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Abstract

We show that an n-vertex hypergraph with no r-regular subgraphs has
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1. Introduction

A natural question in graph theory is: What are the graphs not containing r-
regular subgraphs? For r ∈ {1, 2}, the answer is easy, but for r ≥ 3 it is not.
It was a breakthrough when Tashkinov [7] proved the conjecture by Berge that
every 4-regular graph contains a 3-regular subgraph. The questions on existence
of r-regular subgraphs in regular or near-regular graphs were also considered
in [1, 8]. Let F (r, n) denote the maximum number of edges an n-vertex graph
with no r-regular subgraphs have. For r ≥ 3, it is not fully resolved how big
F (r, n) is. Pyber [4] showed that for every fixed r, F (r, n) = O(n lnn). On the
other hand, Pyber, Rödl and Szemerédi [5] proved that F (3, n) ≥ cn ln lnn.

Similar questions are also natural for hypergraphs. We view a hypergraph
as a family F of its edges, so |F| is the number of edges of F . An edge e of F
is a k-edge if |e| = k. Note that we do not consider empty set as an edge. If, for
some k, every edge of F is a k-edge, then F is k-uniform. A hypergraph F is
r-free if it has no r-regular sub(hyper)graphs. Mubayi and Verstraëte [3] proved
that for every even integer k ≥ 4, there exists nk such that for each n ≥ nk, each
n-vertex k-uniform 2-free hypergraph F has at most

(

n−1
k−1

)

edges, and equality

holds if and only if F is a full k-star, that is, F consists of all
(

n−1
k−1

)

edges of size
k containing a given vertex. They also proved the following simpler result for
non-uniform hypergraphs.

Theorem 1.1 [3]. For n ≥ 3, every n-vertex 2-free hypergraph F satisfies |F| ≤
2n−1, and equality holds if and only if F is a full star, that is, F consists of 2n−1

distinct edges containing a given vertex.

Our first result is the following (simple) generalization of Theorem 1.1.

Theorem 1.2. If 2 ≤ r ≤ 2n−1, then the maximum number of edges in an

n-vertex r-free hypergraph is 2n−1 + r − 2.

Many examples of n-vertex r-free hypergraphs with 2n−1+r−2 edges are formed
by a full star with r − 2 other edges. If r ≥ n, then some extremal examples
do not contain full stars. For r = 2, Theorem 1.1 says that if n ≥ 3, then the
only n-vertex 2-free hypergraph with 2n−1 edges is a full star. We conjecture the
following.

Conjecture 1.3. Let F be an n-vertex r-free hypergraph with |F| = 2n−1+r−2.
If n > r and r ≥ 2, then F contains a full star.

The main results of this paper are the following.

Theorem 1.4. Suppose F is an n-vertex r-free hypergraph with |F| = 2n−1+r−2.
If n ≥ r + 2⌈log r⌉+ 1, then F contains a full star.
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Theorem 1.5. Suppose F is an n-vertex r-free hypergraph with |F| = 2n−1+r−2.
If n > r and n ≥ 425, then F contains a full star.

In the next section we prove Theorem 1.2 and derive simple properties of dense
r-free hypergraphs. In Section 3 we show that dense r-free hypergraphs have no
small transversals. In Section 4 we prove Theorem 1.4. In the last two sections
we prove Theorem 1.5.

2. Preliminaries

Proof of Theorem 1.2. Let F be an n-vertex r-free hypergraph with ground
set N . Consider all 2n−1 pairs {A,N − A} of subsets of N . In at most r − 1
pairs of sets both sets are edges in F , otherwise we get an r-regular subgraph of
F with vertex set N . If there are exactly r − 1 such pairs, N cannot be an edge
in F , since N together with those r − 1 pairs would form an r-regular subgraph
of F . Thus |F| ≤ 2n−1 + r − 2. If 2 ≤ r ≤ 2n−1, then equality can be achieved.

Let N = [n] and

F = {e : 1 ∈ e} ∪ {r − 2 smallest nonempty distinct subsets of [n]− {1} }.

Suppose that F has an r-regular subgraph G. Let C1, C2, . . . , Cr be the edges of G
that contain 1, and D1, D2, . . . , Ds be the remaining edges of G. Let C =

⋃r
i=1Ci

and for i ∈ [r] let C ′
i = C − Ci. Since all edges are distinct,

∑r
i=1 |C

′
i| = r|C| −

∑r
i=1 |Ci| =

∑s
j=1 |Dj | should hold. The left-hand side is the sum of cardinalities

of at least r− 1 nonempty distinct sets (possibly one C ′
i is empty) not containing

1, and the right-hand side is the sum of cardinailities of at most r − 2 smallest
distinct sets not containing 1, and so, the right-hand side is less than the left-hand
side. This contradiction shows that H has no r-regular subgraphs.

Let N be a finite set, and n = |N |. Let 3 ≤ r < n. A hypergraph F is (N, r)-
strange if F is an r-free hypergraph with V (F) = N and |F| = 2n−1 + r− 2 such
that F does not contain a full star, i.e., 2n−1 sets containing a given element.

For a set A ⊆ N , A is the complement of A to N , i.e., A = N − A. A full

pair in F is a pair {A,A} such that both A and A are in F . We let the set N by
itself form a full pair.

In order to prove Theorems 1.4 and 1.5, we derive some properties of (N, r)-
strange hypergraphs. If F is (N, r)-strange, then it contains at most r − 1 full
pairs, and so, since |F| = 2n−1 + r − 2,

(1) it contains exactly r − 1 full pairs.

Moreover,

(2) for each A ⊂ N with N 6= A 6= ∅, either A ∈ F or A ∈ F .
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Furthermore, the following statements hold for each (N, r)-strange hypergraph
F .

Lemma 2.1. If A,B ∈ F , A ∩ B = ∅ and both A and B are not in full pairs,

then A ∪B ∈ F .

Proof. If A ∪ B /∈ F , then A ∪B ∈ F by (2). Thus A,B,A ∪B with r − 1 full
pairs form an r-regular subfamily of F , a contradiction.

Lemma 2.2. If A ∈ F and B and C are disjoint nonempty subsets of A such

that A = B ∪ C, then at least one of B and C is in F .

Proof. Suppose that A = B ∪ C is a partition of A into nonempty sets and
B,C /∈ F . Then by (2), B and C are in F but not in full pairs. Thus the sets A,
B and C together with r − 2 full pairs different from {A,A} form an r-regular
subgraph of F , a contradiction.

Corollary 2.3. Every edge A of F contains an element xA such that {xA} ∈ F .

In particular, the union S of 1-edges of F intersects each edge of F .

Lemma 2.4. Let A and B be edges of F such that A ∩B 6= ∅. If at least one of

A and B is not in a full pair, then either A ∩B or A ∪B is in F .

Proof. Suppose that A ∩ B,A ∪ B /∈ F . Then A ∩B is in F , and A ∪B is
either empty or in F . In both cases, the sets A,B,A ∩B, and A ∪B cover every
element of N exactly twice. Adding r − 2 full pairs containing neither A nor B
will give an r-regular subgraph of F .

3. Sizes of Transversals of (N, r)-strange Hypergraphs

A set A ⊂ V (H) is a transversal of a hypergraph H if every edge of H intersects
A.

Let S be a minimum transversal of a hypergraph F . Then S contains all
1-edges of F . If F is (N, r)-strange, then by Corollary 2.3, S contains no other
vertices. Thus S is exactly the union of 1-edges of F . It has several useful
properties.

The goal of this section is to prove the following fact. Throughout the paper,
k denote ⌈log2 r⌉.

Theorem 3.1. Let 3 ≤ r < n and N be a finite set with |N | = n. If S is the

smallest transversal of an (N, r)-strange hypergraph F , then |S| ≥ n− 3k − 2.

Let S be the smallest transversal of an (N, r)-strange hypergraph F .
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Lemma 3.2. If a nonempty S′ ⊂ S is not in F , then every S′ ⊆ B ⊆ N−(S−S′)
is not in F , and hence every S − S′ ⊆ A ⊆ N − S′ is in F .

Proof. Suppose that such B is in F . By Lemma 2.2, either S′ or B − S′ is in
F . But (B − S′) ∩ S = ∅, and we know that S′ is not in F , a contradiction.

From now on, in this section, we will assume that

(3) |S| ≤ n− 2k − 2.

Note that to prove Theorem 3.1, we could make the stronger assumption that
|S| ≤ n− 3k − 3, but we plan to use these lemmas also in the next section.

For S′ ⊆ S and M ⊆ N − S, we say that M belongs to S′ if S′ ∪M ∈ F . A
nonempty proper subset S′ of S is firm if some M ⊂ N − S with |M | ≥ 1 + k
belongs to S′. In particular, S is firm by the following reason. For a set A ⊂ N−S
with |A| = k+1, one of A∪S and N−S−A is in F by (2). Since S is a transversal,
N − S −A is not in F . Thus S ∪A ∈ F , so A belongs to S and S is firm.

Lemma 3.3. Let S′ ⊆ S and M ⊆ N − S. If M belongs to S′, then every

M ′ ⊂ M belongs to S′

Proof. Since M ∪ S′ ∈ F , by Lemma 2.2, either S′ ∪M ′ ∈ F or M −M ′ ∈ F .
But the latter does not hold, since M ∩ S = ∅. This proves the lemma.

Lemma 3.4. For every partition S = S′∪S′′ of S into nonempty subsets, exactly

one of S′ and S′′ is firm.

Proof. Assume first that neither of S′ and S′′ is firm. Let M be a subset of N−S
with |M | = 1+k. Since S′ is not firm, S′∪M /∈ F . Then N − (S′∪M) ∈ F , and
N − (S′∪M) = S′′∪ (N −S−M). So by (3), |N −S−M | ≥ 2k+2− (1+k), and
thus S′′ is firm. Assume now that both S′ and S′′ are firm. If a set M ⊂ N − S
with |M | ≥ k + 1 belongs to both S′ and S′′, then we will find an r-regular
subgraph H of F .

Since 2|M | ≥ r, there are at least r subsets of M . Call them A1, A2, . . . , Ar.
Let H = {Ai ∪ S′ : 1 ≤ i ≤ r} ∪ {(M − Ai) ∪ S′′ : 1 ≤ i ≤ r}, it is a subgraph of
F by Lemma 3.3. By construction, H is r-regular, a contradiction.

If a set M ⊂ N − S with k ≤ |M | ≤ k + 2 belongs to neither S′ nor S′′,
then N − S −M belongs to both, and again F has an r-regular subgraph. Thus
each M ⊂ N − S with |M | = k + 1 belongs to exactly one of S′ and S′′. Let
RS′ (respectively, RS′′) denote the family of M ⊂ N − S with |M | = k + 1 that
belongs to S′ (respectively, to S′′). By our assumption, both RS′ and RS′′ are
nonempty. Then there exist M ′ ∈ RS′ and M ′′ ∈ RS′′ with |M ′ ∩ M ′′| = k.
Thus M ′ ∩M ′′ belongs to both S′ and S′′, and so F has an r-regular subgraph,
a contradiction.
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Corollary 3.5. If S′ is a firm subset of S, then every M ⊂ N − S with 1 ≤
|M | ≤ n− s− (k + 1) belongs to S′.

Corollary 3.6. Every two firm subsets of S intersect each other.

Proof. Suppose that S1 and S2 are two disjoint firm subsets of S. LetM ⊂ N−S
with |M | = k + 1. By Corollary 3.5, M belongs to both S1 and S2. Then as in
the proof of Lemma 3.4, F has an r-regular subgraph with vertex set S1∪S2∪M ,
a contradiction.

Lemma 3.7. s ≤ r − 1

Proof. Suppose s ≥ r.

Case 1. s ≥ r+ k. Since the number of 1-edges in full pairs is at most r− 1,
we can choose k+ 1(≤ s− (r− 1)) 1-edges of F that are not in full pairs. Let S′

be the union of these edges. If some A ⊆ S′ is not in F , then A and the 1-edges
contained in A cover N once, and together with the r−1 full pairs (that exist by
(1)) we obtain an r-regular subgraph of F covering N , a contradiction. Thus all
nonempty subsets of S′ are in F , and the number of nonempty proper subsets of
S′ is at least 2k+1 − 2 ≥ 2r− 2. We can pair them up so that they are partitions
of S′. At least r−1 of such pairs exist, so together with S′ they form an r-regular
subgraph of F , a contradiction.

Case 2. r ≤ s ≤ r + k − 1. By (3), n − s ≥ k + 1. If there are v1, v2 ∈ S
such that S − v1, S − v2 /∈ F , then by Lemma 3.2, every B ⊆ N − S satisfies
B + v1 ∈ F and B + v2 ∈ F . Since there are at least 2n−s ≥ r possible sets for
B, we can find r pairs of sets v1 +B, v2 + (N − S −B), and they will form an
r-regular subgraph of F on (N − S) + v1 + v2.

Thus for some r− 1 vertices v1, . . . , vr−1 ∈ S, the sets S − vi are in F . Then
the family {v1, . . . , vr−1, S − v1, . . . , S − vr−1, S} covers every v ∈ S exactly r
times, a contradiction.

Lemma 3.8. No 1-edge of F is firm.

Proof. Let S = {v1, v2, . . . , vs}. Suppose that S1 := {v1} is firm. Then by
Corollary 3.6, no subset of S − v1 is firm. Hence by Lemma 3.4, the firm subsets
of S are exactly the sets containing v1.

Since not every subset of N containing v1 is in F and s ≤ r− 1, there are at
least r − 1− (s− 1) = r − s edges W1, . . . ,Wr−s that are in F , not 1-edges and
do not contain v1. For j = 1, . . . , r − s, let Mj = Wj − S. Let M =

⋃r−s
j=1Mj .

Choose W1, . . . ,Wr−s so that to minimize |M |.

Case 1. |M | ≤ n−s−k−1. Denote by F ′ the family {S∪M, {v2}, . . . , {vs}, S∪
M − v2, . . . , S ∪M − vs,W1, . . . ,Wr−s, S ∪M −W1, . . . , S ∪M −Wr−s}.
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Since F ′ forms an r-regular hypergraph, F ′ is not a subgraph of F . But since
{v1} is firm, by the choice of Wj and Corollary 3.5, every member of F ′ is in F ,
a contradiction. This proves Case 1.

Let t = max{|A − S| : A ∈ F and v1 /∈ A} and let A0 ∈ F be such that
v1 /∈ A0 and |A0 − S| = t.

Case 2. t ≥ k. Let M0 be any k-element subset of A0 − S and W0 = M0 ∪
(A0∩S). Since A0 ∈ F and S∩(A0−W0) = ∅, W0 ∈ F . Since 2k ≥ r, M0 contains
some r distinct subsets M ′

1, . . . ,M
′
r. Let W ′

i = M ′
i ∪ (A0 ∩ S) for i = 1, . . . , r.

Since (M0 −M ′
i) ∩ S = ∅, each of W ′

i is in F . Moreover, since |S| ≤ n− 2k − 2,
|M0| = k, and {v1} is firm, for every 1 ≤ i ≤ r, the set (S ∪M0)−W ′

i contains v1
and has at most n−s− (k+1) vertices in N −S. This means that (S∪M0)−W ′

i

is also in F . So, the family {W ′
1, . . . ,W

′
r, (S ∪ M0) − W ′

1, . . . , (S ∪ M0) − W ′
r}

forms an r-regular hypergraph, a contradiction.

Case 3. log2(r− s) ≤ t ≤ k − 1. Let M0 = A0 − S. In our case, 2|M0| = 2t ≥
r − s. Let M ′

1, . . . ,M
′
r−s be any distinct subsets of M0, and for i = 1, . . . , r − s,

let W ′
i = M ′

i ∪ (A0 ∩ S). Similarly to Case 2, since (M0 −M ′
i) ∩ S = ∅, each of

W ′
i is in F . Moreover, since |S| ≤ n− 2k − 2, |M0| ≤ k − 1, and {v1} is firm, for

every 1 ≤ i ≤ r, the set (S∪M0)−W ′
i is also in F . By the same reason, for every

2 ≤ j ≤ s, the set (S∪M0)−vj is in F . So, the family {W ′
1, . . . ,W

′
r−s, (S∪M0)−

W ′
1, . . . , (S ∪M0)−W ′

r−s, {v2}, . . . , {vs}, S ∪M0 − v2, . . . , S ∪M0 − vs, S ∪M0}
forms an r-regular hypergraph, a contradiction.

Case 4. |M | ≥ n− k − s and t < min{k − 1, log2(r − s)}. Let M0 = A0 − S.
We claim that |M | ≤ r − s − 2t + t + 1. To prove the claim, we show a way to
choose W1, . . . ,Wr−s so that

(4)
∣

∣

∣

⋃i

j=1
Wj − S

∣

∣

∣
≤ i− 2t + t+ 1,

for every 2t − 1 ≤ i ≤ r − s. The sets W1, . . . ,W2t−1 are all the sets of the form
A0 −X where X ⊆ M0, X 6= M0. So, for i = 2t − 1, (4) holds. Suppose that for
some 2t − 1 ≤ i0 ≤ r− s− 1, we have found W1, . . . ,Wi0 satisfying (4) for i = i0.
Let C be the family of members of F not containing v1 that are distinct from
W1, . . . ,Wi0 . Since ij ≤ r− s−1, there is C ∈ C 6= ∅. Let C ′ = C−S−

⋃i0
j=1Wj .

If C ′ = ∅, then we let C := Wi0+1 and (4) holds for i = i0 + 1. Suppose x ∈ C ′.
Since (C ′ − x) ∩ S = ∅, the set C − C ′ + x is in F , does not contain v1, and is
distinct from W1, . . . ,Wi0 . So, letting Wi0+1 = C − C ′ + x we again have that
(4) holds for i = i0 + 1. This proves the claim.

Let F ′ be the family defined in Case 1. Since it is r-regular, some W ′ ∈ F ′ is
not in F . Then S ∪M −W ′ ∈ F by (2). By the definition of t, |N − (S ∪M)| ≤
|S ∪M −W ′ − S| ≤ t. Thus by (4), n = |N | = |M | + |S| + |N − (M ∪ S)| ≤
(r − s− 2t + t+ 1) + s+ t = r − 2t + 2t+ 1.
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If t ≥ 3, we get n ≤ r − 1, a contradiction.

If t = 2, we get n ≤ r + 1, |M | = r − s − 1 and |A0 − S| = 2. Then
(A0 − S) ⊂ M with |M | = r − s− 1 and |M ∪ S −W ′ − S| ≥ 2. Thus there are
distinct A0, A1 with |Ai − S| = 2, (A0 − S) ∩ (A1 − S) = ∅ and v1 /∈ Ai. Let
{v1, v2, . . . , vr−s−6} ⊂ M −A0 −A1. For x = 1, 2, . . . , r− s− 6, let vx ∈ Mjx . By
Lemma 3.3, Wjx − Mjx + vx ∈ F for every x1, . . . , r − s − 6. These edges with
A∪ (Ai∩S) for nonempty A ⊆ Ai−S yield that |M | ≤ r−s−2, a contradiction.

Thus t = 1. Then n = r+1, |M | = r− s and every edge not containing v1 is
either a 2-edge or a 1-edge. And S ∪M −W ′ is also a 2-edge, so W ′ is a 1-edge.
Let W ′ = {v2}.

Since |M | = r−s and S ∪M − v2 = {v2}∪(N−M−S), for each w ∈ N−S there
is exactly one 2-edge not containing v1 containing w. Since |N − S| = r − s+ 1
and the number of 1-edges in S − v1 is s− 1, F has exactly r− s+ 1+ s− 1 = r
edges not containing v1.

So we have exactly two sets containing v1 that are not in F . Call them
D1, D2. We have D1 = S∪M −v2. Since |N −S| = n−s ≥ 2k+2 ≥ 4 and every
vertex in N −S is contained in exactly one 2-edge not containing v1, there are at
least 4 different ways to chooseWis to get minimum |M |. Each way gives different
M , let two of them be M and M ′. Then, by the above logic, D2 = S∪M ′−v3 for
some v3, and |M ∩M ′| ≥ 2. Thus D1∩D2−S is not empty. Let w ∈ D1∩D2−S.
Then there are 2n−1 − 2 edges in F containing both w and v1, and exactly one
edge containing w but not v1. Thus F−w = {E ∈ F : w /∈ E} is an (n−1)-vertex
hypergraph with 2n−1+r−1 edges. By Theorem 1.2, F−w contains an r-regular
subgraph, a contradiction.

Lemma 3.9. s ≤ r − 2.

Proof. Suppose that s ≥ r− 1. Then by Lemma 3.7, s = r− 1. By Lemma 3.8,
S − vi is firm (and so is in F) for every i = 1, . . . , s. Then the 2r − 1 sets

{v1}, . . . , {vr−1}, S − v1, . . . , S − vr−1, S

form an r-regular subgraph of F , a contradiction.

Lemma 3.10. Let k ≥ 2 and let B be a set with |B| ≥ 2k+2. Then there are at

least 2k−2+1 partitions (Bi,1, Bi,2, Bi,3) of B such that |Bi,1| = ⌈(k+1)/2⌉, |Bi,2| =
⌈(k+1)/2⌉, |Bi,3| ≥ k+1 and all 3⌈2k−2⌉+3 parts of these partitions are distinct.

Proof. We will choose B1 of size ⌈(k+ 1)/2⌉ and B2 of size ⌈(k+ 1)/2⌉, so that
|B3| = |B| − 2⌈k/2⌉ ≥ k + 1.
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For k ≥ 4, we have

(5)

(

2k + 2− ⌈k+1
2 ⌉

⌈k+1
2 ⌉

)

=
(2k + 2− ⌈k+1

2 ⌉)(2k + 1− ⌈k+1
2 ⌉)(2k − ⌈k+1

2 ⌉)

⌈k+1
2 ⌉(2k + 2− 2⌈k+1

2 ⌉)(2k + 1− 2⌈k+1
2 ⌉)

(

2k − 2− ⌈k−2+1
2 ⌉

⌈k−2+1
2 ⌉

)

≥ 4

(

2(k − 2) + 2− ⌈k−1
2 ⌉

⌈k−1
2 ⌉

)

.

So, for even k,

(

2k + 2− ⌈(k + 1)/2⌉

⌈(k + 1)/2⌉

)

≥ 4

(

2(k − 2) + 2− ⌈(k − 1)/2⌉

⌈(k − 1)/2⌉

)

≥ · · · ≥ 4
k−2

2

(

4

2

)

= 6 · 2k−2.

For odd k,
(

2k + 2− ⌈(k + 1)/2⌉

⌈(k + 1)/2⌉

)

≥ 4

(

2(k − 2) + 2− ⌈(k − 1)/2⌉

⌈(k − 1)/2⌉

)

≥ · · · ≥ 4
k−3

2

(

6

2

)

= 15 · 2k−3 ≥ 6 · 2k−2.

First for each i = 1, . . . , 2k−2+1, choose a set Bi,1 of size ⌈k/2⌉ so that all chosen
sets are distinct. Then one by one for each i = 1, . . . , 2k−2 + 1, choose a set Bi,2

of size ⌈k/2⌉ so that
(a) Bi,2 is distinct from all 2k−2 + 1 sets Bi′,1 and previously chosen Bi′,2, and

(b) Bi,1 ∪Bi,2 is distinct from all already chosen Bi′,1 ∪Bi′,2.

Even at the last step (step 2k−2 + 1), the number of forbidden sets is at most
3 · 2k−2 + 1 < 6 · 2k−2. So, by (5), we finish the construction.

Corollary 3.11. Let B be a set with |B| ≥ 3k + 3. Then there are at least

2k−2 + 1 partitions (Bi,1, Bi,2, Bi,3) of B such that all 3⌈2k−2⌉+ 3 parts of these

partitions are distinct, and each Bi,j has size at least k + 1.

Proof. Let A ⊆ B and |A| = k+1. Let B′ = B−A. Partition A into A1∪A2∪A3

with |A1| = |A2| = k + 1 − ⌈k+1
2 ⌉. By Lemma 3.10, there are at least 2k−2 + 1

partitions (B′
i,1, B

′
i,2, B

′
i,3) of B

′ such that all parts of these paritions are distinct,

and |B′
i,1| = |B′

i,2| = ⌈k+1
2 ⌉, |B′

i,3| ≥ k+1. Take Bi,j = B′
i,j ∪Ai. Then partitions

(Bi,1, Bi,2, Bi,3) satisfy all the conditions.

Proof of Theorem 3.1. Suppose s ≤ n − 3k − 3. Then all lemmas in this
section hold, since s ≤ n− 3k − 3 ≤ n− 2k − 2.

Let S′ be a smallest firm subset of S. Note that S′ is not a 1-edge. Partition
S′ into nonempty subsets S1 and S2. By the minimality of S′, sets S1 and S2 are
not firm, and so S − S1 and S − S2 are firm.
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Let B := N − S. Then |B| = n − s ≥ 3k + 3. So, by Corollary 3.11, there are
K := ⌈2k/6⌉+ 1 partitions

(B1,1, B1,2, B1,3), (B2,1, B2,2, B2,3), . . . , (BK,1, BK,2, BK,3)

of B such that all Bi,j are distinct and |Bi,j | ≥ k + 1. For every i ∈ {1, . . . ,K}
and every j ∈ {1, 2, 3}, the three sets S′ ∪ (B − Bi,j), S1 ∪ (B − Bi,j+1), and
S2 ∪ (B −Bi,j+2) (where j counts modulo 3) are in F (by Corollary 3.5 and the
fact that |B −Bi,j | ≤ n− s− (k+1)) and cover every vertex in N exactly twice.
Using such triples for i = 1, . . . ,K and j = 1, 2, 3, we cover every vertex exactly
6K ≥ 2k ≥ r times and every set appears at most once. If r < 6K and is even,
then we use not all triples.

If r is odd, then we pick a full pair (A,N −A). There are at most two triples
(S′∪ (B−Bi,j), S1∪ (B−Bi,j+1), S2∪ (B−Bi,j+2)) containing A or N−A. Then
we cover the set N once by the set A and N−A and r−1 times with r−1

2 ≤ 3K−2
triples (S′ ∪ (B−Bi,j), S1 ∪ (B−Bi,j+1), S2 ∪ (B−Bi,j+2)) containing neither A
nor N −A. This contradicts the choice of F . Therefore |S| ≥ n− 3k − 2.

4. Proof of Theorem 1.4

If the theorem does not hold, then for some 3 ≤ r < n, k = ⌈log2 r⌉ with n ≥
r+2k+1, and for some n-vertex set N , there exists an (N, r)-strange hypergraph
F . Let S be the union of 1-edges in F . By Lemma 3.9, |S| ≤ r− 2 ≤ n− 2k− 3.

Let Snf denote the family of non-firm subsets of S. For every S′ ∈ Snf , let

FS′ := {W ∈ F : W ∩ S = S′}.

Furthermore, let

Fnf :=
⋃

S′∈Snf

FS′ .

Lemma 4.1. Let M :=
⋃

W∈Fnf
W − S. Then

(a) |M | ≤ r − s− 2;

(b) |Fnf | ≤ r − 2.

Proof. Assume that (a) does not hold and that w1, . . . , wr−s−1 are in M . Let
M ′ := {w1, . . . , wr−s−1}. For j = 1, . . . , r − s − 1, let Wj be a member of Fnf

such that wj ∈ Wj , and let Sj = Wj ∩ S. By Lemma 3.3, W ′
j := Sj + wj is in F

for every j = 1, . . . , r− s− 1. Since each Sj and 1-edges are non-firm, S−Sj and
S − vj are firm. Also |N − S −M ′| = n− s− (r − s− 1) = n− r + 1 ≥ 2k + 2,
thus by Corollary 3.5, every set of the form S ∪ M ′ − Sj − wj or of the form
S ∪M ′ − vi is in F . So, every member of the family {S ∪M ′, {v1}, . . . , {vs}, S ∪
M ′−{v1}, . . . , S∪M−{vs},W

′
1, . . . ,W

′
r−s−1, S∪M ′−W ′

1, . . . , S∪M ′−W ′
r−s−1}
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is in F . Moreover, together they cover every vertex in S ∪ M ′ exactly r times.
This proves (a).

Suppose now that W1, . . . ,Wr−1 are in Fnf . Since |M | ≤ r − s − 2, every
member of the family {S ∪M,W1, . . . ,Wr−1, S ∪M −W1, . . . , S ∪M −Wr−1} is
in F . Moreover, together they cover every vertex in S ∪M exactly r times. This
proves (b).

Remark 4.2. Since no member of Fnf contains any element in N − S −M , for
every w ∈ N −M − S, every subset of N − S − w belongs to every firm S′ ⊂ S.

Let S′ be a smallest firm subset of S. By Lemma 3.8 S′ is not an 1-edge. Choose
a partition S′ = S1 ∪ S2 of S′ into nonempty subsets. By the minimality of S′,
sets S1 and S2 are not firm, and so S − S1 and S − S2 are firm.
Fix any element z ∈ N − S −M and let B := N − S − z. Since s ≤ r − 2, |B| ≥
n− (r−2)−1 ≥ 2k+2. So, by Lemma 3.10, there are K := ⌈2k/6⌉+1 partitions
(B1,1, B1,2, B1,3), (B2,1, B2,2, B2,3), . . . , (BK,1, BK,2, BK,3) of B such that all Bi,j

are distinct. For every i ∈ {1, . . . ,K} and every j ∈ {1, 2, 3}, the three sets
S′ ∪ (B −Bi,j), S1 ∪ (B −Bi,j+1), and S2 ∪ (B −Bi,j+2) (where j counts modulo
3) are in F (by Remark 4.2) and cover every vertex in N − z exactly twice.
Using such triples for i = 1, . . . ,K and j = 1, 2, 3, we cover every vertex exactly
6K ≥ 2k ≥ r times and every set appears at most once. If r < 6K and is even,
then we use not all triples. If r is odd, then we pick a full pair (A,N −A). Then
we cover the set N once by the set A and N −A and r− 1 times with the triples
(S′ ∪ (B − Bi,j), S1 ∪ (B − Bi,j+1), S2 ∪ (B − Bi,j+2)) for

r−1
2 (≤ 3K − 2) triples

containing neither A nor N −A.

5. Size of Almost F-free Subsets

A set A is almost F-free if every B ∈ F such that B ⊆ A has size 1.
The aim of this section is to prove the following theorem.

Theorem 5.1. If n ≥ 425, then |T | ≤ n−15k−6 for each almost F-free T ⊆ N .

Observe that for n ≥ 425,

(6) n− 15k − 6 ≥
n

2
> 0 and n > (4k + 4)(⌈log(k)⌉+ 6) + 2k + 6.

We need some notation and lemmas. Let T be a maximum almost F-free set,
and Q = N − T . Assume that |Q| < 15k+ 6, i.e., |T | > n− 15k− 6. For Q′ ⊆ Q
and T ′ ⊆ T , we say that T ′ belongs to Q′ if Q′ ∪ T ′ ∈ F . A nonempty subset Q′

of Q is solid if some T ′ ⊂ T ′ with |T ′| ≥ 3 + k belongs to Q′.
To show that Q is solid, let B ⊂ T with |B| = 2. Since T is almosts F-free,

B /∈ F . Then N−B = (T −B)∪Q ∈ F . By (6), |T −B| ≥ n/2−|B| = n/2−2 ≥
k + 3, and so Q is solid.
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Lemma 5.2. Let Q′ ⊆ Q and T ′ ⊆ T . If T ′ belongs to Q′, then every T ′′ ⊂ T ′

with |T ′′| ≤ |T ′| − 2 belongs to Q′.

Proof. Since T ′ ∪ Q′ ∈ F , by Lemma 2.2, either Q′ ∪ T ′′ ∈ F or T − T ′′ ∈ F .
But the latter does not hold, since T is almost F-free. This proves the lemma.

Lemma 5.3. For every partition Q = Q′ ∪ Q′′ of Q into nonempty subsets,

exactly one of Q′ and Q′′ is solid.

Proof. Assume first that Q′ is not solid. By (6), there exists a set M ⊂ T with
|M | = 3 + k. Since Q′ is not solid, Q′ ∪M /∈ F . Then N − (Q′ ∪M) ∈ F , and
N − (Q′∪M) = Q′′∪ (T −M). So, since |T −M | ≥ n−15k−6− (3+k) ≥ k+3,
Q′′ is solid.

Assume now that both Q′ and Q′′ are solid. We will show that if a set M ⊂ T
with |M | ≥ k + 3 belongs to both Q′ and Q′′, then F has an r-regular subgraph
with vertex set Q ∪M .

If a ∈ M , then the number of distinct subsets A1, A2, . . . , Ar of M containing
a with 2 ≤ |Ai| ≤ |M | − 2 is at least

2|M |−1 − (|M |+ 1) = 2k+2 − k − 4 = 4r − k − 4 ≥ r.

Note that r ≥ 2, and M − Ai 6= Aj , since a ∈ Aj and a /∈ M − Aj . Let
H = {Ai ∪Q′ : 1 ≤ i ≤ r} ∪ {(M − Ai) ∪Q′′ : 1 ≤ i ≤ r}. By construction, H is
r-regular, a contradiction.

If a set M ⊂ T with |M | = k+4 belongs to neither of Q′ and Q′′, then T −M
belongs to both, and again F has an r-regular subgraph. Thus each M ⊂ T with
|M | = k + 4 belongs to exactly one of Q′ and Q′′. Let RQ′ (respectively, RQ′′)
denote the family of M ⊂ T with |M | = k + 4 that belong to Q′ (respectively,
to Q′′). By our assumption, both RQ′ and RQ′′ are nonempty. Then there exist
M ′ ∈ RQ′ and M ′′ ∈ RQ′′ with |M ′ ∩ M ′′| = k + 3. By Lemma 5.2, M ′ ∩ M ′′

belongs to both Q′ and Q′′, and so F has an r-regular subgraph, a contradiction.

Corollary 5.4. If Q′ is a solid subset of Q, then every M ⊂ T with k + 3 ≤
|M | ≤ |T | − (k + 3) belongs to S′.

Lemma 5.5. The number of 1-edges not in full pairs of F is at most k.

Proof. Assume that there are k + 1 distinct 1-edges {a1}, {a2}, . . . , {ak+1} not
in full pairs. If some nonempty B ⊂ A = {a1, a2, . . . , ak+1} is not in F , then
B ∈ F by (2). Then B together with 1-edges contained in B cover N once and
none of these is in a full pair. These sets together with r − 1 full pairs cover N
exactly r times, a contradiction. Thus every nonempty subset of A is in F .
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There are 2k distinct nonempty subsets of A containing a1, call them B1, B2, . . . ,
B2k . Then all nonempty sets among B1, B2, . . . , Br, A− B1, A− B2, . . . , A− Br

are in F , and they form an r-regular subgraph of F , a contradiction. Therefore
the number of 1-edges not in full pairs of F is at most k.

Lemma 5.6. The number of 1-edges in full pairs in F is at least n − 4k − 2.
Thus at most 8k− 2 elements in full pairs are neither 1-edges nor (n− 1)-edges.

Proof. By Theorem 3.1, |S| ≥ n − 3k − 2, so the number of 1-edges is at least
n− 3k − 2. If fewer than n− 4k − 2 of them are in full pairs, then we get k + 1
distinct 1-edges a1, a2, . . . , ak+1 not in full pairs, a contradiction to Lemma 5.5.

Lemma 5.7. For each a ∈ Q, there is A ∈ F with 2 ≤ |A| ≤ 3 such that

{a} = A ∩Q.

Proof. Since T is a maximum almost F-free set, T ∪ {a} is not almost F-free.
So, there is B ⊂ T ∪ {a} such that B ∈ F and |B| ≥ 2. Take a smallest such B.

If |B| = b ≥ 4, then there is B′ ⊂ B with |B′| = b− 2 > 1 and B′ ⊂ T . Then
B′ /∈ F , and by Lemma 2.2, B −B′ ∈ F , so A = B −B′ is what we need.

Lemma 5.8. The set Q contains at least one solid 1-edge.

Proof. Let B be a smallest solid set in Q. Suppose |B| ≥ 2. Then there are
disjoint nonempty B′

1, B
′
2 ⊂ B with B′

1 ∪ B′
2 = B. By Lemma 5.3, B1 = Q−B′

1

and B2 = Q−B′
2 are solid.

By (6), T ≥ n − 15k − 6 ≥ 3k + 9. Let K := ⌈2k/6⌉ + 1. Similarly to
the proofs of Lemma 3.10 and Corollary 3.11, for each i = 1, 2, . . . ,K there are
partitions (Ti,1, Ti,2, Ti,3) of T such that all Ti,j are distinct and |Ti,j | ≥ k+ 3 for
all i = 1, 2, . . . ,K and j = 1, 2, 3.

For every i ∈ {1, . . . ,K} and every j ∈ {1, 2, 3}, the three sets B∪ (T −Ti,j),
B1 ∪ (T − Ti,j+1), and B2 ∪ (T − Ti,j+2) (where j counts modulo 3) are in F (by
Corollary 5.4, and the fact that |T − Ti,j | ≤ |T | − (k+3)) and cover every vertex
in N exactly twice. Using such triples for i = 1, . . . ,K and j = 1, 2, 3, we cover
every vertex exactly 6K ≥ 2k ≥ r times and every set appears at most once. If
r < 6K and is even, then we use not all triples.

If r is odd, then we pick a full pair (A,N −A). There are at most two triples
(B ∪ (T −Ti,j), B1 ∪ (T −Ti,j+1), B2 ∪ (T −Ti,j+2)) containing A or N −A. Then
we cover the set N once by the sets A and N−A and r−1 times by r−1

2 ≤ 3K−2
triples (B ∪ (T − Ti,j), B1 ∪ (T − Ti,j+1), B2 ∪ (T − Ti,j+2)) containing neither A
nor N −A. This contradicts the choice of F .

Lemma 5.9. |Q| < 4k + 4.
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Proof. Suppose |Q| ≥ 4k+4. By Lemma 5.8, Q contains a solid 1-edge {a}. Let
Q−a = {b1, b2, . . . , b4k+3, . . . , b|Q|−1}. By Lemma 5.7, for each i = 1, 2, . . . , 4k+3,
we can find Bi with 2 ≤ |Bi| ≤ 3 such that Bi ∩ Q = {bi}. Let L := N − a −
⋃4k+3

i=1 Bi. By definition, |
⋃4k+3

i=1 Bi| ≤ 12k + 9. Since n ≥ 13k + 13, |L| ≥
13k + 3− 1− (12k + 9) = k + 3. Let L′ ⊆ L with |L′| = k + 3. Let M = N − L′.
Then F contains at least n − 4k − 5 edges {a1}, {a2}, . . . , {an−4k−5} such that
all M − ai are also in F , since a ∈ M − ai and k + 3 ≤ |M − ai| ≤ |T | − k − 3.
Recall that for each i = 1, . . . , 4k + 3, Bi ∈ F and M −Bi ∈ F . Since r ≤ n− 1,
the edges {a1}, . . . , {ar+1−4k−5},M −a1, . . . ,M −ar+1−4k−5, B1, . . . , B4k+3,M −
B1, . . . ,M −B4k+3,M form an r-regular subgraph of F , a contradiction.

Lemma 5.10. If {a} is a solid 1-edge and B ∈ F with a /∈ B, then |B ∩ T | <
⌈log k⌉+ 5.

Proof. If there is a set B with a /∈ B and |B ∩ T | ≥ ⌈log k⌉+5, then by Lemma
5.2, we can find B1, B2, . . . , B8k ∈ F such that Bi ⊂ B, B ∩ Q = Bi ∩ Q, since
2⌈log k⌉+4 − (⌈log k⌉ + 5) ≥ 8k. Let X ⊂ N − (B ∪ Q) with |X| = k + 3 and let
M = N−X. Since at least n−3k−2−(k+3) = n−4k−5 of 1-edges {ai} are inM ,
the sets B1, B2, . . . , B4k+4,M−B1, . . . , B−B4k+4, {a1}, {a2}, . . . , {ar−4k−5},M−
a1,M−a2, . . . ,M−ar−4k−5,M form an r-regular subgraph of F , a contradiction.

Lemma 5.11. There are at most 4k+3 sets Ai ∈ F such that no Ai is a 1-edge
and no solid 1-edge a is contained in Ai.

Proof. Suppose that there are 4k + 4 such sets A1, A2, . . . , A4k+4. Then by
Lemma 5.10,

∣

∣

∣

∣

T ∩
⋃4k+4

i=1
Ai

∣

∣

∣

∣

≤ (4k + 4)(⌈log k⌉+ 5) ≤ |T | − k − 3.

Thus, as in the proof of Lemma 5.10, we can find an r-regular subgraph of F by
using Ai instead of Bi.

Lemma 5.12. If {a} is a solid 1-edge, then there is at most one D /∈ F with

a ∈ D.

Proof. Suppose D1, D2 /∈ F with a ∈ D1 ∩ D2. By Lemma 5.10, |Di ∩ T | ≥
|T | − k + 3 for i = 1, 2. So, |D1 ∩D2 ∩ T | ≥ |T | − 2k − 6.

By Lemmas 5.10 and 5.11, at least |T |− (4k+4)(log k+6) elements in T are
covered only by 1-edges and sets containing a.

By (6), |T | − (4k + 4)(log k + 6)− 2k − 6 > 0. So there is c ∈ D1 ∩D2 such
that c is not covered by any edge of size at least 2 not containing a. Since F is
(n, r)-strange, Then at most 2n−1 + 1− 2 = 2n−1 − 1 edges of F contain c. Thus
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the family Fc = {A ∈ F : c ∈ A} has at least 2n−2+ r−1 edges on n−1 vertices,
and by Theorem 1.2 we get an r-regular subgraph of F ′ which is also a subgraph
of F , a contradiction.

Proof of Theorem 5.1. By Lemma 5.8, F has a solid 1-edge {a}. By Lemma
5.12, there is at most one set D /∈ F with a ∈ D. Since F is (n, r)-strange, such D
exists and exactly r− 1 edges of F do not contain a, call them B1, B2, . . . , Br−1.

Case 1.
⋃r−1

i=1 Bi = N − a. Let l be the minimum integer such that we can

renumber B1, . . . , Br−1 so that
⋃l

i=1Bi = N−a. Let B = {Bl+1, Bl+2, . . . , Br−1}.
Let C1 = B1, C2 = B2−B1, C3 = B3−B2−B1, . . . , Cl = Bl−B1−B2−· · ·−Bl−1.
By the minimality of l, Ci 6= ∅ for every i = 1, . . . , l. By construction, {C1, . . . , Cl}
is a partition of N − a.

For every i = 1, . . . , l, there are 2|Ci| − 2 ways to choose a nonempty proper
subset A of Ci. By Lemma 2.2, for each proper subset A of Ci, one of A and
Bi −A is in F , and hence it is in B. It follows that B contains at least 1

2(2
|Ci| −

2) = 2|Ci|−1 − 1 ≥ |Ci| − 1 sets B such that (i) 0 < |B ∩ Ci| < |Ci| and (ii)
B ∩ Cj = ∅ for all i + 1 ≤ j ≤ l. Since all Cis are disjoint, we conclude that

|B| ≥
∑l

i=1(|Ci| − 1) = n− 1− l. Together with B1, B2, . . . , Bl, we have at least
n− 1 members of F not containing a. This contradicts the fact that F has only
r − 1 ≤ n− 2 sets not containing a.

Case 2. There is y ∈ N − a −
⋃r−1

i=1 Bi. Since N −D ∈ F and a /∈ N −D,
y /∈ N − D. So, y ∈ D. Thus y belongs to at most 2n−2 − 1 members of F
containing a and to none not containing a. So, the family F ′ = F−y has at least
2n−1 + r − 2− (2n−2 − 1) = 2n−2 + r − 1 members. By Theorem 1.2, F ′ has an
r-regular subgraph, which is also a subgraph of F , a contradiction.

6. Proof of Theorem 1.5

Suppose F is (n, r)-strange hypergraph on N . By Theorem 5.1,

(7) every S ⊆ N with |S| ≥ n− 15k − 5 contains some A ∈ F with |A| ≥ 2.

Let B1, B2, . . . , Bl be the 1-edges not in full pairs. Let N1 = N−B1−B2−· · ·−Bl.
By Lemma 5.5, |N1| ≥ n − k. So, by (7), N1 contains some Bl+1 ∈ F with
|Bl+1| ≥ 2. Then by Lemma 2.2, we can choose such Bl+1 with 2 ≤ |Bl+1| ≤ 3.
Let N2 = N1 −Bl+1. Since |N2| ≥ (n− k)− 3, again by (7) and Lemma 2.2, N2

contains some Bl+2 ∈ F with 2 ≤ |Bl+2| ≤ 3. Similarly, we find Bl+3, . . . , B5k+2.
Since at least n−4k−2 of 1-edges are in full pairs, by Lemma 5.6, at most 4k+1
full pairs have no 1-edges. Among the at most 8k + 2 sets in these full pairs, at
most 4k + 1 of the sets are in {B1, B2, . . . , B5k+2}, since |Bi| ≤ 3 and n ≥ 425.
Thus some k + 1 sets among B1, B2, . . . , B5k+2 are not in full pairs. Call them



166 J. Kim and A.V. Kostochka

A1, A2, . . . , Ak+1. Then for any I ⊂ [k + 1], AI =
⋃

i∈I Ai is in F , otherwise AI

and {Aj : j ∈ I} together with r− 1 full pairs yield an r-regular subgraph of F .
Therefore F contains 2k+1−1 ≥ r different pairs of edges of the kind AI , A[k+1]−I .
They form an r-regular subgraph of F covering A[k+1], a contradiction.
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