MAXIMUM HYPERGRAPHS WITHOUT REGULAR SUBGRAPHS

Jaehoon Kim ${ }^{1}$
Department of Mathematics, University of Illinois
Urbana, IL, 61801, USA
e-mail: kim805@illinois.edu
AND
Alexandr V. Kostochka ${ }^{2}$
University of Illinois at Urbana-Champaign,
Urbana, IL 61801, USA
Sobolev Institute of Mathematics
Novosibirsk 630090, Russia
e-mail: kostochk@math.uiuc.edu

Abstract

We show that an n-vertex hypergraph with no r-regular subgraphs has at most $2^{n-1}+r-2$ edges. We conjecture that if $n>r$, then every n-vertex hypergraph with no r-regular subgraphs having the maximum number of edges contains a full star, that is, 2^{n-1} distinct edges containing a given vertex. We prove this conjecture for $n \geq 425$. The condition that $n>r$ cannot be weakened.

Keywords: hypergraphs, set system, subgraph, regular graph.
2010 Mathematics Subject Classification: 05C65.

[^0]
1. Introduction

A natural question in graph theory is: What are the graphs not containing r regular subgraphs? For $r \in\{1,2\}$, the answer is easy, but for $r \geq 3$ it is not. It was a breakthrough when Tashkinov [7] proved the conjecture by Berge that every 4-regular graph contains a 3 -regular subgraph. The questions on existence of r-regular subgraphs in regular or near-regular graphs were also considered in $[1,8]$. Let $F(r, n)$ denote the maximum number of edges an n-vertex graph with no r-regular subgraphs have. For $r \geq 3$, it is not fully resolved how big $F(r, n)$ is. Pyber [4] showed that for every fixed $r, F(r, n)=O(n \ln n)$. On the other hand, Pyber, Rödl and Szemerédi [5] proved that $F(3, n) \geq c n \ln \ln n$.

Similar questions are also natural for hypergraphs. We view a hypergraph as a family \mathcal{F} of its edges, so $|\mathcal{F}|$ is the number of edges of \mathcal{F}. An edge e of \mathcal{F} is a k-edge if $|e|=k$. Note that we do not consider empty set as an edge. If, for some k, every edge of \mathcal{F} is a k-edge, then \mathcal{F} is k-uniform. A hypergraph \mathcal{F} is r-free if it has no r-regular sub(hyper)graphs. Mubayi and Verstraëte [3] proved that for every even integer $k \geq 4$, there exists n_{k} such that for each $n \geq n_{k}$, each n-vertex k-uniform 2 -free hypergraph \mathcal{F} has at most $\binom{n-1}{k-1}$ edges, and equality holds if and only if \mathcal{F} is a full k-star, that is, \mathcal{F} consists of all $\binom{n-1}{k-1}$ edges of size k containing a given vertex. They also proved the following simpler result for non-uniform hypergraphs.

Theorem $1.1[3]$. For $n \geq 3$, every n-vertex 2 -free hypergraph \mathcal{F} satisfies $|\mathcal{F}| \leq$ 2^{n-1}, and equality holds if and only if \mathcal{F} is a full star, that is, \mathcal{F} consists of 2^{n-1} distinct edges containing a given vertex.

Our first result is the following (simple) generalization of Theorem 1.1.
Theorem 1.2. If $2 \leq r \leq 2^{n-1}$, then the maximum number of edges in an n-vertex r-free hypergraph is $2^{n-1}+r-2$.

Many examples of n-vertex r-free hypergraphs with $2^{n-1}+r-2$ edges are formed by a full star with $r-2$ other edges. If $r \geq n$, then some extremal examples do not contain full stars. For $r=2$, Theorem 1.1 says that if $n \geq 3$, then the only n-vertex 2 -free hypergraph with 2^{n-1} edges is a full star. We conjecture the following.

Conjecture 1.3. Let \mathcal{F} be an n-vertex r-free hypergraph with $|\mathcal{F}|=2^{n-1}+r-2$. If $n>r$ and $r \geq 2$, then \mathcal{F} contains a full star.

The main results of this paper are the following.
Theorem 1.4. Suppose \mathcal{F} is an n-vertex r-free hypergraph with $|\mathcal{F}|=2^{n-1}+r-2$. If $n \geq r+2\lceil\log r\rceil+1$, then \mathcal{F} contains a full star.

Theorem 1.5. Suppose \mathcal{F} is an n-vertex r-free hypergraph with $|\mathcal{F}|=2^{n-1}+r-2$. If $n>r$ and $n \geq 425$, then \mathcal{F} contains a full star.
In the next section we prove Theorem 1.2 and derive simple properties of dense r-free hypergraphs. In Section 3 we show that dense r-free hypergraphs have no small transversals. In Section 4 we prove Theorem 1.4. In the last two sections we prove Theorem 1.5.

2. Preliminaries

Proof of Theorem 1.2. Let \mathcal{F} be an n-vertex r-free hypergraph with ground set N. Consider all 2^{n-1} pairs $\{A, N-A\}$ of subsets of N. In at most $r-1$ pairs of sets both sets are edges in \mathcal{F}, otherwise we get an r-regular subgraph of \mathcal{F} with vertex set N. If there are exactly $r-1$ such pairs, N cannot be an edge in \mathcal{F}, since N together with those $r-1$ pairs would form an r-regular subgraph of \mathcal{F}. Thus $|\mathcal{F}| \leq 2^{n-1}+r-2$. If $2 \leq r \leq 2^{n-1}$, then equality can be achieved.

Let $N=[n]$ and

$$
\mathcal{F}=\{e: 1 \in e\} \cup\{r-2 \text { smallest nonempty distinct subsets of }[n]-\{1\}\}
$$

Suppose that \mathcal{F} has an r-regular subgraph \mathcal{G}. Let $C_{1}, C_{2}, \ldots, C_{r}$ be the edges of \mathcal{G} that contain 1 , and $D_{1}, D_{2}, \ldots, D_{s}$ be the remaining edges of \mathcal{G}. Let $C=\bigcup_{i=1}^{r} C_{i}$ and for $i \in[r]$ let $C_{i}^{\prime}=C-C_{i}$. Since all edges are distinct, $\sum_{i=1}^{r}\left|C_{i}^{\prime}\right|=r|C|-$ $\sum_{i=1}^{r}\left|C_{i}\right|=\sum_{j=1}^{s}\left|D_{j}\right|$ should hold. The left-hand side is the sum of cardinalities of at least $r-1$ nonempty distinct sets (possibly one C_{i}^{\prime} is empty) not containing 1 , and the right-hand side is the sum of cardinailities of at most $r-2$ smallest distinct sets not containing 1 , and so, the right-hand side is less than the left-hand side. This contradiction shows that H has no r-regular subgraphs.

Let N be a finite set, and $n=|N|$. Let $3 \leq r<n$. A hypergraph \mathcal{F} is (N, r) strange if \mathcal{F} is an r-free hypergraph with $V(\mathcal{F})=N$ and $|\mathcal{F}|=2^{n-1}+r-2$ such that \mathcal{F} does not contain a full star, i.e., 2^{n-1} sets containing a given element.

For a set $A \subseteq N, \bar{A}$ is the complement of A to N, i.e., $\bar{A}=N-A$. A full pair in \mathcal{F} is a pair $\{A, \bar{A}\}$ such that both A and \bar{A} are in \mathcal{F}. We let the set N by itself form a full pair.

In order to prove Theorems 1.4 and 1.5, we derive some properties of (N, r) strange hypergraphs. If \mathcal{F} is (N, r)-strange, then it contains at most $r-1$ full pairs, and so, since $|\mathcal{F}|=2^{n-1}+r-2$,
(1) it contains exactly $r-1$ full pairs.

Moreover,
(2) for each $A \subset N$ with $N \neq A \neq \emptyset$, either $A \in \mathcal{F}$ or $\bar{A} \in \mathcal{F}$.

Furthermore, the following statements hold for each (N, r)-strange hypergraph \mathcal{F}.

Lemma 2.1. If $A, B \in \mathcal{F}, A \cap B=\emptyset$ and both A and B are not in full pairs, then $A \cup B \in \mathcal{F}$.

Proof. If $A \cup B \notin \mathcal{F}$, then $\overline{A \cup B} \in \mathcal{F}$ by (2). Thus $A, B, \overline{A \cup B}$ with $r-1$ full pairs form an r-regular subfamily of \mathcal{F}, a contradiction.

Lemma 2.2. If $A \in \mathcal{F}$ and B and C are disjoint nonempty subsets of A such that $A=B \cup C$, then at least one of B and C is in \mathcal{F}.

Proof. Suppose that $A=B \cup C$ is a partition of A into nonempty sets and $B, C \notin \mathcal{F}$. Then by (2), \bar{B} and \bar{C} are in \mathcal{F} but not in full pairs. Thus the sets A, \bar{B} and \bar{C} together with $r-2$ full pairs different from $\{A, \bar{A}\}$ form an r-regular subgraph of \mathcal{F}, a contradiction.

Corollary 2.3. Every edge A of \mathcal{F} contains an element x_{A} such that $\left\{x_{A}\right\} \in \mathcal{F}$. In particular, the union S of 1-edges of \mathcal{F} intersects each edge of \mathcal{F}.

Lemma 2.4. Let A and B be edges of \mathcal{F} such that $A \cap B \neq \emptyset$. If at least one of A and B is not in a full pair, then either $A \cap B$ or $A \cup B$ is in \mathcal{F}.

Proof. Suppose that $A \cap B, A \cup B \notin \mathcal{F}$. Then $\overline{A \cap B}$ is in \mathcal{F}, and $\overline{A \cup B}$ is either empty or in \mathcal{F}. In both cases, the sets $A, B, \overline{A \cap B}$, and $\overline{A \cup B}$ cover every element of N exactly twice. Adding $r-2$ full pairs containing neither A nor B will give an r-regular subgraph of \mathcal{F}.

3. Sizes of Transversals of (N, r)-strange Hypergraphs

A set $A \subset V(H)$ is a transversal of a hypergraph H if every edge of H intersects A.

Let S be a minimum transversal of a hypergraph \mathcal{F}. Then S contains all 1-edges of \mathcal{F}. If \mathcal{F} is (N, r)-strange, then by Corollary $2.3, S$ contains no other vertices. Thus S is exactly the union of 1-edges of \mathcal{F}. It has several useful properties.

The goal of this section is to prove the following fact. Throughout the paper, k denote $\left\lceil\log _{2} r\right\rceil$.

Theorem 3.1. Let $3 \leq r<n$ and N be a finite set with $|N|=n$. If S is the smallest transversal of an (N, r)-strange hypergraph \mathcal{F}, then $|S| \geq n-3 k-2$.

Let S be the smallest transversal of an (N, r)-strange hypergraph \mathcal{F}.

Lemma 3.2. If a nonempty $S^{\prime} \subset S$ is not in \mathcal{F}, then every $S^{\prime} \subseteq B \subseteq N-\left(S-S^{\prime}\right)$ is not in \mathcal{F}, and hence every $S-S^{\prime} \subseteq A \subseteq N-S^{\prime}$ is in \mathcal{F}.

Proof. Suppose that such B is in \mathcal{F}. By Lemma 2.2, either S^{\prime} or $B-S^{\prime}$ is in \mathcal{F}. But $\left(B-S^{\prime}\right) \cap S=\emptyset$, and we know that S^{\prime} is not in \mathcal{F}, a contradiction.

From now on, in this section, we will assume that

$$
\begin{equation*}
|S| \leq n-2 k-2 \tag{3}
\end{equation*}
$$

Note that to prove Theorem 3.1, we could make the stronger assumption that $|S| \leq n-3 k-3$, but we plan to use these lemmas also in the next section.

For $S^{\prime} \subseteq S$ and $M \subseteq N-S$, we say that M belongs to S^{\prime} if $S^{\prime} \cup M \in \mathcal{F}$. A nonempty proper subset S^{\prime} of S is firm if some $M \subset N-S$ with $|M| \geq 1+k$ belongs to S^{\prime}. In particular, S is firm by the following reason. For a set $A \subset N-S$ with $|A|=k+1$, one of $A \cup S$ and $N-S-A$ is in \mathcal{F} by (2). Since S is a transversal, $N-S-A$ is not in \mathcal{F}. Thus $S \cup A \in \mathcal{F}$, so A belongs to S and S is firm.

Lemma 3.3. Let $S^{\prime} \subseteq S$ and $M \subseteq N-S$. If M belongs to S^{\prime}, then every $M^{\prime} \subset M$ belongs to S^{\prime}

Proof. Since $M \cup S^{\prime} \in \mathcal{F}$, by Lemma 2.2, either $S^{\prime} \cup M^{\prime} \in \mathcal{F}$ or $M-M^{\prime} \in \mathcal{F}$. But the latter does not hold, since $M \cap S=\emptyset$. This proves the lemma.

Lemma 3.4. For every partition $S=S^{\prime} \cup S^{\prime \prime}$ of S into nonempty subsets, exactly one of S^{\prime} and $S^{\prime \prime}$ is firm.

Proof. Assume first that neither of S^{\prime} and $S^{\prime \prime}$ is firm. Let M be a subset of $N-S$ with $|M|=1+k$. Since S^{\prime} is not firm, $S^{\prime} \cup M \notin \mathcal{F}$. Then $N-\left(S^{\prime} \cup M\right) \in \mathcal{F}$, and $N-\left(S^{\prime} \cup M\right)=S^{\prime \prime} \cup(N-S-M)$. So by (3), $|N-S-M| \geq 2 k+2-(1+k)$, and thus $S^{\prime \prime}$ is firm. Assume now that both S^{\prime} and $S^{\prime \prime}$ are firm. If a set $M \subset N-S$ with $|M| \geq k+1$ belongs to both S^{\prime} and $S^{\prime \prime}$, then we will find an r-regular subgraph \mathcal{H} of \mathcal{F}.

Since $2^{|M|} \geq r$, there are at least r subsets of M. Call them $A_{1}, A_{2}, \ldots, A_{r}$. Let $\mathcal{H}=\left\{A_{i} \cup S^{\prime}: 1 \leq i \leq r\right\} \cup\left\{\left(M-A_{i}\right) \cup S^{\prime \prime}: 1 \leq i \leq r\right\}$, it is a subgraph of \mathcal{F} by Lemma 3.3. By construction, \mathcal{H} is r-regular, a contradiction.

If a set $M \subset N-S$ with $k \leq|M| \leq k+2$ belongs to neither S^{\prime} nor $S^{\prime \prime}$, then $N-S-M$ belongs to both, and again \mathcal{F} has an r-regular subgraph. Thus each $M \subset N-S$ with $|M|=k+1$ belongs to exactly one of S^{\prime} and $S^{\prime \prime}$. Let $\mathcal{R}_{S^{\prime}}$ (respectively, $\mathcal{R}_{S^{\prime \prime}}$) denote the family of $M \subset N-S$ with $|M|=k+1$ that belongs to S^{\prime} (respectively, to $S^{\prime \prime}$). By our assumption, both $\mathcal{R}_{S^{\prime}}$ and $\mathcal{R}_{S^{\prime \prime}}$ are nonempty. Then there exist $M^{\prime} \in \mathcal{R}_{S^{\prime}}$ and $M^{\prime \prime} \in \mathcal{R}_{S^{\prime \prime}}$ with $\left|M^{\prime} \cap M^{\prime \prime}\right|=k$. Thus $M^{\prime} \cap M^{\prime \prime}$ belongs to both S^{\prime} and $S^{\prime \prime}$, and so \mathcal{F} has an r-regular subgraph, a contradiction.

Corollary 3.5. If S^{\prime} is a firm subset of S, then every $M \subset N-S$ with $1 \leq$ $|M| \leq n-s-(k+1)$ belongs to S^{\prime}.

Corollary 3.6. Every two firm subsets of S intersect each other.
Proof. Suppose that S_{1} and S_{2} are two disjoint firm subsets of S. Let $M \subset N-S$ with $|M|=k+1$. By Corollary $3.5, M$ belongs to both S_{1} and S_{2}. Then as in the proof of Lemma 3.4, \mathcal{F} has an r-regular subgraph with vertex set $S_{1} \cup S_{2} \cup M$, a contradiction.

Lemma 3.7. $s \leq r-1$
Proof. Suppose $s \geq r$.
Case 1. $s \geq r+k$. Since the number of 1-edges in full pairs is at most $r-1$, we can choose $k+1(\leq s-(r-1))$ 1-edges of \mathcal{F} that are not in full pairs. Let S^{\prime} be the union of these edges. If some $A \subseteq S^{\prime}$ is not in \mathcal{F}, then \bar{A} and the 1-edges contained in A cover N once, and together with the $r-1$ full pairs (that exist by (1)) we obtain an r-regular subgraph of \mathcal{F} covering N, a contradiction. Thus all nonempty subsets of S^{\prime} are in \mathcal{F}, and the number of nonempty proper subsets of S^{\prime} is at least $2^{k+1}-2 \geq 2 r-2$. We can pair them up so that they are partitions of S^{\prime}. At least $r-1$ of such pairs exist, so together with S^{\prime} they form an r-regular subgraph of \mathcal{F}, a contradiction.

Case 2. $r \leq s \leq r+k-1$. By (3), $n-s \geq k+1$. If there are $v_{1}, v_{2} \in S$ such that $S-v_{1}, S-v_{2} \notin \mathcal{F}$, then by Lemma 3.2 , every $B \subseteq N-S$ satisfies $B+v_{1} \in \mathcal{F}$ and $B+v_{2} \in \mathcal{F}$. Since there are at least $2^{n-s} \geq r$ possible sets for B, we can find r pairs of sets $v_{1}+B, v_{2}+(N-S-B)$, and they will form an r-regular subgraph of \mathcal{F} on $(N-S)+v_{1}+v_{2}$.

Thus for some $r-1$ vertices $v_{1}, \ldots, v_{r-1} \in S$, the sets $S-v_{i}$ are in \mathcal{F}. Then the family $\left\{v_{1}, \ldots, v_{r-1}, S-v_{1}, \ldots, S-v_{r-1}, S\right\}$ covers every $v \in S$ exactly r times, a contradiction.

Lemma 3.8. No 1-edge of \mathcal{F} is firm.
Proof. Let $S=\left\{v_{1}, v_{2}, \ldots, v_{s}\right\}$. Suppose that $S_{1}:=\left\{v_{1}\right\}$ is firm. Then by Corollary 3.6 , no subset of $S-v_{1}$ is firm. Hence by Lemma 3.4, the firm subsets of S are exactly the sets containing v_{1}.

Since not every subset of N containing v_{1} is in \mathcal{F} and $s \leq r-1$, there are at least $r-1-(s-1)=r-s$ edges W_{1}, \ldots, W_{r-s} that are in \mathcal{F}, not 1-edges and do not contain v_{1}. For $j=1, \ldots, r-s$, let $M_{j}=W_{j}-S$. Let $M=\bigcup_{j=1}^{r-s} M_{j}$. Choose W_{1}, \ldots, W_{r-s} so that to minimize $|M|$.

Case 1. $|M| \leq n-s-k-1$. Denote by \mathcal{F}^{\prime} the family $\left\{S \cup M,\left\{v_{2}\right\}, \ldots,\left\{v_{s}\right\}, S \cup\right.$ $\left.M-v_{2}, \ldots, S \cup M-v_{s}, W_{1}, \ldots, W_{r-s}, S \cup M-W_{1}, \ldots, S \cup M-W_{r-s}\right\}$.

Since \mathcal{F}^{\prime} forms an r-regular hypergraph, \mathcal{F}^{\prime} is not a subgraph of \mathcal{F}. But since $\left\{v_{1}\right\}$ is firm, by the choice of W_{j} and Corollary 3.5, every member of \mathcal{F}^{\prime} is in \mathcal{F}, a contradiction. This proves Case 1.

Let $t=\max \left\{|A-S|: A \in \mathcal{F}\right.$ and $\left.v_{1} \notin A\right\}$ and let $A_{0} \in \mathcal{F}$ be such that $v_{1} \notin A_{0}$ and $\left|A_{0}-S\right|=t$.

Case 2. $t \geq k$. Let M_{0} be any k-element subset of $A_{0}-S$ and $W_{0}=M_{0} \cup$ $\left(A_{0} \cap S\right)$. Since $A_{0} \in \mathcal{F}$ and $S \cap\left(A_{0}-W_{0}\right)=\emptyset, W_{0} \in \mathcal{F}$. Since $2^{k} \geq r, M_{0}$ contains some r distinct subsets $M_{1}^{\prime}, \ldots, M_{r}^{\prime}$. Let $W_{i}^{\prime}=M_{i}^{\prime} \cup\left(A_{0} \cap S\right)$ for $i=1, \ldots, r$. Since $\left(M_{0}-M_{i}^{\prime}\right) \cap S=\emptyset$, each of W_{i}^{\prime} is in \mathcal{F}. Moreover, since $|S| \leq n-2 k-2$, $\left|M_{0}\right|=k$, and $\left\{v_{1}\right\}$ is firm, for every $1 \leq i \leq r$, the set $\left(S \cup M_{0}\right)-W_{i}^{\prime}$ contains v_{1} and has at most $n-s-(k+1)$ vertices in $N-S$. This means that $\left(S \cup M_{0}\right)-W_{i}^{\prime}$ is also in \mathcal{F}. So, the family $\left\{W_{1}^{\prime}, \ldots, W_{r}^{\prime},\left(S \cup M_{0}\right)-W_{1}^{\prime}, \ldots,\left(S \cup M_{0}\right)-W_{r}^{\prime}\right\}$ forms an r-regular hypergraph, a contradiction.

Case 3. $\log _{2}(r-s) \leq t \leq k-1$. Let $M_{0}=A_{0}-S$. In our case, $2^{\left|M_{0}\right|}=2^{t} \geq$ $r-s$. Let $M_{1}^{\prime}, \ldots, M_{r-s}^{\prime}$ be any distinct subsets of M_{0}, and for $i=1, \ldots, r-s$, let $W_{i}^{\prime}=M_{i}^{\prime} \cup\left(A_{0} \cap S\right)$. Similarly to Case 2 , since $\left(M_{0}-M_{i}^{\prime}\right) \cap S=\emptyset$, each of W_{i}^{\prime} is in \mathcal{F}. Moreover, since $|S| \leq n-2 k-2,\left|M_{0}\right| \leq k-1$, and $\left\{v_{1}\right\}$ is firm, for every $1 \leq i \leq r$, the set $\left(S \cup M_{0}\right)-W_{i}^{\prime}$ is also in \mathcal{F}. By the same reason, for every $2 \leq j \leq s$, the set $\left(S \cup M_{0}\right)-v_{j}$ is in \mathcal{F}. So, the family $\left\{W_{1}^{\prime}, \ldots, W_{r-s}^{\prime},\left(S \cup M_{0}\right)-\right.$ $\left.W_{1}^{\prime}, \ldots,\left(S \cup M_{0}\right)-W_{r-s}^{\prime},\left\{v_{2}\right\}, \ldots,\left\{v_{s}\right\}, S \cup M_{0}-v_{2}, \ldots, S \cup M_{0}-v_{s}, S \cup M_{0}\right\}$ forms an r-regular hypergraph, a contradiction.

Case 4. $|M| \geq n-k-s$ and $t<\min \left\{k-1, \log _{2}(r-s)\right\}$. Let $M_{0}=A_{0}-S$. We claim that $|M| \leq r-s-2^{t}+t+1$. To prove the claim, we show a way to choose W_{1}, \ldots, W_{r-s} so that

$$
\begin{equation*}
\left|\bigcup_{j=1}^{i} W_{j}-S\right| \leq i-2^{t}+t+1 \tag{4}
\end{equation*}
$$

for every $2^{t}-1 \leq i \leq r-s$. The sets $W_{1}, \ldots, W_{2^{t-1}}$ are all the sets of the form $A_{0}-X$ where $X \subseteq M_{0}, X \neq M_{0}$. So, for $i=2^{t}-1$, (4) holds. Suppose that for some $2^{t}-1 \leq i_{0} \leq r-s-1$, we have found $W_{1}, \ldots, W_{i_{0}}$ satisfying (4) for $i=i_{0}$. Let \mathcal{C} be the family of members of \mathcal{F} not containing v_{1} that are distinct from $W_{1}, \ldots, W_{i_{0}}$. Since $i_{j} \leq r-s-1$, there is $C \in \mathcal{C} \neq \emptyset$. Let $C^{\prime}=C-S-\bigcup_{j=1}^{i o} W_{j}$. If $C^{\prime}=\emptyset$, then we let $C:=W_{i_{0}+1}$ and (4) holds for $i=i_{0}+1$. Suppose $x \in C^{\prime}$. Since $\left(C^{\prime}-x\right) \cap S=\emptyset$, the set $C-C^{\prime}+x$ is in \mathcal{F}, does not contain v_{1}, and is distinct from $W_{1}, \ldots, W_{i_{0}}$. So, letting $W_{i_{0}+1}=C-C^{\prime}+x$ we again have that (4) holds for $i=i_{0}+1$. This proves the claim.

Let \mathcal{F}^{\prime} be the family defined in Case 1 . Since it is r-regular, some $W^{\prime} \in \mathcal{F}^{\prime}$ is not in \mathcal{F}. Then $\overline{S \cup M-W^{\prime}} \in \mathcal{F}$ by (2). By the definition of $t,|N-(S \cup M)| \leq$ $\left|\overline{S \cup M-W^{\prime}}-S\right| \leq t$. Thus by (4), $n=|N|=|M|+|S|+|N-(M \cup S)| \leq$ $\left(r-s-2^{t}+t+1\right)+s+t=r-2^{t}+2 t+1$.

If $t \geq 3$, we get $n \leq r-1$, a contradiction.
If $t=2$, we get $n \leq r+1,|M|=r-s-1$ and $\left|A_{0}-S\right|=2$. Then $\left(A_{0}-S\right) \subset M$ with $|M|=r-s-1$ and $\left|\overline{M \cup S-W^{\prime}}-S\right| \geq 2$. Thus there are distinct A_{0}, A_{1} with $\left|A_{i}-S\right|=2,\left(A_{0}-S\right) \cap\left(A_{1}-S\right)=\emptyset$ and $v_{1} \notin A_{i}$. Let $\left\{v_{1}, v_{2}, \ldots, v_{r-s-6}\right\} \subset M-A_{0}-A_{1}$. For $x=1,2, \ldots, r-s-6$, let $v_{x} \in M_{j_{x}}$. By Lemma 3.3, $W_{j_{x}}-M_{j_{x}}+v_{x} \in \mathcal{F}$ for every $x_{1}, \ldots, r-s-6$. These edges with $A \cup\left(A_{i} \cap S\right)$ for nonempty $A \subseteq A_{i}-S$ yield that $|M| \leq r-s-2$, a contradiction.

Thus $t=1$. Then $n=r+1,|M|=r-s$ and every edge not containing v_{1} is either a 2 -edge or a 1-edge. And $\overline{S \cup M-W^{\prime}}$ is also a 2-edge, so W^{\prime} is a 1-edge. Let $W^{\prime}=\left\{v_{2}\right\}$.
Since $|M|=r-s$ and $\overline{S \cup M-v_{2}}=\left\{v_{2}\right\} \cup(N-M-S)$, for each $w \in N-S$ there is exactly one 2 -edge not containing v_{1} containing w. Since $|N-S|=r-s+1$ and the number of 1-edges in $S-v_{1}$ is $s-1, \mathcal{F}$ has exactly $r-s+1+s-1=r$ edges not containing v_{1}.

So we have exactly two sets containing v_{1} that are not in \mathcal{F}. Call them D_{1}, D_{2}. We have $D_{1}=S \cup M-v_{2}$. Since $|N-S|=n-s \geq 2 k+2 \geq 4$ and every vertex in $N-S$ is contained in exactly one 2 -edge not containing v_{1}, there are at least 4 different ways to choose $W_{i} \mathrm{~s}$ to get minimum $|M|$. Each way gives different M, let two of them be M and M^{\prime}. Then, by the above logic, $D_{2}=S \cup M^{\prime}-v_{3}$ for some v_{3}, and $\left|M \cap M^{\prime}\right| \geq 2$. Thus $D_{1} \cap D_{2}-S$ is not empty. Let $w \in D_{1} \cap D_{2}-S$. Then there are $2^{n-1}-2$ edges in \mathcal{F} containing both w and v_{1}, and exactly one edge containing w but not v_{1}. Thus $\mathcal{F}-w=\{E \in \mathcal{F}: w \notin E\}$ is an $(n-1)$-vertex hypergraph with $2^{n-1}+r-1$ edges. By Theorem $1.2, \mathcal{F}-w$ contains an r-regular subgraph, a contradiction.

Lemma 3.9. $s \leq r-2$.
Proof. Suppose that $s \geq r-1$. Then by Lemma 3.7, $s=r-1$. By Lemma 3.8, $S-v_{i}$ is firm (and so is in \mathcal{F}) for every $i=1, \ldots, s$. Then the $2 r-1$ sets

$$
\left\{v_{1}\right\}, \ldots,\left\{v_{r-1}\right\}, S-v_{1}, \ldots, S-v_{r-1}, S
$$

form an r-regular subgraph of \mathcal{F}, a contradiction.

Lemma 3.10. Let $k \geq 2$ and let B be a set with $|B| \geq 2 k+2$. Then there are at least $2^{k-2}+1$ partitions ($B_{i, 1}, B_{i, 2}, B_{i, 3}$) of B such that $\left|B_{i, 1}\right|=\lceil(k+1) / 2\rceil,\left|B_{i, 2}\right|=$ $\lceil(k+1) / 2\rceil,\left|B_{i, 3}\right| \geq k+1$ and all $3\left\lceil 2^{k-2}\right\rceil+3$ parts of these partitions are distinct.

Proof. We will choose B_{1} of size $\lceil(k+1) / 2\rceil$ and B_{2} of size $\lceil(k+1) / 2\rceil$, so that $\left|B_{3}\right|=|B|-2\lceil k / 2\rceil \geq k+1$.

For $k \geq 4$, we have

$$
\begin{align*}
\binom{2 k+2-\left\lceil\frac{k+1}{2}\right\rceil}{\left\lceil\frac{k+1}{2}\right\rceil} & =\frac{\left(2 k+2-\left\lceil\frac{k+1}{2}\right\rceil\right)\left(2 k+1-\left\lceil\frac{k+1}{2}\right\rceil\right)\left(2 k-\left\lceil\frac{k+1}{2}\right\rceil\right)}{\left\lceil\frac{k+1}{2}\right\rceil\left(2 k+2-2\left\lceil\frac{k+1}{2}\right\rceil\right)\left(2 k+1-2\left\lceil\frac{k+1}{2}\right\rceil\right)} \tag{5}\\
& \binom{2 k-2-\left\lceil\frac{k-2+1}{2}\right\rceil}{\left\lceil\frac{k-2+1}{2}\right\rceil} \geq 4\binom{2(k-2)+2-\left\lceil\frac{k-1}{2}\right\rceil}{\left\lceil\frac{k-1}{2}\right\rceil} .
\end{align*}
$$

So, for even k,

$$
\begin{aligned}
\binom{2 k+2-\lceil(k+1) / 2\rceil}{\lceil(k+1) / 2\rceil} & \geq 4\binom{2(k-2)+2-\lceil(k-1) / 2\rceil}{\lceil(k-1) / 2\rceil} \\
& \geq \cdots \geq 4^{\frac{k-2}{2}}\binom{4}{2}=6 \cdot 2^{k-2} .
\end{aligned}
$$

For odd k,

$$
\begin{aligned}
\binom{2 k+2-\lceil(k+1) / 2\rceil}{\lceil(k+1) / 2\rceil} & \geq 4\binom{2(k-2)+2-\lceil(k-1) / 2\rceil}{\lceil(k-1) / 2\rceil} \geq \cdots \geq 4^{\frac{k-3}{2}}\binom{6}{2} \\
& =15 \cdot 2^{k-3} \geq 6 \cdot 2^{k-2} .
\end{aligned}
$$

First for each $i=1, \ldots, 2^{k-2}+1$, choose a set $B_{i, 1}$ of size $\lceil k / 2\rceil$ so that all chosen sets are distinct. Then one by one for each $i=1, \ldots, 2^{k-2}+1$, choose a set $B_{i, 2}$ of size $\lceil k / 2\rceil$ so that
(a) $B_{i, 2}$ is distinct from all $2^{k-2}+1$ sets $B_{i^{\prime}, 1}$ and previously chosen $B_{i^{\prime}, 2}$, and
(b) $B_{i, 1} \cup B_{i, 2}$ is distinct from all already chosen $B_{i^{\prime}, 1} \cup B_{i^{\prime}, 2}$.

Even at the last step (step $2^{k-2}+1$), the number of forbidden sets is at most $3 \cdot 2^{k-2}+1<6 \cdot 2^{k-2}$. So, by (5), we finish the construction.

Corollary 3.11. Let B be a set with $|B| \geq 3 k+3$. Then there are at least $2^{k-2}+1$ partitions ($B_{i, 1}, B_{i, 2}, B_{i, 3}$) of B such that all $3\left\lceil 2^{k-2}\right\rceil+3$ parts of these partitions are distinct, and each $B_{i, j}$ has size at least $k+1$.
Proof. Let $A \subseteq B$ and $|A|=k+1$. Let $B^{\prime}=B-A$. Partition A into $A_{1} \cup A_{2} \cup A_{3}$ with $\left|A_{1}\right|=\left|A_{2}\right|=k+1-\left\lceil\frac{k+1}{2}\right\rceil$. By Lemma 3.10, there are at least $2^{k-2}+1$ partitions ($B_{i, 1}^{\prime}, B_{i, 2}^{\prime}, B_{i, 3}^{\prime}$) of B^{\prime} such that all parts of these paritions are distinct, and $\left|B_{i, 1}^{\prime}\right|=\left|B_{i, 2}^{\prime}\right|=\left\lceil\frac{k+1}{2}\right\rceil,\left|B_{i, 3}^{\prime}\right| \geq k+1$. Take $B_{i, j}=B_{i, j}^{\prime} \cup A_{i}$. Then partitions ($B_{i, 1}, B_{i, 2}, B_{i, 3}$) satisfy all the conditions.

Proof of Theorem 3.1. Suppose $s \leq n-3 k-3$. Then all lemmas in this section hold, since $s \leq n-3 k-3 \leq n-2 k-2$.

Let S^{\prime} be a smallest firm subset of S. Note that S^{\prime} is not a 1-edge. Partition S^{\prime} into nonempty subsets S_{1} and S_{2}. By the minimality of S^{\prime}, sets S_{1} and S_{2} are not firm, and so $S-S_{1}$ and $S-S_{2}$ are firm.

Let $B:=N-S$. Then $|B|=n-s \geq 3 k+3$. So, by Corollary 3.11, there are $K:=\left\lceil 2^{k} / 6\right\rceil+1$ partitions

$$
\left(B_{1,1}, B_{1,2}, B_{1,3}\right),\left(B_{2,1}, B_{2,2}, B_{2,3}\right), \ldots,\left(B_{K, 1}, B_{K, 2}, B_{K, 3}\right)
$$

of B such that all $B_{i, j}$ are distinct and $\left|B_{i, j}\right| \geq k+1$. For every $i \in\{1, \ldots, K\}$ and every $j \in\{1,2,3\}$, the three sets $S^{\prime} \cup\left(B-B_{i, j}\right), S_{1} \cup\left(B-B_{i, j+1}\right)$, and $S_{2} \cup\left(B-B_{i, j+2}\right)$ (where j counts modulo 3) are in \mathcal{F} (by Corollary 3.5 and the fact that $\left.\left|B-B_{i, j}\right| \leq n-s-(k+1)\right)$ and cover every vertex in N exactly twice. Using such triples for $i=1, \ldots, K$ and $j=1,2,3$, we cover every vertex exactly $6 K \geq 2^{k} \geq r$ times and every set appears at most once. If $r<6 K$ and is even, then we use not all triples.

If r is odd, then we pick a full pair $(A, N-A)$. There are at most two triples $\left(S^{\prime} \cup\left(B-B_{i, j}\right), S_{1} \cup\left(B-B_{i, j+1}\right), S_{2} \cup\left(B-B_{i, j+2}\right)\right)$ containing A or $N-A$. Then we cover the set N once by the set A and $N-A$ and $r-1$ times with $\frac{r-1}{2} \leq 3 K-2$ triples $\left(S^{\prime} \cup\left(B-B_{i, j}\right), S_{1} \cup\left(B-B_{i, j+1}\right), S_{2} \cup\left(B-B_{i, j+2}\right)\right)$ containing neither A nor $N-A$. This contradicts the choice of \mathcal{F}. Therefore $|S| \geq n-3 k-2$.

4. Proof of Theorem 1.4

If the theorem does not hold, then for some $3 \leq r<n, k=\left\lceil\log _{2} r\right\rceil$ with $n \geq$ $r+2 k+1$, and for some n-vertex set N, there exists an (N, r)-strange hypergraph \mathcal{F}. Let S be the union of 1-edges in \mathcal{F}. By Lemma 3.9, $|S| \leq r-2 \leq n-2 k-3$.

Let $\mathcal{S}_{n f}$ denote the family of non-firm subsets of S. For every $S^{\prime} \in \mathcal{S}_{n f}$, let

$$
\mathcal{F}_{S^{\prime}}:=\left\{W \in \mathcal{F}: W \cap S=S^{\prime}\right\} .
$$

Furthermore, let

$$
\mathcal{F}_{n f}:=\bigcup_{S^{\prime} \in \mathcal{S}_{n f}} \mathcal{F}_{S^{\prime}}
$$

Lemma 4.1. Let $M:=\bigcup_{W \in \mathcal{F}_{n f}} W-S$. Then
(a) $|M| \leq r-s-2$;
(b) $\left|\mathcal{F}_{n f}\right| \leq r-2$.

Proof. Assume that (a) does not hold and that w_{1}, \ldots, w_{r-s-1} are in M. Let $M^{\prime}:=\left\{w_{1}, \ldots, w_{r-s-1}\right\}$. For $j=1, \ldots, r-s-1$, let W_{j} be a member of $\mathcal{F}_{n f}$ such that $w_{j} \in W_{j}$, and let $S_{j}=W_{j} \cap S$. By Lemma 3.3, $W_{j}^{\prime}:=S_{j}+w_{j}$ is in \mathcal{F} for every $j=1, \ldots, r-s-1$. Since each S_{j} and 1-edges are non-firm, $S-S_{j}$ and $S-v_{j}$ are firm. Also $\left|N-S-M^{\prime}\right|=n-s-(r-s-1)=n-r+1 \geq 2 k+2$, thus by Corollary 3.5, every set of the form $S \cup M^{\prime}-S_{j}-w_{j}$ or of the form $S \cup M^{\prime}-v_{i}$ is in \mathcal{F}. So, every member of the family $\left\{S \cup M^{\prime},\left\{v_{1}\right\}, \ldots,\left\{v_{s}\right\}, S \cup\right.$ $\left.M^{\prime}-\left\{v_{1}\right\}, \ldots, S \cup M-\left\{v_{s}\right\}, W_{1}^{\prime}, \ldots, W_{r-s-1}^{\prime}, S \cup M^{\prime}-W_{1}^{\prime}, \ldots, S \cup M^{\prime}-W_{r-s-1}^{\prime}\right\}$
is in \mathcal{F}. Moreover, together they cover every vertex in $S \cup M^{\prime}$ exactly r times. This proves (a).

Suppose now that W_{1}, \ldots, W_{r-1} are in $\mathcal{F}_{n f}$. Since $|M| \leq r-s-2$, every member of the family $\left\{S \cup M, W_{1}, \ldots, W_{r-1}, S \cup M-W_{1}, \ldots, S \cup M-W_{r-1}\right\}$ is in \mathcal{F}. Moreover, together they cover every vertex in $S \cup M$ exactly r times. This proves (b).

Remark 4.2. Since no member of $\mathcal{F}_{n f}$ contains any element in $N-S-M$, for every $w \in N-M-S$, every subset of $N-S-w$ belongs to every firm $S^{\prime} \subset S$.
Let S^{\prime} be a smallest firm subset of S. By Lemma $3.8 S^{\prime}$ is not an 1-edge. Choose a partition $S^{\prime}=S_{1} \cup S_{2}$ of S^{\prime} into nonempty subsets. By the minimality of $S^{\prime \prime}$, sets S_{1} and S_{2} are not firm, and so $S-S_{1}$ and $S-S_{2}$ are firm.
Fix any element $z \in N-S-M$ and let $B:=N-S-z$. Since $s \leq r-2,|B| \geq$ $n-(r-2)-1 \geq 2 k+2$. So, by Lemma 3.10, there are $K:=\left\lceil 2^{k} / 6\right\rceil+1$ partitions $\left(B_{1,1}, B_{1,2}, B_{1,3}\right),\left(B_{2,1}, B_{2,2}, B_{2,3}\right), \ldots,\left(B_{K, 1}, B_{K, 2}, B_{K, 3}\right)$ of B such that all $B_{i, j}$ are distinct. For every $i \in\{1, \ldots, K\}$ and every $j \in\{1,2,3\}$, the three sets $S^{\prime} \cup\left(B-B_{i, j}\right), S_{1} \cup\left(B-B_{i, j+1}\right)$, and $S_{2} \cup\left(B-B_{i, j+2}\right)$ (where j counts modulo 3) are in \mathcal{F} (by Remark 4.2) and cover every vertex in $N-z$ exactly twice. Using such triples for $i=1, \ldots, K$ and $j=1,2,3$, we cover every vertex exactly $6 K \geq 2^{k} \geq r$ times and every set appears at most once. If $r<6 K$ and is even, then we use not all triples. If r is odd, then we pick a full pair $(A, N-A)$. Then we cover the set N once by the set A and $N-A$ and $r-1$ times with the triples $\left(S^{\prime} \cup\left(B-B_{i, j}\right), S_{1} \cup\left(B-B_{i, j+1}\right), S_{2} \cup\left(B-B_{i, j+2}\right)\right)$ for $\frac{r-1}{2}(\leq 3 K-2)$ triples containing neither A nor $N-A$.

5. Size of Almost \mathcal{F}-free Subsets

A set A is almost \mathcal{F}-free if every $B \in \mathcal{F}$ such that $B \subseteq A$ has size 1 .
The aim of this section is to prove the following theorem.
Theorem 5.1. If $n \geq 425$, then $|T| \leq n-15 k-6$ for each almost \mathcal{F}-free $T \subseteq N$.
Observe that for $n \geq 425$,

$$
\begin{equation*}
n-15 k-6 \geq \frac{n}{2}>0 \text { and } n>(4 k+4)(\lceil\log (k)\rceil+6)+2 k+6 . \tag{6}
\end{equation*}
$$

We need some notation and lemmas. Let T be a maximum almost \mathcal{F}-free set, and $Q=N-T$. Assume that $|Q|<15 k+6$, i.e., $|T|>n-15 k-6$. For $Q^{\prime} \subseteq Q$ and $T^{\prime} \subseteq T$, we say that T^{\prime} belongs to Q^{\prime} if $Q^{\prime} \cup T^{\prime} \in \mathcal{F}$. A nonempty subset Q^{\prime} of Q is solid if some $T^{\prime} \subset T^{\prime}$ with $\left|T^{\prime}\right| \geq 3+k$ belongs to Q^{\prime}.

To show that Q is solid, let $B \subset T$ with $|B|=2$. Since T is almosts \mathcal{F}-free, $B \notin \mathcal{F}$. Then $N-B=(T-B) \cup Q \in \mathcal{F}$. By (6), $|T-B| \geq n / 2-|B|=n / 2-2 \geq$ $k+3$, and so Q is solid.

Lemma 5.2. Let $Q^{\prime} \subseteq Q$ and $T^{\prime} \subseteq T$. If T^{\prime} belongs to Q^{\prime}, then every $T^{\prime \prime} \subset T^{\prime}$ with $\left|T^{\prime \prime}\right| \leq\left|T^{\prime}\right|-2$ belongs to Q^{\prime}.

Proof. Since $T^{\prime} \cup Q^{\prime} \in \mathcal{F}$, by Lemma 2.2, either $Q^{\prime} \cup T^{\prime \prime} \in \mathcal{F}$ or $T-T^{\prime \prime} \in \mathcal{F}$. But the latter does not hold, since T is almost \mathcal{F}-free. This proves the lemma.

Lemma 5.3. For every partition $Q=Q^{\prime} \cup Q^{\prime \prime}$ of Q into nonempty subsets, exactly one of Q^{\prime} and $Q^{\prime \prime}$ is solid.

Proof. Assume first that Q^{\prime} is not solid. By (6), there exists a set $M \subset T$ with $|M|=3+k$. Since Q^{\prime} is not solid, $Q^{\prime} \cup M \notin \mathcal{F}$. Then $N-\left(Q^{\prime} \cup M\right) \in \mathcal{F}$, and $N-\left(Q^{\prime} \cup M\right)=Q^{\prime \prime} \cup(T-M)$. So, since $|T-M| \geq n-15 k-6-(3+k) \geq k+3$, $Q^{\prime \prime}$ is solid.

Assume now that both Q^{\prime} and $Q^{\prime \prime}$ are solid. We will show that if a set $M \subset T$ with $|M| \geq k+3$ belongs to both Q^{\prime} and $Q^{\prime \prime}$, then \mathcal{F} has an r-regular subgraph with vertex set $Q \cup M$.

If $a \in M$, then the number of distinct subsets $A_{1}, A_{2}, \ldots, A_{r}$ of M containing a with $2 \leq\left|A_{i}\right| \leq|M|-2$ is at least

$$
2^{|M|-1}-(|M|+1)=2^{k+2}-k-4=4 r-k-4 \geq r .
$$

Note that $r \geq 2$, and $M-A_{i} \neq A_{j}$, since $a \in A_{j}$ and $a \notin M-A_{j}$. Let $\mathcal{H}=\left\{A_{i} \cup Q^{\prime}: 1 \leq i \leq r\right\} \cup\left\{\left(M-A_{i}\right) \cup Q^{\prime \prime}: 1 \leq i \leq r\right\}$. By construction, \mathcal{H} is r-regular, a contradiction.

If a set $M \subset T$ with $|M|=k+4$ belongs to neither of Q^{\prime} and $Q^{\prime \prime}$, then $T-M$ belongs to both, and again \mathcal{F} has an r-regular subgraph. Thus each $M \subset T$ with $|M|=k+4$ belongs to exactly one of Q^{\prime} and $Q^{\prime \prime}$. Let $\mathcal{R}_{Q^{\prime}}$ (respectively, $\left.\mathcal{R}_{Q^{\prime \prime}}\right)$ denote the family of $M \subset T$ with $|M|=k+4$ that belong to Q^{\prime} (respectively, to $\left.Q^{\prime \prime}\right)$. By our assumption, both $\mathcal{R}_{Q^{\prime}}$ and $\mathcal{R}_{Q^{\prime \prime}}$ are nonempty. Then there exist $M^{\prime} \in \mathcal{R}_{Q^{\prime}}$ and $M^{\prime \prime} \in \mathcal{R}_{Q^{\prime \prime}}$ with $\left|M^{\prime} \cap M^{\prime \prime}\right|=k+3$. By Lemma 5.2, $M^{\prime} \cap M^{\prime \prime}$ belongs to both Q^{\prime} and $Q^{\prime \prime}$, and so \mathcal{F} has an r-regular subgraph, a contradiction.

Corollary 5.4. If Q^{\prime} is a solid subset of Q, then every $M \subset T$ with $k+3 \leq$ $|M| \leq|T|-(k+3)$ belongs to S^{\prime}.

Lemma 5.5. The number of 1 -edges not in full pairs of \mathcal{F} is at most k.
Proof. Assume that there are $k+1$ distinct 1-edges $\left\{a_{1}\right\},\left\{a_{2}\right\}, \ldots,\left\{a_{k+1}\right\}$ not in full pairs. If some nonempty $B \subset A=\left\{a_{1}, a_{2}, \ldots, a_{k+1}\right\}$ is not in \mathcal{F}, then $\bar{B} \in \mathcal{F}$ by (2). Then \bar{B} together with 1-edges contained in B cover N once and none of these is in a full pair. These sets together with $r-1$ full pairs cover N exactly r times, a contradiction. Thus every nonempty subset of A is in \mathcal{F}.

There are 2^{k} distinct nonempty subsets of A containing a_{1}, call them B_{1}, B_{2}, \ldots, $B_{2^{k}}$. Then all nonempty sets among $B_{1}, B_{2}, \ldots, B_{r}, A-B_{1}, A-B_{2}, \ldots, A-B_{r}$ are in \mathcal{F}, and they form an r-regular subgraph of \mathcal{F}, a contradiction. Therefore the number of 1-edges not in full pairs of \mathcal{F} is at most k.

Lemma 5.6. The number of 1 -edges in full pairs in \mathcal{F} is at least $n-4 k-2$. Thus at most $8 k-2$ elements in full pairs are neither 1 -edges nor $(n-1)$-edges.

Proof. By Theorem 3.1, $|S| \geq n-3 k-2$, so the number of 1-edges is at least $n-3 k-2$. If fewer than $n-4 k-2$ of them are in full pairs, then we get $k+1$ distinct 1-edges $a_{1}, a_{2}, \ldots, a_{k+1}$ not in full pairs, a contradiction to Lemma 5.5.

Lemma 5.7. For each $a \in Q$, there is $A \in \mathcal{F}$ with $2 \leq|A| \leq 3$ such that $\{a\}=A \cap Q$.

Proof. Since T is a maximum almost \mathcal{F}-free set, $T \cup\{a\}$ is not almost \mathcal{F}-free. So, there is $B \subset T \cup\{a\}$ such that $B \in \mathcal{F}$ and $|B| \geq 2$. Take a smallest such B.

If $|B|=b \geq 4$, then there is $B^{\prime} \subset B$ with $\left|B^{\prime}\right|=b-2>1$ and $B^{\prime} \subset T$. Then $B^{\prime} \notin \mathcal{F}$, and by Lemma $2.2, B-B^{\prime} \in \mathcal{F}$, so $A=B-B^{\prime}$ is what we need.

Lemma 5.8. The set Q contains at least one solid 1-edge.
Proof. Let B be a smallest solid set in Q. Suppose $|B| \geq 2$. Then there are disjoint nonempty $B_{1}^{\prime}, B_{2}^{\prime} \subset B$ with $B_{1}^{\prime} \cup B_{2}^{\prime}=B$. By Lemma $5.3, B_{1}=Q-B_{1}^{\prime}$ and $B_{2}=Q-B_{2}^{\prime}$ are solid.

By (6), $T \geq n-15 k-6 \geq 3 k+9$. Let $K:=\left\lceil 2^{k} / 6\right\rceil+1$. Similarly to the proofs of Lemma 3.10 and Corollary 3.11, for each $i=1,2, \ldots, K$ there are partitions $\left(T_{i, 1}, T_{i, 2}, T_{i, 3}\right)$ of T such that all $T_{i, j}$ are distinct and $\left|T_{i, j}\right| \geq k+3$ for all $i=1,2, \ldots, K$ and $j=1,2,3$.

For every $i \in\{1, \ldots, K\}$ and every $j \in\{1,2,3\}$, the three sets $B \cup\left(T-T_{i, j}\right)$, $B_{1} \cup\left(T-T_{i, j+1}\right)$, and $B_{2} \cup\left(T-T_{i, j+2}\right)$ (where j counts modulo 3) are in \mathcal{F} (by Corollary 5.4, and the fact that $\left.\left|T-T_{i, j}\right| \leq|T|-(k+3)\right)$ and cover every vertex in N exactly twice. Using such triples for $i=1, \ldots, K$ and $j=1,2$, 3 , we cover every vertex exactly $6 K \geq 2^{k} \geq r$ times and every set appears at most once. If $r<6 K$ and is even, then we use not all triples.

If r is odd, then we pick a full pair $(A, N-A)$. There are at most two triples $\left(B \cup\left(T-T_{i, j}\right), B_{1} \cup\left(T-T_{i, j+1}\right), B_{2} \cup\left(T-T_{i, j+2}\right)\right)$ containing A or $N-A$. Then we cover the set N once by the sets A and $N-A$ and $r-1$ times by $\frac{r-1}{2} \leq 3 K-2$ triples $\left(B \cup\left(T-T_{i, j}\right), B_{1} \cup\left(T-T_{i, j+1}\right), B_{2} \cup\left(T-T_{i, j+2}\right)\right)$ containing neither A nor $N-A$. This contradicts the choice of \mathcal{F}.

Lemma 5.9. $|Q|<4 k+4$.

Proof. Suppose $|Q| \geq 4 k+4$. By Lemma 5.8, Q contains a solid 1-edge $\{a\}$. Let $Q-a=\left\{b_{1}, b_{2}, \ldots, b_{4 k+3}, \ldots, b_{|Q|-1}\right\}$. By Lemma 5.7, for each $i=1,2, \ldots, 4 k+3$, we can find B_{i} with $2 \leq\left|B_{i}\right| \leq 3$ such that $B_{i} \cap Q=\left\{b_{i}\right\}$. Let $L:=N-a-$ $\bigcup_{i=1}^{4 k+3} B_{i}$. By definition, $\left|\bigcup_{i=1}^{4 k+3} B_{i}\right| \leq 12 k+9$. Since $n \geq 13 k+13,|L| \geq$ $13 k+3-1-(12 k+9)=k+3$. Let $L^{\prime} \subseteq L$ with $\left|L^{\prime}\right|=k+3$. Let $M=N-L^{\prime}$. Then \mathcal{F} contains at least $n-4 k-5$ edges $\left\{a_{1}\right\},\left\{a_{2}\right\}, \ldots,\left\{a_{n-4 k-5}\right\}$ such that all $M-a_{i}$ are also in \mathcal{F}, since $a \in M-a_{i}$ and $k+3 \leq\left|M-a_{i}\right| \leq|T|-k-3$. Recall that for each $i=1, \ldots, 4 k+3, B_{i} \in \mathcal{F}$ and $M-B_{i} \in \mathcal{F}$. Since $r \leq n-1$, the edges $\left\{a_{1}\right\}, \ldots,\left\{a_{r+1-4 k-5}\right\}, M-a_{1}, \ldots, M-a_{r+1-4 k-5}, B_{1}, \ldots, B_{4 k+3}, M-$ $B_{1}, \ldots, M-B_{4 k+3}, M$ form an r-regular subgraph of \mathcal{F}, a contradiction.

Lemma 5.10. If $\{a\}$ is a solid 1 -edge and $B \in \mathcal{F}$ with $a \notin B$, then $|B \cap T|<$ $\lceil\log k\rceil+5$.

Proof. If there is a set B with $a \notin B$ and $|B \cap T| \geq\lceil\log k\rceil+5$, then by Lemma 5.2 , we can find $B_{1}, B_{2}, \ldots, B_{8 k} \in \mathcal{F}$ such that $B_{i} \subset B, B \cap Q=B_{i} \cap Q$, since $2^{\lceil\log k\rceil+4}-(\lceil\log k\rceil+5) \geq 8 k$. Let $X \subset N-(B \cup Q)$ with $|X|=k+3$ and let $M=N-X$. Since at least $n-3 k-2-(k+3)=n-4 k-5$ of 1-edges $\left\{a_{i}\right\}$ are in M, the sets $B_{1}, B_{2}, \ldots, B_{4 k+4}, M-B_{1}, \ldots, B-B_{4 k+4},\left\{a_{1}\right\},\left\{a_{2}\right\}, \ldots,\left\{a_{r-4 k-5}\right\}, M-$ $a_{1}, M-a_{2}, \ldots, M-a_{r-4 k-5}, M$ form an r-regular subgraph of \mathcal{F}, a contradiction.

Lemma 5.11. There are at most $4 k+3$ sets $A_{i} \in \mathcal{F}$ such that no A_{i} is a 1 -edge and no solid 1-edge a is contained in A_{i}.

Proof. Suppose that there are $4 k+4$ such sets $A_{1}, A_{2}, \ldots, A_{4 k+4}$. Then by Lemma 5.10,

$$
\left|T \cap \bigcup_{i=1}^{4 k+4} A_{i}\right| \leq(4 k+4)(\lceil\log k\rceil+5) \leq|T|-k-3
$$

Thus, as in the proof of Lemma 5.10, we can find an r-regular subgraph of \mathcal{F} by using A_{i} instead of B_{i}.

Lemma 5.12. If $\{a\}$ is a solid 1-edge, then there is at most one $D \notin \mathcal{F}$ with $a \in D$.

Proof. Suppose $D_{1}, D_{2} \notin \mathcal{F}$ with $a \in D_{1} \cap D_{2}$. By Lemma 5.10, $\left|D_{i} \cap T\right| \geq$ $|T|-k+3$ for $i=1,2$. So, $\left|D_{1} \cap D_{2} \cap T\right| \geq|T|-2 k-6$.

By Lemmas 5.10 and 5.11, at least $|T|-(4 k+4)(\log k+6)$ elements in T are covered only by 1-edges and sets containing a.

By $(6),|T|-(4 k+4)(\log k+6)-2 k-6>0$. So there is $c \in D_{1} \cap D_{2}$ such that c is not covered by any edge of size at least 2 not containing a. Since \mathcal{F} is (n, r)-strange, Then at most $2^{n-1}+1-2=2^{n-1}-1$ edges of \mathcal{F} contain c. Thus
the family $\mathcal{F}_{c}=\{A \in \mathcal{F}: c \in A\}$ has at least $2^{n-2}+r-1$ edges on $n-1$ vertices, and by Theorem 1.2 we get an r-regular subgraph of \mathcal{F}^{\prime} which is also a subgraph of \mathcal{F}, a contradiction.

Proof of Theorem 5.1. By Lemma 5.8, \mathcal{F} has a solid 1-edge $\{a\}$. By Lemma 5.12 , there is at most one set $D \notin \mathcal{F}$ with $a \in D$. Since \mathcal{F} is (n, r)-strange, such D exists and exactly $r-1$ edges of \mathcal{F} do not contain a, call them $B_{1}, B_{2}, \ldots, B_{r-1}$.

Case 1. $\bigcup_{i=1}^{r-1} B_{i}=N-a$. Let l be the minimum integer such that we can renumber B_{1}, \ldots, B_{r-1} so that $\bigcup_{i=1}^{l} B_{i}=N-a$. Let $\mathcal{B}=\left\{B_{l+1}, B_{l+2}, \ldots, B_{r-1}\right\}$. Let $C_{1}=B_{1}, C_{2}=B_{2}-B_{1}, C_{3}=B_{3}-B_{2}-B_{1}, \ldots, C_{l}=B_{l}-B_{1}-B_{2}-\cdots-B_{l-1}$. By the minimality of $l, C_{i} \neq \emptyset$ for every $i=1, \ldots, l$. By construction, $\left\{C_{1}, \ldots, C_{l}\right\}$ is a partition of $N-a$.

For every $i=1, \ldots, l$, there are $2^{\left|C_{i}\right|}-2$ ways to choose a nonempty proper subset A of C_{i}. By Lemma 2.2, for each proper subset A of C_{i}, one of A and $B_{i}-A$ is in \mathcal{F}, and hence it is in \mathcal{B}. It follows that \mathcal{B} contains at least $\frac{1}{2}\left(2^{\left|C_{i}\right|}-\right.$ 2) $=2^{\left|C_{i}\right|-1}-1 \geq\left|C_{i}\right|-1$ sets B such that (i) $0<\left|B \cap C_{i}\right|<\left|C_{i}\right|$ and (ii) $B \cap C_{j}=\emptyset$ for all $i+1 \leq j \leq l$. Since all $C_{i} \mathrm{~S}$ are disjoint, we conclude that $|\mathcal{B}| \geq \sum_{i=1}^{l}\left(\left|C_{i}\right|-1\right)=n-1-l$. Together with $B_{1}, B_{2}, \ldots, B_{l}$, we have at least $n-1$ members of \mathcal{F} not containing a. This contradicts the fact that \mathcal{F} has only $r-1 \leq n-2$ sets not containing a.

Case 2. There is $y \in N-a-\bigcup_{i=1}^{r-1} B_{i}$. Since $N-D \in \mathcal{F}$ and $a \notin N-D$, $y \notin N-D$. So, $y \in D$. Thus y belongs to at most $2^{n-2}-1$ members of \mathcal{F} containing a and to none not containing a. So, the family $\mathcal{F}^{\prime}=\mathcal{F}-y$ has at least $2^{n-1}+r-2-\left(2^{n-2}-1\right)=2^{n-2}+r-1$ members. By Theorem 1.2, \mathcal{F}^{\prime} has an r-regular subgraph, which is also a subgraph of \mathcal{F}, a contradiction.

6. Proof of Theorem 1.5

Suppose \mathcal{F} is (n, r)-strange hypergraph on N. By Theorem 5.1,
every $S \subseteq N$ with $|S| \geq n-15 k-5$ contains some $A \in \mathcal{F}$ with $|A| \geq 2$.
Let $B_{1}, B_{2}, \ldots, B_{l}$ be the 1-edges not in full pairs. Let $N_{1}=N-B_{1}-B_{2}-\cdots-B_{l}$. By Lemma 5.5, $\left|N_{1}\right| \geq n-k$. So, by (7), N_{1} contains some $B_{l+1} \in \mathcal{F}$ with $\left|B_{l+1}\right| \geq 2$. Then by Lemma 2.2 , we can choose such B_{l+1} with $2 \leq\left|B_{l+1}\right| \leq 3$. Let $N_{2}=N_{1}-B_{l+1}$. Since $\left|N_{2}\right| \geq(n-k)-3$, again by (7) and Lemma 2.2, N_{2} contains some $B_{l+2} \in \mathcal{F}$ with $2 \leq\left|B_{l+2}\right| \leq 3$. Similarly, we find $B_{l+3}, \ldots, B_{5 k+2}$. Since at least $n-4 k-2$ of 1 -edges are in full pairs, by Lemma 5.6 , at most $4 k+1$ full pairs have no 1 -edges. Among the at most $8 k+2$ sets in these full pairs, at most $4 k+1$ of the sets are in $\left\{B_{1}, B_{2}, \ldots, B_{5 k+2}\right\}$, since $\left|B_{i}\right| \leq 3$ and $n \geq 425$. Thus some $k+1$ sets among $B_{1}, B_{2}, \ldots, B_{5 k+2}$ are not in full pairs. Call them
$A_{1}, A_{2}, \ldots, A_{k+1}$. Then for any $I \subset[k+1], A_{I}=\bigcup_{i \in I} A_{i}$ is in \mathcal{F}, otherwise $\overline{A_{I}}$ and $\left\{A_{j}: j \in I\right\}$ together with $r-1$ full pairs yield an r-regular subgraph of \mathcal{F}. Therefore \mathcal{F} contains $2^{k+1-1} \geq r$ different pairs of edges of the kind $A_{I}, A_{[k+1]-I}$. They form an r-regular subgraph of \mathcal{F} covering $A_{[k+1]}$, a contradiction.

References

[1] N. Alon, S. Friedland, and G. Kalai, Regular subgraphs of almost regular graphs, J. Combin. Theory (B) 37 (1984) 79-91. doi:10.1016/0095-8956(84)90047-9
[2] M. Kano, Regular subgraphs of a regular graph, Annals of the New York Academy of Sciences 576 (1989) 281-284. doi:10.1111/j.1749-6632.1989.tb16409.x
[3] D. Mubayi and J. Verstraëte, Two-regular subgraphs of hypergraphs, J. Combin. Theory (B) 99 (2009) 643-655. doi:10.1016/j.jctb.2008.10.005
[4] L. Pyber, Regular subgraphs of dense graphs, Combinatorica 5 (1985) 347-349. doi:10.1007/BF02579250
[5] L. Pyber, V. Rödl, and E. Szemerédi, Dense graphs without 3-regular subgraphs, J. Combin. Theory (B) 63 (1995) 41-54. doi:10.1006/jctb.1995.1004
[6] V. Rödl and B. Wysocka, Note on regular subgraphs, J. Graph Theory 24 (1997) 139-154. doi:10.1002/(SICI)1097-0118(199702)24:2 〈139::AID-JGT2〉3.0.CO;2-R
[7] V.A. Tashkinov, 3-regular subgraphs of 4-regular graphs, Mat. Zametki 36 (1984) 239-259..
[8] V.A. Tashkinov, Regular parts of regular pseudographs, Mat. Zametki 43 (1988)) 263-275.

[^0]: ${ }^{1}$ Research of this author is partially supported by the Arnold O. Beckman Research Award of the University of Illinois at Urbana-Champaign.
 ${ }^{2}$ Research of this author is supported in part by NSF grant DMS-0965587 and by the Ministry of education and science of the Russian Federation (Contract no. 14.740.11.0868).

