of a periphery U of a tree-like partial cube
G and let v and y be their unique neighbors in G \ U , respectively. In the
proof of Theorem 2 the authors also claimed that the subgraph of G induced by
G \ (Wvu ∩Wvy) is a tree-like partial cube which is again not necessarily true. A
counterexample is depicted on Figure 3. Therefore the question is whether weak
retracts of tree-like partial cubes are tree-like partial cubes?

x

y

u

v

G G \ (Wvu ∩Wvy)

Figure 3. Tree-like partial cube G, two adjacent vertices u and x of a periphery U of G
(the outer C6) and a subgraph of G induced by G \ (Wvu ∩Wvy) which is not a tree-like
partial cube (it contains a gated subgraph (the outer C6) without a periphery).

On the other hand, if H is a gated subgraph of G and H ′ is a gated subgraph of
H then H ′ is gated in G. Thus Theorem 1 directly implies that gated subgraphs
of tree-like partial cubes are tree-like partial cubes.
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Cube graphs are the intersection graphs of maximal hypercubes. The intersection
graph of maximal Hamming graphs of G is a graph H, in symbols H = Q(G), in
which the vertices are the maximal Hamming subgraphs of G and two vertices
in H are adjacent whenever the corresponding Hamming graphs in G intersect.
Note that the only Hamming graphs in partial cubes are hypercubes. Thus the
intersection graph of maximal Hamming graphs of a partial cube G is exactly the
cube graph of G. Furthermore, for a partial cube G, let G∆ denote the graph
obtained from a graph G that has the same vertex set as G and in that two
vertices are adjacent whenever they are in the same hypercube of G [5]. The
clique graph of a graph G is the intersection graph of maximal cliques in G.

Dismantlable graphs are defined by an elimination procedure, that is a gen-
eralization of the elimination of simplicial vertices in chordal graphs. We say
that a vertex u in a graph G is dominated by its neighbor v if all neighbors of u
except v are also neighbors of v. If G can be reduced to the one-vertex graph by
successive removal of dominated vertices then G is called a dismantlable graph.
Dismantlable graphs were investigated in [2, 21, 9].

The authors of [8] proved that the cube graph Q(G) of a tree-like partial cube
G is dismantlable. They used the argument that the cube graph of a tree-like
partial cube G coincides with the clique graph of G∆, which is not true. For
example, let G = Q−

3 , which is a graph obtained from Q3 with the removal of
one vertex. Then the cube graph of Q−

3 is isomorphic to K3 and the clique graph
of (Q−

3 )
∆ is isomorphic to K4 (see Figure 4). We give a new proof of this result

using different accession in Section 4.

Q−

3 (Q−

3 )
∆

Figure 4. Graphs Q−

3
and (Q−

3
)∆.

4. Tree-like Partial Hamming Graphs

In this section we list some properties of tree-like partial Hamming graphs which
generalize the results on tree-like partial cubes. In particular we characterize tree-
like partial Hamming graphs and show that the intersection graph of maximal
Hamming graphs of a tree-like partial Hamming graph is dismantlable, which
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corrects and generalizes the proof about dismantlability of the cube graph of a
tree-like partial cube from [8]. From the latter result we deduce that every tree-
like partial Hamming graph G contains a Hamming graph that is invariant under
every automorphism of G.

There are many properties of tree-like partial Hamming graphs that can be
extended from tree-like partial cubes. Here is the characterization of regular
tree-like partial Hamming graphs.

Theorem 3. Regular tree-like partial Hamming graphs are precisely Hamming

graphs.

Proof. Let G be a regular tree-like partial Hamming graph and let G be obtained
by peripheral expansion along U from a tree-like partial Hamming graph G′. Let
V ′ be the subgraph of G obtained in the last expansion step, that is, V ′ a is
peripheral subgraph of G, and let V be the subgraph of G induced with U ∪ V ′.
Furthermore, let n be the number of copies of U in G, that is V = Kn�U . Since
G is regular and there is no edge from V ′ to G′ \ U every vertex x from V ′ has
the same degree as its unique neighbor x′ in U . Therefore all vertices from U
have degrees k + n − 1, where k = degU (x

′). Thus the vertices from U have no
neighbors in G′ \ U which means that G = Kn�U . Since G is regular and every
vertex from U has n− 1 neighbors in G \ U , also U is a regular tree-like partial
Hamming graph. Using induction assumption we get that U is a Hamming graph
and thus so is G.

This result clearly implies the previously-known result for tree-like partial cubes.

Corollary 4. Regular tree-like partial cubes are hypercubes.

For the next theorem we need the following well-known result.

Lemma 5 [22]. Let G = G1�G2 be a Cartesian product of connected graphs.

Then H is gated in G if and only if H = H1�H2, where H1 (resp. H2) is gated

in G1 (resp. G2).

We already mentioned that gated subgraph of a tree-like partial cube is a tree-like
partial cube. The extension of this result to the tree-like partial Hamming graphs
gives a useful characterization of these graphs.

Theorem 6. Every gated subgraph of a tree-like partial Hamming graph is a

tree-like partial Hamming graph.

Proof. The proof is by induction on the number of vertices of a tree-like partial
Hamming graph. Let G1 be a gated subgraph of a tree-like partial Hamming
graph G and let G be obtained by a peripheral expansion along U from a tree-
like partial Hamming graph G′. Let V ′ be the subgraph of G obtained in the
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last expansion step and let V be the subgraph of G induced with the vertices of
U ∪ V ′, that is V ∼= Kn�U . If G1 is contained in G′ we infer from the isometry
of G′ that G1 is also gated in G′, which is a smaller tree-like partial Hamming
graph. By induction assumption G1 is a tree-like partial Hamming graph.

Assume now that G1 ∩ G′ 6= ∅ and G1 ∩ V ′ 6= ∅. To complete the proof of
this case we need the following two claims.

Claim 7. G1 ∩ V is gated in V .

Proof. Since V is an isometric subgraph of G it is enough to see that the gate
of v ∈ V in G1 is from V . Let v be an arbitrary vertex from V \G1 and suppose
that the gate g of v in G1 is from G \ V . First let v ∈ V ′. Since G1 ∩ V ′ 6= ∅
there exists x ∈ G1 ∩ V ′. Clearly g cannot lie on the interval between v and x,
which gives a contradiction. Thus we may assume that v ∈ U . Since there are
at least two U -layers of V that have nonempty intersection with G1, there exists
a U -layer U1 of V different from U which has nonempty intersection with G1.
Let y′′ ∈ G1 ∩ U1 and let y be the copy of v in U1. Since g ∈ G \ V is the gate
of v in G1, y /∈ G1. Let y′ be the gate of y in G1. Then y′ ∈ U1, otherwise
y′ cannot lie on a shortest y, y′′-path of G. Now let v′ be the copy of y′ in U
and note that v′ ∈ G1. Indeed if v′ /∈ G1 then y′ is the gate of v′ in G1 which
implies that G1 ∩ U = ∅, a contradiction. Thus v′ ∈ G1. Since g is the gate of v
in G1, d(y, y

′) = d(v, v′) = d(v, g) + d(g, v′) and since y′ is the gate of y in G1,
d(y, g) = d(y, y′) + d(y′, g) > d(v, v′). On the other hand we can find y, g-path in
G of length 1 + d(v, g) ≤ d(v, v′), a contradiction.

Claim 8. G1 ∩G′ is gated in G.

Proof. Note that if y is a gate for x ∈ G \G′ in G1 then the unique neighbor y′

of y in U is a gate for x in G1 ∩G′.

G′ is an isometric subgraph of G and G1 ∩ G′ is gated in G, G1 ∩ G′ is also
gated in G′ and hence it is a tree-like partial Hamming graph by the induction
assumption. From the structure of G1 ∩ V it follows that G1 is obtained from
G1∩G′ by peripheral expansion along G1∩U which implies that G1 is a tree-like
partial Hamming graph.

Finally let G1 be contained in V ′, that is G1 is contained in a Cartesian
product Kn−1�U . Using Lemma 5 we get that G1 = H�H ′, where H is gated in
Kn−1 and H ′ is isomorphic to gated subgraph of U . Therefore H is either K1 or
Kn−1. Since G1 is gated in G it is clear that H 6= Kn−1 (unless n = 2), otherwise
there is no gate of a vertex x ∈ U ∩H ′ in G1. Thus G1 = K1�H ′ is contained
in one U -layer of V ′. Now we consider the subgraph G2 of U ⊆ G′ isomorphic to
G1, induced by vertices that correspond to the copy of G1 in U . We claim that
G2 is gated in G′. Indeed, the distance from any vertex x of G′ to a vertex of G1
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is exactly 1 plus the distance from x to the corresponding vertex of G2. Hence
the gatedness of G2 clearly follows from the gatedness of G1. Using the induction
assumption we get that G2 is a tree-like partial Hamming graph and therefore so
is G1.

Theorem 9. A partial Hamming graph G is tree-like if and only if every gated

subgraph of G contains a periphery.

Proof. Let G be a tree-like partial Hamming graph and let G1 be an arbitrary
gated subgraph of G. Then it follows from Theorem 6 that G1 is a tree-like
partial Hamming graph and hence it contains a periphery.

For the converse suppose that G is a partial Hamming graph in which every
gated subgraph contains a periphery. Since G is gated in G it contains a periphery
and thus one can obtain G by a peripheral expansion from a graph G′. If G′ would
contain a gated subgraph G1 without periphery then G1 would be gated also in
G. By induction on the number of vertices we get that G′ is a tree-like partial
Hamming graph, and thus so is G.

Corollary 10. For any periphery U of a tree-like partial Hamming graph G,

G \ U is a tree-like partial Hamming graph.

Our next goal is to prove that the intersection graph of maximal Hamming graphs
of any tree-like partial Hamming graph is dismantlable.

In the rest of the paper we will use the following notation. Let G be obtained
by peripheral expansion from a tree-like partial Hamming graph G′ along U .
Then the graph obtained in this expansion step is a peripheral subgraph V ′ of G
isomorphic to Kn−1�U for some n ≥ 2. We denote with V the subgraph of G
induced with the vertices of U ∪ V ′, that is V ∼= Kn�U .

Note that in Cartesian products complete graphs lie in layers. Therefore the
proof of the following result is obvious and thus we skip it.

Lemma 11. Let H be a Hamming subgraph of a Cartesian product G = U�Kn.

Then there exists a Hamming graph H ′ in U such that H ∼= Km�H ′ for some

m ≤ n and every U -layer of G has either empty intersection with H or the

intersection is isomorphic to H ′.

Lemma 12. Let G be a tree-like partial Hamming graph and let H be a Hamming

subgraph of G having nonempty intersection with G \G′. Then H is contained in

V .

Proof. Let H = Kn1
� · · ·�Knk

and suppose that H * G\G′, which means that
H intersects G \ G′ and G′. Let H1 = Kn1

� · · ·�Knk−1
, that is H = H1�Knk

and let H ′ be one H1-layer of H, which means that H ′ is a subgraph of H. First
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note that every vertex x ∈ G \ G′ has exactly one neighbor x′ in G′ and x′ is
contained in U .

First let H ′ ⊆ G′. Since H ∩ (G \ G′) 6= ∅ there exists x ∈ H ∩ (G \ G′)
which is contained in H \H ′, since H ′ ⊆ G′. Let x′ be the unique neighbor of x in
H ′ ⊆ G′. Since x has just one neighbor in G′, all the neighbors of x in H \H ′ are
from G \G′. Every such vertex has a unique neighbor in H ′ ∩G′. We conclude
that H \H ′ is contained in G \ G′ and thus H ′ is contained in U which implies
that H is contained in V .

Finally let H ′ intersect G \G′. Then using the induction, we get H ′ ⊆ V . If
H ′ ⊆ G \G′, then it is clear that H is contained in V . Thus we may assume that
H ′∩G′, H ′∩(G\G′) 6= ∅. From Lemma 11 it follows that there exists a Hamming
graph H ′′ in U such that H ′ ∼= Km�H ′′ for some m ≤ n and every U -layer of
V has either empty intersection with H ′ or the intersection is isomorphic to H ′′.
For the purpose of contradiction suppose that there exists z ∈ H \H ′ such that
z /∈ V . Let H ′

i be the H1-layer of H = H1�Knk
that contains z and let z′ be

the unique neighbor of z in H ′. Since z is adjacent to z′ ∈ H ′ ⊂ V and z /∈ V
it is clear that z′ ∈ U . From the structure of H ′ (H ′ ∼= Km�H ′′) and since
H ′ ∩ (G \G′) 6= ∅, there exists y′ ∈ H ′ ∩ (G \G′) that lies in the same Kn-layer
of V as z′. Let y be the neighbor of y′ in H ′

i ⊆ H \ H ′ and thus y is adjacent
to z. Since every vertex from G \ G′ has just one neighbor in G′, we get that
y ∈ G \ G′, which contradicts the fact that y is adjacent to z ∈ G \ V . Thus H
is contained in V .

From Lemma 11 and Lemma 12 we get the following result.

Corollary 13. Let G be a tree-like partial Hamming graph and let H be a Ham-

ming subgraph of G having nonempty intersection with G \G′. Then there exists

Hamming graph H ′ in U such that H ∼= Km�H ′ for some m ≤ n and every U -

layer of V has either empty intersection with H or the intersection is isomorphic

to H ′.

Let Q(G) be the function which maps maximal Hamming subgraphs of G to
vertices of Q(G), such that two vertices x and y of Q(G) are adjacent if and only
if the Hamming graphs (Q(G))−1(x) and (Q(G))−1(y) have nonempty intersection
in G. For every Hamming graph H of G we denote the image of H with respect

to Q(G) with x
(G)
H , that is Q(G)(H) = x

(G)
H .

Theorem 14. For any tree-like partial Hamming graph G, the graph Q(G) is

dismantlable.

Proof. The proof is by induction on the number of vertices of a tree-like partial
Hamming graph. Let U, V,G′ be the subgraphs of G defined above. Then G′ is
a tree-like partial Hamming graph and hence Q(G′) is dismantlable by induction
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assumption. Clearly Q(G′) is induced subgraph of Q(G). Therefore, to complete
the proof, it is enough to see that the vertices of Q(G) \ Q(G′) are dominated
in Q(G). Note that every vertex of Q(G) \ Q(G′) corresponds to the maximal
Hamming subgraph H of G such that H ∩G′ (= H ∩U , using Lemma 12) is not
a maximal Hamming graph of G′ and H ∩ (G \G′) 6= ∅. We will prove that every
such vertex of Q(G) is dominated in Q(G). Therefore let H be such maximal

Hamming graph of G, that is x
(G)
H ∈ Q(G) \ Q(G′). Since H is a maximal,

H ∩ U 6= ∅ and it follows from Corollary 13 that H ′ = H ∩ G′ is a Hamming

graph such that H ∼= Kn�H ′. Since x
(G)
H ∈ Q(G) \ Q(G′), H ′ is not a maximal

Hamming graph of G′. Let K be a maximal Hamming graph in G′, containing
H ′. Then, using Lemma 12, we get that K is also maximal Hamming graph of
G. Let H1, . . . , Hn be maximal Hamming subgraphs of G which have nonempty
intersection with (G \ G′) ∩ H and let H ′

i = Hi ∩ U = Hi ∩ G′, where the last
equality holds because of Lemma 12. Corollary 13 implies that H ′

i ∩ H ′ 6= ∅
for every i ∈ {1, . . . , n}. Furthermore let K1, . . . ,Km be maximal Hamming
graphs in G′ having nonempty intersection with H ′, such that Kj 6= H ′

i for all
j ∈ {1, . . . ,m}, i ∈ {1, . . . , n} and Kj 6= K for all j ∈ {1, . . . ,m}. Clearly these

Hamming graphs are also maximal in G and the neighbors of the vertex x
(G)
H in

Q(G) are exactly the vertices x
(G)
H1

, . . . , x
(G)
Hn

, x
(G)
K1

, . . . , x
(G)
Km

and x
(G)
K , where the

last vertex is also adjacent to all previous neighbors of x
(G)
H . Therefore the vertex

x
(G)
H is dominated by its neighbor x

(G)
K in Q(G), which completes the proof.

Corollary 15. Let G be a tree-like partial cube. Then the cube graph of G is

dismantlable.

Dismantlability of the intersection graph of maximal Hamming graphs of a tree-
like partial Hamming graph implies the following result.

Corollary 16. Let G be a tree-like partial Hamming graph. Then G contains a

Hamming graph that is invariant under every automorphism of G.

Proof. First note that every automorphism of a tree-like partial Hamming graph
G induces an automorphism of Q(G). Observe also that automorphisms of dis-
mantlable graphs always fix a complete subgraph (see also [8]) and thus it follows
from Theorem 14 that Q(G) contains a complete subgraph K that is invariant
under every automorphism of Q(G). Since vertices of K are pairwise intersecting
Hamming graphs of G, their intersection is a Hamming graph which is invariant
under all automorphisms of G.

5. Concluding Remarks

This paper has much in common with [8]. We explain that convex subgraphs
of tree-like partial cubes are not necessary tree-like partial cubes as the authors
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from [8] asserted. Moreover we correct the proof of the theorem from [8] which
says that the cube graph of a tree-like partial cube is dismantlable. Beside that
we also generalize the mentioned result. Finally we point to a gap in the proof
of the theorem from [8] that weak retracts of tree-like partial cubes are tree-like
partial cubes, but it remains open whether the result holds or not.
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