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1. INTRODUCTION

A natural question in graph theory is: What are the graphs not containing 7-
regular subgraphs? For r € {1,2}, the answer is easy, but for r > 3 it is not.
It was a breakthrough when Tashkinov [7] proved the conjecture by Berge that
every 4-regular graph contains a 3-regular subgraph. The questions on existence
of r-regular subgraphs in regular or near-regular graphs were also considered
in [1, 8]. Let F(r,n) denote the maximum number of edges an n-vertex graph
with no r-regular subgraphs have. For r > 3, it is not fully resolved how big
F(r,n) is. Pyber [4] showed that for every fixed r, F(r,n) = O(nlnn). On the
other hand, Pyber, Rédl and Szemerédi [5] proved that F'(3,n) > enlnlnn.

Similar questions are also natural for hypergraphs. We view a hypergraph
as a family F of its edges, so |F| is the number of edges of F. An edge e of F
is a k-edge if |e|] = k. Note that we do not consider empty set as an edge. If, for
some k, every edge of F is a k-edge, then F is k-uniform. A hypergraph F is
r-free if it has no r-regular sub(hyper)graphs. Mubayi and Verstraéte [3] proved
that for every even integer k > 4, there exists ng such that for each n > ng, each
n-vertex k-uniform 2-free hypergraph F has at most (Zj) edges, and equality
holds if and only if F is a full k-star, that is, F consists of all (z:i) edges of size
k containing a given vertex. They also proved the following simpler result for
non-uniform hypergraphs.

Theorem 1.1 [3]. Forn > 3, every n-vertex 2-free hypergraph F satisfies |F| <
21 and equality holds if and only if F is a full star, that is, F consists of 2"
distinct edges containing a given vertex.

Our first result is the following (simple) generalization of Theorem 1.1.

Theorem 1.2. If 2 < r < 2" then the mazimum number of edges in an
n-vertex r-free hypergraph is 2" 1 +r — 2.

Many examples of n-vertex r-free hypergraphs with 2"~ 41 —2 edges are formed
by a full star with » — 2 other edges. If r > n, then some extremal examples
do not contain full stars. For r = 2, Theorem 1.1 says that if n > 3, then the
only n-vertex 2-free hypergraph with 2"~! edges is a full star. We conjecture the
following.

Conjecture 1.3. Let F be an n-vertex r-free hypergraph with | F| = 2" 1 47 —2,
If n>r and r > 2, then F contains a full star.

The main results of this paper are the following.

Theorem 1.4. Suppose F is an n-vertex r-free hypergraph with |F| = 2"~ 1 4r—2.
If n > r+2[logr| + 1, then F contains a full star.
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Theorem 1.5. Suppose F is an n-vertex r-free hypergraph with |F| = 2"~ 14r—2.
If n > r and n > 425, then F contains a full star.

In the next section we prove Theorem 1.2 and derive simple properties of dense
r-free hypergraphs. In Section 3 we show that dense r-free hypergraphs have no
small transversals. In Section 4 we prove Theorem 1.4. In the last two sections
we prove Theorem 1.5.

2. PRELIMINARIES

Proof of Theorem 1.2. Let F be an n-vertex r-free hypergraph with ground

set N. Consider all 2! pairs {4, N — A} of subsets of N. In at most 7 — 1

pairs of sets both sets are edges in F, otherwise we get an r-regular subgraph of

F with vertex set N. If there are exactly » — 1 such pairs, IV cannot be an edge

in F, since N together with those r — 1 pairs would form an r-regular subgraph

of F. Thus |F| < 2n=l 4 — 2. If 2 < r <2771 then equality can be achieved.
Let N = [n] and

F ={e : 1€e}U{r—2 smallest nonempty distinct subsets of [n] — {1} }.

Suppose that F has an r-regular subgraph G. Let C1, Co, ..., C, be the edges of G
that contain 1, and D1, D, ..., Dy be the remaining edges of G. Let C = |J;_, C;
and for ¢ € [r] let C] = C' — C;. Since all edges are distinct, > ;_, |C!| = r|C| —
> i=1|Cil = >=5_, |Dj| should hold. The left-hand side is the sum of cardinalities
of at least 7 — 1 nonempty distinct sets (possibly one C! is empty) not containing
1, and the right-hand side is the sum of cardinailities of at most r — 2 smallest
distinct sets not containing 1, and so, the right-hand side is less than the left-hand
side. This contradiction shows that H has no r-regular subgraphs. [

Let N be a finite set, and n = |N|. Let 3 < r < n. A hypergraph F is (N,r)-
strange if F is an r-free hypergraph with V(F) = N and |F| = 2"! +7 — 2 such
that F does not contain a full star, i.e., 2"~ ! sets containing a given element.

For a set A C N, A is the complement of A to N, ie., A= N — A. A full
pair in F is a pair {4, A} such that both A and A are in F. We let the set N by
itself form a full pair.

In order to prove Theorems 1.4 and 1.5, we derive some properties of (N, 7)-
strange hypergraphs. If F is (IV,r)-strange, then it contains at most r — 1 full
pairs, and so, since |F| =2""1 41 — 2,

(1) it contains exactly r — 1 full pairs.
Moreover,

(2) for each A C N with N # A # (), either A€ For Ae F.
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Furthermore, the following statements hold for each (V,r)-strange hypergraph
F.

Lemma 2.1. If A, B € F, ANB = 0 and both A and B are not in full pairs,
then AUB € F.

Proof. If AUB ¢ F, then AUB € F by (2). Thus A, B, AU B with r — 1 full
pairs form an r-regular subfamily of F, a contradiction. |

Lemma 2.2. If A € F and B and C are disjoint nonempty subsets of A such
that A= BUC, then at least one of B and C is in F.

Proof. Suppose that A = B U C is a partition of A into nonempty sets and
B,C ¢ F. Then by (2), B and C are in F but not in full pairs. Thus the sets A,
B and C together with r — 2 full pairs different from {A, A} form an r-regular
subgraph of F, a contradiction. [

Corollary 2.3. Every edge A of F contains an element x5 such that {xs} € F.
In particular, the union S of 1-edges of F intersects each edge of F.

Lemma 2.4. Let A and B be edges of F such that AN B # (). If at least one of
A and B is not in a full pair, then either ANB or AUB isin F.

Proof. Suppose that AN B,AUB ¢ F. Then ANB is in F, and AUB is
either empty or in F. In both cases, the sets A, B, AN B, and AU B cover every
element of N exactly twice. Adding r — 2 full pairs containing neither A nor B
will give an r-regular subgraph of F. [

3. Si1zeEs OF TRANSVERSALS OF (NV,7)-STRANGE HYPERGRAPHS

A set A C V(H) is a transversal of a hypergraph H if every edge of H intersects
A.

Let S be a minimum transversal of a hypergraph F. Then S contains all
l-edges of F. If F is (N, r)-strange, then by Corollary 2.3, S contains no other
vertices. Thus S is exactly the union of l-edges of F. It has several useful
properties.

The goal of this section is to prove the following fact. Throughout the paper,
k denote [logy7].

Theorem 3.1. Let 3 < r < n and N be a finite set with |N| = n. If S is the
smallest transversal of an (N, r)-strange hypergraph F, then |S| > n — 3k — 2.

Let S be the smallest transversal of an (N, r)-strange hypergraph F.
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Lemma 3.2. If a nonempty S’ C S is not in F, then every S’ C B C N—(S—-5")
is not in F, and hence every S —S' C AC N — 5" isin F.

Proof. Suppose that such B is in F. By Lemma 2.2, either S” or B — 5’ is in
F. But (B—S5)NS =0, and we know that S’ is not in F, a contradiction. m

From now on, in this section, we will assume that
(3) |S]<n-—2k-2.

Note that to prove Theorem 3.1, we could make the stronger assumption that
|S| < n — 3k — 3, but we plan to use these lemmas also in the next section.

For S’ C S and M C N — S, we say that M belongs to S’ if UM € F. A
nonempty proper subset S’ of S is firm if some M C N — S with |[M| > 1+ k
belongs to S’. In particular, S is firm by the following reason. For aset A C N—S
with |A] = k+1, one of AUS and N—S—Aisin F by (2). Since S is a transversal,
N —-S—Aisnotin F. Thus SUA € F, so A belongs to S and S is firm.

Lemma 3.3. Let 8" € S and M C N — S. If M belongs to S’, then every
M’ C M belongs to S’

Proof. Since M U S’ € F, by Lemma 2.2, either UM € F or M — M' € F.
But the latter does not hold, since M NS = (). This proves the lemma. [

Lemma 3.4. For every partition S = S"US” of S into nonempty subsets, exactly
one of S’ and S is firm.

Proof. Assume first that neither of S” and S” is firm. Let M be a subset of N —S
with [M| = 1+ k. Since S’ is not firm, UM ¢ F. Then N — (S’"UM) € F, and
N—(S'UM) = 8"U(N —S—M). Soby (3), [N —S— M| >2k+2—(1+k), and
thus S” is firm. Assume now that both S’ and S” are firm. If a set M C N — S
with |M| > k + 1 belongs to both S” and S”, then we will find an r-regular
subgraph H of F.

Since 2M| > 1 there are at least r subsets of M. Call them Aj, Ao, ..., A,.
Let H={A,US8 :1<i<r}uU{(M—A;)US":1<i<r},itis asubgraph of
F by Lemma 3.3. By construction, H is r-regular, a contradiction.

If aset M C N — S with & < |[M| < k + 2 belongs to neither S’ nor S”,
then N — S — M belongs to both, and again F has an r-regular subgraph. Thus
each M C N — S with |[M| = k + 1 belongs to exactly one of S’ and S”. Let
R (respectively, Rgr) denote the family of M € N — S with |[M| =k + 1 that
belongs to S” (respectively, to S”). By our assumption, both Rg and Rgr are
nonempty. Then there exist M’ € Rg and M" € Rgn with |[M' N M"| = k.
Thus M’ N M"” belongs to both S” and S”, and so F has an r-regular subgraph,
a contradiction. ]
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Corollary 3.5. If S’ is a firm subset of S, then every M C N — S with 1 <
IM| <n—s—(k+1) belongs to S".

Corollary 3.6. Every two firm subsets of S intersect each other.

Proof. Suppose that S; and S, are two disjoint firm subsets of S. Let M C N—S
with |M| = k + 1. By Corollary 3.5, M belongs to both S; and S3. Then as in
the proof of Lemma 3.4, F has an r-regular subgraph with vertex set S71US2UM,
a contradiction. [

Lemma 3.7. s<r—1

Proof. Suppose s > r.

Case 1. s > r+ k. Since the number of 1-edges in full pairs is at most r — 1,
we can choose k + 1(< s — (r — 1)) 1-edges of F that are not in full pairs. Let S’
be the union of these edges. If some A C S’ is not in F, then A and the 1-edges
contained in A cover N once, and together with the r — 1 full pairs (that exist by
(1)) we obtain an r-regular subgraph of F covering N, a contradiction. Thus all
nonempty subsets of S’ are in F, and the number of nonempty proper subsets of
S’ is at least 281 —2 > 2r — 2. We can pair them up so that they are partitions
of S’. At least r —1 of such pairs exist, so together with S’ they form an r-regular
subgraph of F, a contradiction.

Case 2. r < s<r+k—1. By (3),n—s > k+ 1. If there are vj,vy € S
such that S — v1,S — vy ¢ F, then by Lemma 3.2, every B C N — S satisfies
B +wv, € Fand B + vy € F. Since there are at least 2"™° > r possible sets for
B, we can find r pairs of sets v; + B,vy + (N — S — B), and they will form an
r-regular subgraph of F on (N —5) + v; + vs.

Thus for some r — 1 vertices vq,...,v,_1 € S, the sets S —v; are in F. Then
the family {vq,...,v,—1,5 —v1,...,5 —v,_1, S} covers every v € S exactly r
times, a contradiction. ]

Lemma 3.8. No l-edge of F is firm.

Proof. Let S = {v1,v9,...,v5}. Suppose that S; := {v;} is firm. Then by
Corollary 3.6, no subset of S — vy is firm. Hence by Lemma 3.4, the firm subsets
of S are exactly the sets containing v;.

Since not every subset of N containing v is in F and s < r — 1, there are at
least r — 1 — (s — 1) = r — s edges W1, ..., W,_, that are in F, not 1-edges and
do not contain v1. For j =1,...,7r —s, let M; = W; — 5. Let M = U;;‘i M;.
Choose W1, ..., W,_s so that to minimize |M]|.

Case 1. |M| < n—s—k—1. Denote by F’ the family { SUM, {va}, ..., {vs}, SU
M—vy...,SUM — v, Wi,...,Wy_s, SUM —Wh,...,SUM — W,_,}.
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Since F’ forms an r-regular hypergraph, F’ is not a subgraph of F. But since
{v1} is firm, by the choice of W; and Corollary 3.5, every member of F' is in F,
a contradiction. This proves Case 1.

Let t = max{|A— S| : A€ F and v; ¢ A} and let Ay € F be such that
U1 Q:L A() and ’Ao — S‘ =1.

Case 2. t > k. Let My be any k-element subset of Ag — .S and Wy = My U
(AgNS). Since Ag € F and SN(Ag—Wy) = 0, Wy € F. Since 2¥ > r, My contains
some 7 distinct subsets Mj,..., M. Let W/ = M/ U (AyNS) for i =1,...,r.
Since (Mo — M]) NS = 0, each of W/ is in F. Moreover, since |S| < n — 2k — 2,
|Mo| = k, and {v1} is firm, for every 1 <i <r, the set (SUMy) — W/ contains v
and has at most n—s— (k+1) vertices in N — S. This means that (SUMy) — W/
is also in F. So, the family {W{,..., W/, (S U My) — W7,...,(SU My) — W/}
forms an r-regular hypergraph, a contradiction.

Case 3. logy(r —s) <t < k—1. Let My = Ag— S. In our case, 2/Mol = 2t >
r—s. Let Mj,...,M]_, be any distinct subsets of My, and for i =1,...,r — s,
let W/ = M/ U (ApN S). Similarly to Case 2, since (My — M]) NS = 0, each of
W/ is in F. Moreover, since |S| <n —2k —2, [My| < k—1, and {v;} is firm, for
every 1 <i <r, the set (SUMy)—W/ is also in F. By the same reason, for every
2 <j <s, theset (SUMy)—v;isin F. So, the family {W7,...,W/_, (SUMy)—
W{,...,(SUM())—W/,_S,{UQ},...,{’US},SUMO—UQ,...,SUM()—US,SUM()}
forms an r-regular hypergraph, a contradiction.

Case 4. |[M|>n—Fk—sand t < min{k — 1,logy(r — s)}. Let My = Ag — S.
We claim that |[M| < r — s — 2! + ¢+ 1. To prove the claim, we show a way to
choose Wy, ..., W,_g so that

(4) ’UZZIWj—S’ <i— 2ttt

for every 2t —1 < i < r —s. The sets W1y, ..., Wy _ are all the sets of the form
Ap — X where X C My, X # My. So, for i = 2" — 1, (4) holds. Suppose that for
some 2! — 1 < ip <r —s—1, we have found W, ..., W;, satisfying (4) for i = i.

Let C be the family of members of F not containing v; that are distinct from
Wi,...,Wj,. Since i; <r—s—1, thereis C € C # (). Let C' = C—S—U;“Zle.
If ¢’ =0, then we let C' := W;,+1 and (4) holds for i = iy + 1. Suppose z € C".
Since (C" —x) N S = (), the set C — C’' + x is in F, does not contain vy, and is
distinet from Wi, ..., W;,. So, letting W; 41 = C — C" + = we again have that
(4) holds for i = ig + 1. This proves the claim.

Let ' be the family defined in Case 1. Since it is r-regular, some W/ € F’ is
not in F. Then SU M — W’ € F by (2). By the definition of ¢, |[N — (SUM)| <
ISUM — W’ — S| < t. Thus by (4), n = [N| = [M| +|S| +|N — (MU S)| <
(r—s—2'+t+1)+s+t=r—20+2t+1.



158 J. KiMm AND A.V. KOSTOCHKA

Ift > 3, we get n < r — 1, a contradiction.

Ift =2 wegetn <r+1, [M| =r—s—1and |[Ag — S| = 2. Then
(Ag—S) C M with [M|=r—s—1and [MUS — W’ -S| > 2. Thus there are
distinct Ag, A; with |Az — S| = 2, (A(] — S) N (A1 — S) = and vy §é A;. Let
{vi,v9,..., 0,56} CM —Ay—Ay. Forz =1,2,...,r—s—6, let v, € M . By
Lemma 3.3, W;, — M;, + v, € F for every x1,...,7 — s — 6. These edges with
AU(A;NS) for nonempty A C A; — S yield that |M| < r —s—2, a contradiction.

Thus t = 1. Then n =r+1, |M| =r — s and every edge not containing v; is

either a 2-edge or a 1-edge. And SU M — W' is also a 2-edge, so W' is a 1-edge.
Let W’ = {uvs}.
Since |M| =r—sand SUM — vy = {va}U(N —M —S), for each w € N — S there
is exactly one 2-edge not containing v; containing w. Since |[N — S| =r —s+1
and the number of 1-edges in S —wv; is s — 1, F hasexactly r —s+14+s—1=r
edges not containing vy.

So we have exactly two sets containing v; that are not in F. Call them
Dy, Dy. We have D1 = SUM —wv9. Since [N —S| =n—s > 2k+2 > 4 and every
vertex in IV — S is contained in exactly one 2-edge not containing vy, there are at
least 4 different ways to choose W;s to get minimum |M|. Each way gives different
M, let two of them be M and M’. Then, by the above logic, Do = SUM’ —wv3 for
some v3, and |[M NM'| > 2. Thus D;NDy— S is not empty. Let w € DN Dy —S.
Then there are 2"~! — 2 edges in F containing both w and vy, and exactly one
edge containing w but not v1. Thus F—w = {E € F : w ¢ E}is an (n—1)-vertex
hypergraph with 27"~! 47 —1 edges. By Theorem 1.2, F —w contains an r-regular
subgraph, a contradiction. [

Lemma 3.9. s <r — 2.

Proof. Suppose that s > r — 1. Then by Lemma 3.7, s = r — 1. By Lemma 3.8,
S —w; is firm (and so is in F) for every ¢ = 1,...,s. Then the 2r — 1 sets

{vi},....{vr1}, S —v1,..., S —v,—1, S

form an r-regular subgraph of F, a contradiction. [

Lemma 3.10. Let k > 2 and let B be a set with |B| > 2k +2. Then there are at
least 257241 partitions (Bin, Biga, Bi3) of B such that |B; 1| = [(k+1)/2], |Bi2| =
[(k+1)/2],|Bis| > k+1 and all 3[28=2] +3 parts of these partitions are distinct.

Proof. We will choose B; of size [(k+1)/2] and By of size [(k+ 1)/2], so that
B3| = |B| — 2[k/2] > k + 1.
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For k > 4, we have

2k +2— [\ (2k+2— [EH)) 2k + 1 - [E2T]) (2% — [E2
( =l >_ [ﬁ?ﬂ%+ﬂ—2ﬁ¥b@k+l—ﬂi;

2

1)

H—‘w

()

So, for even k,

[(k+1)/2] [(k—1)/2]

> 24'“52@) — 6.9 2

(2k+2—((k+1)/21) 4(2(k—2)+2—((k—1)/21)

For odd &,
2% +2— [(k+1)/2] 2k —2)+2—[(k—1)/2]\ | _ &3 (6
< [k +1)/2] ) = 4( (k= 1)/2] ) S <2)

= 15.2F3 >¢6.2k2

First for each i = 1,...,2*"2 41, choose a set B, 1 of size [k/2] so that all chosen
sets are distinct. Then one by one for each i = 1,...,2 2 + 1, choose a set B;
of size [k/2] so that

(a) Bjp is distinct from all 2F=2 1 1 sets By 1 and previously chosen By 2, and
(b) Bj1 U B;2 is distinct from all already chosen By 1 U By o.

Even at the last step (step 2k=2 4 1), the number of forbidden sets is at most
3-2872 41 < 6-2F2. So, by (5), we finish the construction. |

Corollary 3.11. Let B be a set with |B| > 3k + 3. Then there are at least
2k=2 11 partitions (Bin, Big2, Bi3) of B such that all 3[282] + 3 parts of these
partitions are distinct, and each B; ; has size at least k + 1.

Proof. Let A C B and |A| = k+1. Let B = B— A. Partition A into A;jUAsUA3
with [A;| = |As] = k+1— [%] By Lemma 3.10, there are at least 272 4 1
partitions (B; 1, B; 5, B} 3) of B’ such that all parts of these paritions are distinct,
and |B; || = |B} 5| = [k"'ll |Bj 3| > k+1. Take B; j = Bj ;U A;. Then partitions
(Bi1, BZ’Q, B;3) satlsfy all the conditions. [

Proof of Theorem 3.1. Suppose s < n — 3k — 3. Then all lemmas in this
section hold, since s <n —3k -3 <n—2k—2.

Let S’ be a smallest firm subset of S. Note that S’ is not a 1-edge. Partition
S’ into nonempty subsets S; and Sy. By the minimality of S’, sets S7 and Ss are
not firm, and so S — S7 and S — S5 are firm.
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Let B:= N — S. Then |B| =n —s > 3k + 3. So, by Corollary 3.11, there are
K = [2k/6] + 1 partitions

(B1,1,B1,2,B133), (B2, B2, B23),...,(Bk1, Br2, Bk3)

of B such that all B;; are distinct and |B; j| > k + 1. For every i € {1,..., K}
and every j € {1,2,3}, the three sets S’ U (B — B;;), S1 U (B — B;j+1), and
Sy U (B — Bj j+2) (where j counts modulo 3) are in F (by Corollary 3.5 and the
fact that |[B — B; j| <n—s—(k+1)) and cover every vertex in N exactly twice.
Using such triples for ¢ = 1,..., K and j = 1,2, 3, we cover every vertex exactly
6K > 2% > r times and every set appears at most once. If r < 6K and is even,
then we use not all triples.

If 7 is odd, then we pick a full pair (A, N — A). There are at most two triples
(S"U(B—B;;),51U(B—Bjjt1),S52U(B— B jt2)) containing A or N — A. Then
we cover the set NV once by the set A and N — A and r—1 times with % <3K-2
triples (5" U (B — B; ), 51U (B — Bjj+1), 52U (B — B; j1+2)) containing neither A
nor N — A. This contradicts the choice of F. Therefore |S| > n — 3k — 2. |

4. PROOF OF THEOREM 1.4

If the theorem does not hold, then for some 3 < r < n, k = [logyr]| with n >

r+2k+1, and for some n-vertex set N, there exists an (N, r)-strange hypergraph

F. Let S be the union of 1-edges in F. By Lemma 3.9, |S| <r—2 <n—2k—3.
Let S, denote the family of non-firm subsets of S. For every S € S, ¢, let

Fg :={WeF: LV'ﬂAg::fy}.

Furthermore, let
‘an = Uslesnf -FS’ .

Lemma 4.1. Let M := UWEan W —S. Then
(a) ’M‘ST_S_Q;
(b) |Fnsl <r—2.

Proof. Assume that (a) does not hold and that wy,...,w,—s—1 are in M. Let
M = {w,...,wp—s1}. For j =1,...,r —s—1, let W; be a member of F¢
such that w; € Wj, and let S; = W; N S. By Lemma 3.3, W} := S; + w; is in F
for every j =1,...,7r —s—1. Since each S; and 1-edges are non-firm, S —S; and
S —wj; are firm. Also [N—-S—-M'|=n—s—(r—s—1)=n—r+12>2k+2,
thus by Corollary 3.5, every set of the form S U M’ — S; — w; or of the form
SUM' —w; isin F. So, every member of the family {SUM' {vi},...,{vs},SU
M —{vi},...,SUM —{us}, W{,..., W/ SUM' —W{,...,SUM'—-W/_. 4}

’ r—s—1»
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is in F. Moreover, together they cover every vertex in S U M’ exactly r times.
This proves (a).

Suppose now that Wy,...,W,_q are in F,¢. Since |M| < r — s — 2, every
member of the family {SUM,W1,... W,_1,SUM —W;,...,.SUM —W,_1} is
in F. Moreover, together they cover every vertex in S U M exactly r times. This
proves (b). |

Remark 4.2. Since no member of F,; contains any element in N — .S — M, for
every w € N — M — S, every subset of N —S — w belongs to every firm S’ C S.

Let S’ be a smallest firm subset of S. By Lemma 3.8 S’ is not an 1-edge. Choose
a partition S’ = S U S of S’ into nonempty subsets. By the minimality of S’,
sets S1 and Sy are not firm, and so S — 57 and S — S5 are firm.

Fix any element z € N — S — M and let B:= N —S — 2. Since s <r —2, |B| >
n—(r—2)—1>2k+2. So, by Lemma 3.10, there are K := [2¥/6] + 1 partitions
(Bl,la BLQ, Bl’g), (Bg’l, BQ’Q, B273), ey (BK,la BK727 BK’3) of B such that all BiJ'
are distinct. For every i € {1,...,K} and every j € {1,2,3}, the three sets
S"U(B—B;j), S1U(B — Bj 1), and Sy U (B — B; j12) (where j counts modulo
3) are in F (by Remark 4.2) and cover every vertex in N — z exactly twice.
Using such triples for ¢ = 1,..., K and j = 1,2, 3, we cover every vertex exactly
6K > 2F > r times and every set appears at most once. If r < 6K and is even,
then we use not all triples. If r is odd, then we pick a full pair (A, N — A). Then
we cover the set N once by the set A and N — A and r — 1 times with the triples
(S"U (B = Bi;),S1 U(B = Bij1),5 U(B = Bjjy2)) for 51(< 3K — 2) triples
containing neither A nor N — A.

5. SIZE OF ALMOST F-FREE SUBSETS

A set A is almost F-free if every B € F such that B C A has size 1.
The aim of this section is to prove the following theorem.

Theorem 5.1. If n > 425, then |T| < n—15k—6 for each almost F-free T C N.
Observe that for n > 425,

6) n—15k—6> g >0 and n > (4k + 4)([log(k)] + 6) + 2k + 6.

We need some notation and lemmas. Let T be a maximum almost F-free set,
and @ = N —T. Assume that |Q| < 15k +6, i.e., |T| > n — 15k — 6. For Q' C Q
and T" C T, we say that T" belongs to Q" if Q" UT’ € F. A nonempty subset Q'
of Q is solid if some T" C T" with |T’| > 3 + k belongs to Q.

To show that @ is solid, let B C T with |B| = 2. Since T is almosts F-free,
B¢ F. Then N—B= (T—B)UQ € F. By (6), [T—B| > n/2—|B| =n/2—2 >
k + 3, and so Q is solid.
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Lemma 5.2. Let Q' C Q and T' C T. If TV belongs to Q', then every T" C T’
with |[T"| < |T'| — 2 belongs to Q'.

Proof. Since T U Q' € F, by Lemma 2.2, either Q UT" €¢ For T —T" € F.
But the latter does not hold, since T is almost F-free. This proves the lemma.
|

Lemma 5.3. For every partition Q = Q' U Q" of Q into nonempty subsets,
exactly one of Q' and Q" is solid.

Proof. Assume first that Q' is not solid. By (6), there exists a set M C T with
|M| =3+ k. Since Q' is not solid, @' UM ¢ F. Then N — (Q' U M) € F, and
N—-—(QUM)=Q"U(T—M). So, since |T —M|>n—15k—6—(3+k) > k+3,
Q" is solid.

Assume now that both Q" and Q" are solid. We will show that if a set M C T
with |M| > k + 3 belongs to both Q" and Q”, then F has an r-regular subgraph
with vertex set Q U M.

If a € M, then the number of distinct subsets A1, Ao, ..., A, of M containing
a with 2 < |A;| < |M| -2 is at least

oM=L _ (M| +1)=2"2 —k—d=dr—k—4>r

Note that » > 2, and M — A; # Aj, since a € Aj and a ¢ M — A;. Let
H={AUQ :1<i<r}u{(M—-A;)uQ”:1<i<r} By construction, H is
r-regular, a contradiction.

If a set M C T with |M| = k+4 belongs to neither of Q" and Q”, then T'— M
belongs to both, and again F has an r-regular subgraph. Thus each M C T with
|M| = k + 4 belongs to exactly one of Q" and Q”. Let R¢y (respectively, Regr)
denote the family of M C T with |M| = k + 4 that belong to Q" (respectively,
to @”). By our assumption, both R and R¢~ are nonempty. Then there exist
M' € Ry and M" € Rgr with [M' N M"| = k+ 3. By Lemma 5.2, M' n M"
belongs to both @’ and Q”, and so F has an r-regular subgraph, a contradiction.

|

Corollary 5.4. If Q' is a solid subset of Q, then every M C T with k + 3 <
IM| <|T| - (k+ 3) belongs to S’

Lemma 5.5. The number of 1-edges not in full pairs of F is at most k.

Proof. Assume that there are k + 1 distinct 1-edges {a1}, {a2}, ..., {ags+1} not
in full pairs. If some nonempty B C A = {a1,a2,...,a5+1} is not in F, then
B € F by (2). Then B together with 1-edges contained in B cover N once and
none of these is in a full pair. These sets together with r — 1 full pairs cover N
exactly r times, a contradiction. Thus every nonempty subset of A is in F.
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There are 2* distinct nonempty subsets of A containing a;, call them By, B, .. .,
By Then all nonempty sets among By, Ba,...,B,,A—Bj,A—Bs,...,A— B,
are in F, and they form an r-regular subgraph of F, a contradiction. Therefore
the number of 1-edges not in full pairs of F is at most k. [

Lemma 5.6. The number of 1-edges in full pairs in F is at least n — 4k — 2.
Thus at most 8k — 2 elements in full pairs are neither 1-edges nor (n — 1)-edges.

Proof. By Theorem 3.1, |S| > n — 3k — 2, so the number of 1-edges is at least

n — 3k — 2. If fewer than n — 4k — 2 of them are in full pairs, then we get k + 1

distinct 1-edges a1, as,...,arr1 not in full pairs, a contradiction to Lemma 5.5.
|

Lemma 5.7. For each a € Q, there is A € F with 2 < |A| < 3 such that
{a} =ANQ.

Proof. Since T is a maximum almost F-free set, T"U {a} is not almost F-free.
So, there is B C T'U {a} such that B € F and |B| > 2. Take a smallest such B.

If |[B| = b > 4, then there is B’ C B with |B'| =b—2> 1 and B’ C T. Then
B’ ¢ F, and by Lemma 2.2, B— B’ € F, so A= B — B’ is what we need. |

Lemma 5.8. The set () contains at least one solid 1-edge.

Proof. Let B be a smallest solid set in ). Suppose |B| > 2. Then there are
disjoint nonempty B}, B, C B with B} U B) = B. By Lemma 5.3, B; = Q — B]
and By = Q — B}, are solid.

By (6), T > n— 15k —6 > 3k +9. Let K := [2¥/6] + 1. Similarly to
the proofs of Lemma 3.10 and Corollary 3.11, for each ¢ = 1,2,..., K there are
partitions (75,1, T;2,T;,3) of T such that all T; ; are distinct and |T; ;| > k + 3 for
alli=1,2,...,K and j =1,2,3.

For every i € {1,..., K} and every j € {1,2,3}, the three sets BU (T —T; ;),
BiU(T —T; j4+1), and Bo U (T —Tj j12) (where j counts modulo 3) are in F (by
Corollary 5.4, and the fact that |T'—T; ;| < |T'| — (k+ 3)) and cover every vertex
in N exactly twice. Using such triples for i = 1,..., K and j = 1, 2,3, we cover
every vertex exactly 6K > 2F > r times and every set appears at most once. If
r < 6K and is even, then we use not all triples.

If r is odd, then we pick a full pair (A, N — A). There are at most two triples
(BU(T - Ti,j); B U (T — Tz‘,j—&-1)7 By U (T — T%yj+2)) containing A or N — A. Then
we cover the set NV once by the sets A and N — A and r—1 times by ’";21 <3K-2
triples (BU (T'—T;;), B1 U (T — T; j+1), B2 U (T — T; j4+2)) containing neither A
nor N — A. This contradicts the choice of F. [

Lemma 5.9. |Q| < 4k + 4.
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Proof. Suppose |Q| > 4k+4. By Lemma 5.8, @ contains a solid 1-edge {a}. Let
Q—a={b1,b2,...,bs13,...,bg—1}. By Lemma5.7, foreachi = 1,2,...,4k+3,
we can find B; with 2 < |B;| < 3 such that B;NQ = {b;}. Let L :== N —a —
U B;. By definition, |J¥1® B;| < 12k + 9. Since n > 13k + 13, |L| >
13k+3—-1—(12k+9)=k+3. Let L' C L with |[L'|=k+3. Let M =N — L.
Then F contains at least n — 4k — 5 edges {a1}, {a2},...,{an—4k—5} such that
all M — a; are also in F, sincea € M —a; and k+3 < |M —a;| < |T| — k — 3.
Recall that for each i =1,...,4k+3, B; € F and M — B; € F. Since r <n — 1,
the edges {al}, ceey {ar+1_4k_5}, M — at, ... ,M — Qp41—4k—5, Bl, e ,B4k+3, M —
By,...,M — Byy13, M form an r-regular subgraph of F, a contradiction. [

Lemma 5.10. If {a} is a solid 1-edge and B € F with a ¢ B, then |BNT| <
[log k] + 5.

Proof. If there is a set B with a ¢ B and |[BNT| > [logk]| + 5, then by Lemma
5.2, we can find By, Bo,...,Bgr € F such that B; C B, BN Q = B; NQ, since
oflogkl+4 _ (Tlog k] +5) > 8k. Let X € N — (BUQ) with |X| = k + 3 and let
M = N—X. Since at least n—3k—2—(k+3) = n—4k—5 of 1-edges {a;} are in M,
the sets By, Ba, ..., Bagy4, M — By, ..., B—Bypi4, {al}, {ag}, e, {ar_4k_5}, M —
ai, M—ao, ..., M —a,_45_5, M form an r-regular subgraph of F, a contradiction.

|

Lemma 5.11. There are at most 4k + 3 sets A; € F such that no A; is a 1-edge
and no solid 1-edge a is contained in A;.

Proof. Suppose that there are 4k + 4 such sets A, Ao, ..., Aggra- Then by
Lemma 5.10,

< (4k 4+ 4)([logk] +5) <|T| — k — 3.

i=1

‘T A U4k+4 A,

Thus, as in the proof of Lemma 5.10, we can find an r-regular subgraph of F by
using A; instead of B;. ]

Lemma 5.12. If {a} is a solid 1-edge, then there is at most one D ¢ F with
a€D.

Proof. Suppose Dy,Dy ¢ F with a € Dy N Dy. By Lemma 5.10, |D; N T| >
|T| —k+3fori=1,2. So, |[DiNDyNT| > |T| -2k —6.

By Lemmas 5.10 and 5.11, at least |T'| — (4k +4)(log k4 6) elements in T" are
covered only by l-edges and sets containing a.

By (6), |T| — (4k + 4)(logk + 6) — 2k — 6 > 0. So there is ¢ € D1 N Dy such
that ¢ is not covered by any edge of size at least 2 not containing a. Since F is
(n,r)-strange, Then at most 2"~ ! 41 —2 = 2"! — 1 edges of F contain c. Thus
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the family F. = {A € F : ¢ € A} has at least 2”2 +r — 1 edges on n — 1 vertices,
and by Theorem 1.2 we get an r-regular subgraph of F’ which is also a subgraph
of F, a contradiction. n

Proof of Theorem 5.1. By Lemma 5.8, F has a solid 1-edge {a}. By Lemma
5.12, there is at most one set D ¢ F with a € D. Since F is (n, r)-strange, such D
exists and exactly r — 1 edges of F do not contain a, call them By, Bo, ..., B,_1.

Case 1. U:;ll B; = N —a. Let [ be the minimum integer such that we can
renumber By, ..., B,y sothat | J\_; B; = N—a. Let B={Bj41,Bi12,..., Br_1}.
Let Cy = B,Cy =By,—B1,C3=B3—By—By,....,C; =B —B1—By—---—Bj_1.
By the minimality of I, C; # 0 for every i = 1,...,1. By construction, {C1,...,C;}
is a partition of N — a.

For every i = 1,...,1, there are 2/l — 2 ways to choose a nonempty proper
subset A of C;. By Lemma 2.2, for each proper subset A of C;, one of A and
B; — Ais in F, and hence it is in B. It follows that B contains at least %(2'01‘| —
2) = 2lGI=1 — 1 > |Cy] — 1 sets B such that (i) 0 < [BNCy| < |Cy] and (ii)
BNCj=90forali+1<j <l Since all Cjs are disjoint, we conclude that
|B| > E§:1(|C’i| —1)=n—1-1. Together with By, Bs, ..., B;, we have at least
n — 1 members of F not containing a. This contradicts the fact that F has only
r —1 < n — 2 sets not containing a.

Case 2. Thereisy € N —a —Ji_] B;. Since N — D € Fand a ¢ N — D,
y ¢ N—D. So, y € D. Thus y belongs to at most 2”72 — 1 members of F
containing a and to none not containing a. So, the family F' = F —y has at least
2l 4 —2— (2772 -1)=2""2 4+ r — 1 members. By Theorem 1.2, 7’ has an
r-regular subgraph, which is also a subgraph of F, a contradiction. [

6. PROOF OF THEOREM 1.5
Suppose F is (n,r)-strange hypergraph on N. By Theorem 5.1,
(7) every S C N with |S| > n — 15k — 5 contains some A € F with [A]| > 2.

Let By, Bs, ..., B; be the 1-edges not in full pairs. Let Ny = N—B1—By—---—Bj.
By Lemma 5.5, |[N1| > n — k. So, by (7), N1 contains some By ; € F with
|Bj+1] > 2. Then by Lemma 2.2, we can choose such Bjy1 with 2 < |Bj44] < 3.
Let Ny = Ny — Bj41. Since |Na| > (n — k) — 3, again by (7) and Lemma 2.2, Ny
contains some Bjio € F with 2 < |Bjyo| < 3. Similarly, we find Bj;3,. .., Bsgt2-
Since at least n — 4k — 2 of 1-edges are in full pairs, by Lemma 5.6, at most 4k + 1
full pairs have no 1-edges. Among the at most 8k + 2 sets in these full pairs, at
most 4k + 1 of the sets are in {By, Ba, ..., Bskyo}, since |B;| < 3 and n > 425.
Thus some k + 1 sets among By, Ba, ..., Bsito are not in full pairs. Call them
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Ay, Ag, ..., Apy1. Then for any I C [k+1], Aj = J;c; 4i is in F, otherwise A
and {A; : j € I} together with r — 1 full pairs yield an r-regular subgraph of F.
Therefore F contains 2¥71~1 > 1 different pairs of edges of the kind Ay, Alpy1)-1-
They form an r-regular subgraph of F covering A1}, a contradiction.
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