Discussiones Mathematicae Graph Theory 34 (2014) 151–166 doi:10.7151/dmgt.1722

MAXIMUM HYPERGRAPHS WITHOUT REGULAR SUBGRAPHS

JAEHOON KIM¹

Department of Mathematics, University of Illinois Urbana, IL, 61801, USA

e-mail: kim805@illinois.edu

AND

Alexandr V. Kostochka²

University of Illinois at Urbana–Champaign, Urbana, IL 61801, USA Sobolev Institute of Mathematics Novosibirsk 630090, Russia

e-mail: kostochk@math.uiuc.edu

Abstract

We show that an *n*-vertex hypergraph with no *r*-regular subgraphs has at most $2^{n-1} + r - 2$ edges. We conjecture that if n > r, then every *n*-vertex hypergraph with no *r*-regular subgraphs having the maximum number of edges contains a full star, that is, 2^{n-1} distinct edges containing a given vertex. We prove this conjecture for $n \ge 425$. The condition that n > rcannot be weakened.

Keywords: hypergraphs, set system, subgraph, regular graph.

2010 Mathematics Subject Classification: 05C65.

¹Research of this author is partially supported by the Arnold O. Beckman Research Award of the University of Illinois at Urbana-Champaign.

 $^{^{2}}$ Research of this author is supported in part by NSF grant DMS-0965587 and by the Ministry of education and science of the Russian Federation (Contract no. 14.740.11.0868).

1. INTRODUCTION

A natural question in graph theory is: What are the graphs not containing *r*-regular subgraphs? For $r \in \{1, 2\}$, the answer is easy, but for $r \geq 3$ it is not. It was a breakthrough when Tashkinov [7] proved the conjecture by Berge that every 4-regular graph contains a 3-regular subgraph. The questions on existence of *r*-regular subgraphs in regular or near-regular graphs were also considered in [1, 8]. Let F(r, n) denote the maximum number of edges an *n*-vertex graph with no *r*-regular subgraphs have. For $r \geq 3$, it is not fully resolved how big F(r, n) is. Pyber [4] showed that for every fixed r, $F(r, n) = O(n \ln n)$. On the other hand, Pyber, Rödl and Szemerédi [5] proved that $F(3, n) \geq cn \ln \ln n$.

Similar questions are also natural for hypergraphs. We view a hypergraph as a family \mathcal{F} of its edges, so $|\mathcal{F}|$ is the number of edges of \mathcal{F} . An edge e of \mathcal{F} is a k-edge if |e| = k. Note that we do not consider empty set as an edge. If, for some k, every edge of \mathcal{F} is a k-edge, then \mathcal{F} is k-uniform. A hypergraph \mathcal{F} is r-free if it has no r-regular sub(hyper)graphs. Mubayi and Verstraëte [3] proved that for every even integer $k \geq 4$, there exists n_k such that for each $n \geq n_k$, each n-vertex k-uniform 2-free hypergraph \mathcal{F} has at most $\binom{n-1}{k-1}$ edges, and equality holds if and only if \mathcal{F} is a full k-star, that is, \mathcal{F} consists of all $\binom{n-1}{k-1}$ edges of size k containing a given vertex. They also proved the following simpler result for non-uniform hypergraphs.

Theorem 1.1 [3]. For $n \geq 3$, every n-vertex 2-free hypergraph \mathcal{F} satisfies $|\mathcal{F}| \leq 2^{n-1}$, and equality holds if and only if \mathcal{F} is a full star, that is, \mathcal{F} consists of 2^{n-1} distinct edges containing a given vertex.

Our first result is the following (simple) generalization of Theorem 1.1.

Theorem 1.2. If $2 \leq r \leq 2^{n-1}$, then the maximum number of edges in an *n*-vertex *r*-free hypergraph is $2^{n-1} + r - 2$.

Many examples of *n*-vertex *r*-free hypergraphs with $2^{n-1} + r - 2$ edges are formed by a full star with r - 2 other edges. If $r \ge n$, then some extremal examples do not contain full stars. For r = 2, Theorem 1.1 says that if $n \ge 3$, then the only *n*-vertex 2-free hypergraph with 2^{n-1} edges is a full star. We conjecture the following.

Conjecture 1.3. Let \mathcal{F} be an *n*-vertex *r*-free hypergraph with $|\mathcal{F}| = 2^{n-1} + r - 2$. If n > r and $r \ge 2$, then \mathcal{F} contains a full star.

The main results of this paper are the following.

Theorem 1.4. Suppose \mathcal{F} is an *n*-vertex *r*-free hypergraph with $|\mathcal{F}| = 2^{n-1} + r - 2$. If $n \ge r + 2\lceil \log r \rceil + 1$, then \mathcal{F} contains a full star. **Theorem 1.5.** Suppose \mathcal{F} is an *n*-vertex *r*-free hypergraph with $|\mathcal{F}| = 2^{n-1} + r - 2$. If n > r and $n \ge 425$, then \mathcal{F} contains a full star.

In the next section we prove Theorem 1.2 and derive simple properties of dense r-free hypergraphs. In Section 3 we show that dense r-free hypergraphs have no small transversals. In Section 4 we prove Theorem 1.4. In the last two sections we prove Theorem 1.5.

2. Preliminaries

Proof of Theorem 1.2. Let \mathcal{F} be an *n*-vertex *r*-free hypergraph with ground set *N*. Consider all 2^{n-1} pairs $\{A, N - A\}$ of subsets of *N*. In at most r - 1pairs of sets both sets are edges in \mathcal{F} , otherwise we get an *r*-regular subgraph of \mathcal{F} with vertex set *N*. If there are exactly r - 1 such pairs, *N* cannot be an edge in \mathcal{F} , since *N* together with those r - 1 pairs would form an *r*-regular subgraph of \mathcal{F} . Thus $|\mathcal{F}| \leq 2^{n-1} + r - 2$. If $2 \leq r \leq 2^{n-1}$, then equality can be achieved. Let N = [n] and

 $\mathcal{F} = \{e : 1 \in e\} \cup \{r - 2 \text{ smallest nonempty distinct subsets of } [n] - \{1\} \}.$

Suppose that \mathcal{F} has an r-regular subgraph \mathcal{G} . Let C_1, C_2, \ldots, C_r be the edges of \mathcal{G} that contain 1, and D_1, D_2, \ldots, D_s be the remaining edges of \mathcal{G} . Let $C = \bigcup_{i=1}^r C_i$ and for $i \in [r]$ let $C'_i = C - C_i$. Since all edges are distinct, $\sum_{i=1}^r |C'_i| = r|C| - \sum_{i=1}^r |C_i| = \sum_{j=1}^s |D_j|$ should hold. The left-hand side is the sum of cardinalities of at least r-1 nonempty distinct sets (possibly one C'_i is empty) not containing 1, and the right-hand side is the sum of cardinalities of at most r-2 smallest distinct sets not containing 1, and so, the right-hand side is less than the left-hand side. This contradiction shows that H has no r-regular subgraphs.

Let N be a finite set, and n = |N|. Let $3 \le r < n$. A hypergraph \mathcal{F} is (N, r)strange if \mathcal{F} is an r-free hypergraph with $V(\mathcal{F}) = N$ and $|\mathcal{F}| = 2^{n-1} + r - 2$ such that \mathcal{F} does not contain a *full star*, i.e., 2^{n-1} sets containing a given element.

For a set $A \subseteq N$, \overline{A} is the *complement* of A to N, i.e., $\overline{A} = N - A$. A full pair in \mathcal{F} is a pair $\{A, \overline{A}\}$ such that both A and \overline{A} are in \mathcal{F} . We let the set N by itself form a full pair.

In order to prove Theorems 1.4 and 1.5, we derive some properties of (N, r)strange hypergraphs. If \mathcal{F} is (N, r)-strange, then it contains at most r - 1 full
pairs, and so, since $|\mathcal{F}| = 2^{n-1} + r - 2$,

(1) it contains exactly r - 1 full pairs.

Moreover,

(2) for each $A \subset N$ with $N \neq A \neq \emptyset$, either $A \in \mathcal{F}$ or $\overline{A} \in \mathcal{F}$.

Furthermore, the following statements hold for each (N, r)-strange hypergraph \mathcal{F} .

Lemma 2.1. If $A, B \in \mathcal{F}$, $A \cap B = \emptyset$ and both A and B are not in full pairs, then $A \cup B \in \mathcal{F}$.

Proof. If $A \cup B \notin \mathcal{F}$, then $\overline{A \cup B} \in \mathcal{F}$ by (2). Thus $A, B, \overline{A \cup B}$ with r - 1 full pairs form an *r*-regular subfamily of \mathcal{F} , a contradiction.

Lemma 2.2. If $A \in \mathcal{F}$ and B and C are disjoint nonempty subsets of A such that $A = B \cup C$, then at least one of B and C is in \mathcal{F} .

Proof. Suppose that $A = B \cup C$ is a partition of A into nonempty sets and $B, C \notin \mathcal{F}$. Then by (2), \overline{B} and \overline{C} are in \mathcal{F} but not in full pairs. Thus the sets A, \overline{B} and \overline{C} together with r - 2 full pairs different from $\{A, \overline{A}\}$ form an r-regular subgraph of \mathcal{F} , a contradiction.

Corollary 2.3. Every edge A of \mathcal{F} contains an element x_A such that $\{x_A\} \in \mathcal{F}$. In particular, the union S of 1-edges of \mathcal{F} intersects each edge of \mathcal{F} .

Lemma 2.4. Let A and B be edges of \mathcal{F} such that $A \cap B \neq \emptyset$. If at least one of A and B is not in a full pair, then either $A \cap B$ or $A \cup B$ is in \mathcal{F} .

Proof. Suppose that $A \cap B, A \cup B \notin \mathcal{F}$. Then $\overline{A \cap B}$ is in \mathcal{F} , and $\overline{A \cup B}$ is either empty or in \mathcal{F} . In both cases, the sets $A, B, \overline{A \cap B}$, and $\overline{A \cup B}$ cover every element of N exactly twice. Adding r - 2 full pairs containing neither A nor B will give an r-regular subgraph of \mathcal{F} .

3. Sizes of Transversals of (N, r)-strange Hypergraphs

A set $A \subset V(H)$ is a *transversal* of a hypergraph H if every edge of H intersects A.

Let S be a minimum transversal of a hypergraph \mathcal{F} . Then S contains all 1-edges of \mathcal{F} . If \mathcal{F} is (N, r)-strange, then by Corollary 2.3, S contains no other vertices. Thus S is exactly the union of 1-edges of \mathcal{F} . It has several useful properties.

The goal of this section is to prove the following fact. Throughout the paper, k denote $\lceil \log_2 r \rceil$.

Theorem 3.1. Let $3 \le r < n$ and N be a finite set with |N| = n. If S is the smallest transversal of an (N, r)-strange hypergraph \mathcal{F} , then $|S| \ge n - 3k - 2$.

Let S be the smallest transversal of an (N, r)-strange hypergraph \mathcal{F} .

Lemma 3.2. If a nonempty $S' \subset S$ is not in \mathcal{F} , then every $S' \subseteq B \subseteq N - (S - S')$ is not in \mathcal{F} , and hence every $S - S' \subseteq A \subseteq N - S'$ is in \mathcal{F} .

Proof. Suppose that such B is in \mathcal{F} . By Lemma 2.2, either S' or B - S' is in \mathcal{F} . But $(B - S') \cap S = \emptyset$, and we know that S' is not in \mathcal{F} , a contradiction.

From now on, in this section, we will assume that

(3) $|S| \le n - 2k - 2$.

Note that to prove Theorem 3.1, we could make the stronger assumption that $|S| \leq n - 3k - 3$, but we plan to use these lemmas also in the next section.

For $S' \subseteq S$ and $M \subseteq N - S$, we say that M belongs to S' if $S' \cup M \in \mathcal{F}$. A nonempty proper subset S' of S is firm if some $M \subset N - S$ with $|M| \ge 1 + k$ belongs to S'. In particular, S is firm by the following reason. For a set $A \subset N - S$ with |A| = k+1, one of $A \cup S$ and N - S - A is in \mathcal{F} by (2). Since S is a transversal, N - S - A is not in \mathcal{F} . Thus $S \cup A \in \mathcal{F}$, so A belongs to S and S is firm.

Lemma 3.3. Let $S' \subseteq S$ and $M \subseteq N - S$. If M belongs to S', then every $M' \subset M$ belongs to S'

Proof. Since $M \cup S' \in \mathcal{F}$, by Lemma 2.2, either $S' \cup M' \in \mathcal{F}$ or $M - M' \in \mathcal{F}$. But the latter does not hold, since $M \cap S = \emptyset$. This proves the lemma.

Lemma 3.4. For every partition $S = S' \cup S''$ of S into nonempty subsets, exactly one of S' and S'' is firm.

Proof. Assume first that neither of S' and S'' is firm. Let M be a subset of N-S with |M| = 1 + k. Since S' is not firm, $S' \cup M \notin \mathcal{F}$. Then $N - (S' \cup M) \in \mathcal{F}$, and $N - (S' \cup M) = S'' \cup (N - S - M)$. So by (3), $|N - S - M| \ge 2k + 2 - (1 + k)$, and thus S'' is firm. Assume now that both S' and S'' are firm. If a set $M \subset N - S$ with $|M| \ge k + 1$ belongs to both S' and S'', then we will find an *r*-regular subgraph \mathcal{H} of \mathcal{F} .

Since $2^{|M|} \ge r$, there are at least r subsets of M. Call them A_1, A_2, \ldots, A_r . Let $\mathcal{H} = \{A_i \cup S' : 1 \le i \le r\} \cup \{(M - A_i) \cup S'' : 1 \le i \le r\}$, it is a subgraph of \mathcal{F} by Lemma 3.3. By construction, \mathcal{H} is r-regular, a contradiction.

If a set $M \subset N - S$ with $k \leq |M| \leq k + 2$ belongs to neither S' nor S'', then N - S - M belongs to both, and again \mathcal{F} has an *r*-regular subgraph. Thus each $M \subset N - S$ with |M| = k + 1 belongs to exactly one of S' and S''. Let $\mathcal{R}_{S'}$ (respectively, $\mathcal{R}_{S''}$) denote the family of $M \subset N - S$ with |M| = k + 1 that belongs to S' (respectively, to S''). By our assumption, both $\mathcal{R}_{S'}$ and $\mathcal{R}_{S''}$ are nonempty. Then there exist $M' \in \mathcal{R}_{S'}$ and $M'' \in \mathcal{R}_{S''}$ with $|M' \cap M''| = k$. Thus $M' \cap M''$ belongs to both S' and S'', and so \mathcal{F} has an *r*-regular subgraph, a contradiction. **Corollary 3.5.** If S' is a firm subset of S, then every $M \subset N - S$ with $1 \leq |M| \leq n - s - (k + 1)$ belongs to S'.

Corollary 3.6. Every two firm subsets of S intersect each other.

Proof. Suppose that S_1 and S_2 are two disjoint firm subsets of S. Let $M \subset N-S$ with |M| = k + 1. By Corollary 3.5, M belongs to both S_1 and S_2 . Then as in the proof of Lemma 3.4, \mathcal{F} has an r-regular subgraph with vertex set $S_1 \cup S_2 \cup M$, a contradiction.

Lemma 3.7. $s \le r - 1$

Proof. Suppose $s \ge r$.

Case 1. $s \ge r + k$. Since the number of 1-edges in full pairs is at most r - 1, we can choose $k + 1 (\le s - (r - 1))$ 1-edges of \mathcal{F} that are not in full pairs. Let S'be the union of these edges. If some $A \subseteq S'$ is not in \mathcal{F} , then \overline{A} and the 1-edges contained in A cover N once, and together with the r - 1 full pairs (that exist by (1)) we obtain an r-regular subgraph of \mathcal{F} covering N, a contradiction. Thus all nonempty subsets of S' are in \mathcal{F} , and the number of nonempty proper subsets of S' is at least $2^{k+1} - 2 \ge 2r - 2$. We can pair them up so that they are partitions of S'. At least r - 1 of such pairs exist, so together with S' they form an r-regular subgraph of \mathcal{F} , a contradiction.

Case 2. $r \leq s \leq r + k - 1$. By (3), $n - s \geq k + 1$. If there are $v_1, v_2 \in S$ such that $S - v_1, S - v_2 \notin \mathcal{F}$, then by Lemma 3.2, every $B \subseteq N - S$ satisfies $B + v_1 \in \mathcal{F}$ and $B + v_2 \in \mathcal{F}$. Since there are at least $2^{n-s} \geq r$ possible sets for B, we can find r pairs of sets $v_1 + B, v_2 + (N - S - B)$, and they will form an r-regular subgraph of \mathcal{F} on $(N - S) + v_1 + v_2$.

Thus for some r-1 vertices $v_1, \ldots, v_{r-1} \in S$, the sets $S - v_i$ are in \mathcal{F} . Then the family $\{v_1, \ldots, v_{r-1}, S - v_1, \ldots, S - v_{r-1}, S\}$ covers every $v \in S$ exactly r times, a contradiction.

Lemma 3.8. No 1-edge of \mathcal{F} is firm.

Proof. Let $S = \{v_1, v_2, \ldots, v_s\}$. Suppose that $S_1 := \{v_1\}$ is firm. Then by Corollary 3.6, no subset of $S - v_1$ is firm. Hence by Lemma 3.4, the firm subsets of S are exactly the sets containing v_1 .

Since not every subset of N containing v_1 is in \mathcal{F} and $s \leq r-1$, there are at least r-1-(s-1)=r-s edges W_1,\ldots,W_{r-s} that are in \mathcal{F} , not 1-edges and do not contain v_1 . For $j=1,\ldots,r-s$, let $M_j=W_j-S$. Let $M=\bigcup_{j=1}^{r-s}M_j$. Choose W_1,\ldots,W_{r-s} so that to minimize |M|.

Case 1. $|M| \le n-s-k-1$. Denote by \mathcal{F}' the family $\{S \cup M, \{v_2\}, \dots, \{v_s\}, S \cup M - v_2, \dots, S \cup M - v_s, W_1, \dots, W_{r-s}, S \cup M - W_1, \dots, S \cup M - W_{r-s}\}$.

Since \mathcal{F}' forms an *r*-regular hypergraph, \mathcal{F}' is not a subgraph of \mathcal{F} . But since $\{v_1\}$ is firm, by the choice of W_j and Corollary 3.5, every member of \mathcal{F}' is in \mathcal{F} , a contradiction. This proves Case 1.

Let $t = \max\{|A - S| : A \in \mathcal{F} \text{ and } v_1 \notin A\}$ and let $A_0 \in \mathcal{F}$ be such that $v_1 \notin A_0$ and $|A_0 - S| = t$.

Case 2. $t \ge k$. Let M_0 be any k-element subset of $A_0 - S$ and $W_0 = M_0 \cup (A_0 \cap S)$. Since $A_0 \in \mathcal{F}$ and $S \cap (A_0 - W_0) = \emptyset$, $W_0 \in \mathcal{F}$. Since $2^k \ge r$, M_0 contains some r distinct subsets M'_1, \ldots, M'_r . Let $W'_i = M'_i \cup (A_0 \cap S)$ for $i = 1, \ldots, r$. Since $(M_0 - M'_i) \cap S = \emptyset$, each of W'_i is in \mathcal{F} . Moreover, since $|S| \le n - 2k - 2$, $|M_0| = k$, and $\{v_1\}$ is firm, for every $1 \le i \le r$, the set $(S \cup M_0) - W'_i$ contains v_1 and has at most n - s - (k + 1) vertices in N - S. This means that $(S \cup M_0) - W'_i$ is also in \mathcal{F} . So, the family $\{W'_1, \ldots, W'_r, (S \cup M_0) - W'_1, \ldots, (S \cup M_0) - W'_r\}$ forms an r-regular hypergraph, a contradiction.

Case 3. $\log_2(r-s) \leq t \leq k-1$. Let $M_0 = A_0 - S$. In our case, $2^{|M_0|} = 2^t \geq r-s$. Let M'_1, \ldots, M'_{r-s} be any distinct subsets of M_0 , and for $i = 1, \ldots, r-s$, let $W'_i = M'_i \cup (A_0 \cap S)$. Similarly to Case 2, since $(M_0 - M'_i) \cap S = \emptyset$, each of W'_i is in \mathcal{F} . Moreover, since $|S| \leq n - 2k - 2$, $|M_0| \leq k - 1$, and $\{v_1\}$ is firm, for every $1 \leq i \leq r$, the set $(S \cup M_0) - W'_i$ is also in \mathcal{F} . By the same reason, for every $2 \leq j \leq s$, the set $(S \cup M_0) - v_j$ is in \mathcal{F} . So, the family $\{W'_1, \ldots, W'_{r-s}, (S \cup M_0) - W'_{1}, \ldots, (S \cup M_0) - W'_{r-s}, \{v_2\}, \ldots, \{v_s\}, S \cup M_0 - v_2, \ldots, S \cup M_0 - v_s, S \cup M_0\}$ forms an r-regular hypergraph, a contradiction.

Case 4. $|M| \ge n - k - s$ and $t < \min\{k - 1, \log_2(r - s)\}$. Let $M_0 = A_0 - S$. We claim that $|M| \le r - s - 2^t + t + 1$. To prove the claim, we show a way to choose W_1, \ldots, W_{r-s} so that

(4)
$$\left| \bigcup_{j=1}^{i} W_j - S \right| \le i - 2^t + t + 1,$$

for every $2^t - 1 \le i \le r - s$. The sets W_1, \ldots, W_{2^t-1} are all the sets of the form $A_0 - X$ where $X \subseteq M_0, X \ne M_0$. So, for $i = 2^t - 1$, (4) holds. Suppose that for some $2^t - 1 \le i_0 \le r - s - 1$, we have found W_1, \ldots, W_{i_0} satisfying (4) for $i = i_0$. Let \mathcal{C} be the family of members of \mathcal{F} not containing v_1 that are distinct from W_1, \ldots, W_{i_0} . Since $i_j \le r - s - 1$, there is $C \in \mathcal{C} \ne \emptyset$. Let $C' = C - S - \bigcup_{j=1}^{i_0} W_j$. If $C' = \emptyset$, then we let $C := W_{i_0+1}$ and (4) holds for $i = i_0 + 1$. Suppose $x \in C'$. Since $(C' - x) \cap S = \emptyset$, the set C - C' + x is in \mathcal{F} , does not contain v_1 , and is distinct from W_1, \ldots, W_{i_0} . So, letting $W_{i_0+1} = C - C' + x$ we again have that (4) holds for $i = i_0 + 1$. This proves the claim.

Let \mathcal{F}' be the family defined in Case 1. Since it is *r*-regular, some $W' \in \mathcal{F}'$ is not in \mathcal{F} . Then $\overline{S \cup M - W'} \in \mathcal{F}$ by (2). By the definition of t, $|N - (S \cup M)| \leq |\overline{S \cup M - W'} - S| \leq t$. Thus by (4), $n = |N| = |M| + |S| + |N - (M \cup S)| \leq (r - s - 2^t + t + 1) + s + t = r - 2^t + 2t + 1$.

If $t \geq 3$, we get $n \leq r - 1$, a contradiction.

If t = 2, we get $n \leq r+1$, |M| = r-s-1 and $|A_0 - S| = 2$. Then $(A_0 - S) \subset M$ with |M| = r-s-1 and $|\overline{M \cup S - W'} - S| \geq 2$. Thus there are distinct A_0, A_1 with $|A_i - S| = 2$, $(A_0 - S) \cap (A_1 - S) = \emptyset$ and $v_1 \notin A_i$. Let $\{v_1, v_2, \ldots, v_{r-s-6}\} \subset M - A_0 - A_1$. For $x = 1, 2, \ldots, r-s-6$, let $v_x \in M_{j_x}$. By Lemma 3.3, $W_{j_x} - M_{j_x} + v_x \in \mathcal{F}$ for every $x_1, \ldots, r-s-6$. These edges with $A \cup (A_i \cap S)$ for nonempty $A \subseteq A_i - S$ yield that $|M| \leq r-s-2$, a contradiction.

Thus t = 1. Then n = r + 1, |M| = r - s and every edge not containing v_1 is either a 2-edge or a 1-edge. And $\overline{S \cup M - W'}$ is also a 2-edge, so W' is a 1-edge. Let $W' = \{v_2\}$.

Since |M| = r - s and $\overline{S \cup M - v_2} = \{v_2\} \cup (N - M - S)$, for each $w \in N - S$ there is exactly one 2-edge not containing v_1 containing w. Since |N - S| = r - s + 1 and the number of 1-edges in $S - v_1$ is s - 1, \mathcal{F} has exactly r - s + 1 + s - 1 = r edges not containing v_1 .

So we have exactly two sets containing v_1 that are not in \mathcal{F} . Call them D_1, D_2 . We have $D_1 = S \cup M - v_2$. Since $|N - S| = n - s \ge 2k + 2 \ge 4$ and every vertex in N - S is contained in exactly one 2-edge not containing v_1 , there are at least 4 different ways to choose W_i s to get minimum |M|. Each way gives different M, let two of them be M and M'. Then, by the above logic, $D_2 = S \cup M' - v_3$ for some v_3 , and $|M \cap M'| \ge 2$. Thus $D_1 \cap D_2 - S$ is not empty. Let $w \in D_1 \cap D_2 - S$. Then there are $2^{n-1} - 2$ edges in \mathcal{F} containing both w and v_1 , and exactly one edge containing w but not v_1 . Thus $\mathcal{F} - w = \{E \in \mathcal{F} : w \notin E\}$ is an (n-1)-vertex hypergraph with $2^{n-1} + r - 1$ edges. By Theorem 1.2, $\mathcal{F} - w$ contains an r-regular subgraph, a contradiction.

Lemma 3.9. $s \le r - 2$.

Proof. Suppose that $s \ge r-1$. Then by Lemma 3.7, s = r-1. By Lemma 3.8, $S - v_i$ is firm (and so is in \mathcal{F}) for every $i = 1, \ldots, s$. Then the 2r - 1 sets

$$\{v_1\},\ldots,\{v_{r-1}\},S-v_1,\ldots,S-v_{r-1},S$$

form an r-regular subgraph of \mathcal{F} , a contradiction.

Lemma 3.10. Let $k \ge 2$ and let B be a set with $|B| \ge 2k+2$. Then there are at least $2^{k-2}+1$ partitions $(B_{i,1}, B_{i,2}, B_{i,3})$ of B such that $|B_{i,1}| = \lceil (k+1)/2 \rceil, |B_{i,2}| = \lceil (k+1)/2 \rceil, |B_{i,3}| \ge k+1$ and all $3\lceil 2^{k-2} \rceil + 3$ parts of these partitions are distinct.

Proof. We will choose B_1 of size $\lceil (k+1)/2 \rceil$ and B_2 of size $\lceil (k+1)/2 \rceil$, so that $|B_3| = |B| - 2\lceil k/2 \rceil \ge k+1$.

For $k \geq 4$, we have

(5)
$$\binom{2k+2-\lceil\frac{k+1}{2}\rceil}{\lceil\frac{k+1}{2}\rceil} = \frac{(2k+2-\lceil\frac{k+1}{2}\rceil)(2k+1-\lceil\frac{k+1}{2}\rceil)(2k-\lceil\frac{k+1}{2}\rceil)}{\lceil\frac{k+1}{2}\rceil(2k+2-2\lceil\frac{k+1}{2}\rceil)(2k+1-2\lceil\frac{k+1}{2}\rceil)} \\ \binom{2k-2-\lceil\frac{k-2+1}{2}\rceil}{\lceil\frac{k-2+1}{2}\rceil} \ge 4\binom{2(k-2)+2-\lceil\frac{k-1}{2}\rceil}{\lceil\frac{k-1}{2}\rceil}.$$

So, for even k,

$$\begin{pmatrix} 2k+2-\lceil (k+1)/2\rceil\\ \lceil (k+1)/2\rceil \end{pmatrix} \geq 4 \begin{pmatrix} 2(k-2)+2-\lceil (k-1)/2\rceil\\ \lceil (k-1)/2\rceil \end{pmatrix} \\ \geq \cdots \geq 4^{\frac{k-2}{2}} \begin{pmatrix} 4\\ 2 \end{pmatrix} = 6 \cdot 2^{k-2}.$$

For odd k,

$$\begin{pmatrix} 2k+2-\lceil (k+1)/2\rceil\\ \lceil (k+1)/2\rceil \end{pmatrix} \geq 4 \begin{pmatrix} 2(k-2)+2-\lceil (k-1)/2\rceil\\ \lceil (k-1)/2\rceil \end{pmatrix} \geq \cdots \geq 4^{\frac{k-3}{2}} \begin{pmatrix} 6\\ 2 \end{pmatrix}$$
$$= 15 \cdot 2^{k-3} \geq 6 \cdot 2^{k-2}.$$

First for each $i = 1, ..., 2^{k-2} + 1$, choose a set $B_{i,1}$ of size $\lceil k/2 \rceil$ so that all chosen sets are distinct. Then one by one for each $i = 1, ..., 2^{k-2} + 1$, choose a set $B_{i,2}$ of size $\lceil k/2 \rceil$ so that

(a) $B_{i,2}$ is distinct from all $2^{k-2} + 1$ sets $B_{i',1}$ and previously chosen $B_{i',2}$, and (b) $B_{i,1} \cup B_{i,2}$ is distinct from all already chosen $B_{i',1} \cup B_{i',2}$.

Even at the last step (step $2^{k-2} + 1$), the number of forbidden sets is at most $3 \cdot 2^{k-2} + 1 < 6 \cdot 2^{k-2}$. So, by (5), we finish the construction.

Corollary 3.11. Let B be a set with $|B| \ge 3k + 3$. Then there are at least $2^{k-2} + 1$ partitions $(B_{i,1}, B_{i,2}, B_{i,3})$ of B such that all $3\lceil 2^{k-2}\rceil + 3$ parts of these partitions are distinct, and each $B_{i,j}$ has size at least k + 1.

Proof. Let $A \subseteq B$ and |A| = k+1. Let B' = B-A. Partition A into $A_1 \cup A_2 \cup A_3$ with $|A_1| = |A_2| = k + 1 - \lceil \frac{k+1}{2} \rceil$. By Lemma 3.10, there are at least $2^{k-2} + 1$ partitions $(B'_{i,1}, B'_{i,2}, B'_{i,3})$ of B' such that all parts of these partitions are distinct, and $|B'_{i,1}| = |B'_{i,2}| = \lceil \frac{k+1}{2} \rceil$, $|B'_{i,3}| \ge k+1$. Take $B_{i,j} = B'_{i,j} \cup A_i$. Then partitions $(B_{i,1}, B_{i,2}, B_{i,3})$ satisfy all the conditions.

Proof of Theorem 3.1. Suppose $s \le n - 3k - 3$. Then all lemmas in this section hold, since $s \le n - 3k - 3 \le n - 2k - 2$.

Let S' be a smallest firm subset of S. Note that S' is not a 1-edge. Partition S' into nonempty subsets S_1 and S_2 . By the minimality of S', sets S_1 and S_2 are not firm, and so $S - S_1$ and $S - S_2$ are firm.

Let B := N - S. Then $|B| = n - s \ge 3k + 3$. So, by Corollary 3.11, there are $K := \lceil 2^k/6 \rceil + 1$ partitions

$$(B_{1,1}, B_{1,2}, B_{1,3}), (B_{2,1}, B_{2,2}, B_{2,3}), \dots, (B_{K,1}, B_{K,2}, B_{K,3})$$

of B such that all $B_{i,j}$ are distinct and $|B_{i,j}| \ge k + 1$. For every $i \in \{1, \ldots, K\}$ and every $j \in \{1, 2, 3\}$, the three sets $S' \cup (B - B_{i,j})$, $S_1 \cup (B - B_{i,j+1})$, and $S_2 \cup (B - B_{i,j+2})$ (where j counts modulo 3) are in \mathcal{F} (by Corollary 3.5 and the fact that $|B - B_{i,j}| \le n - s - (k+1)$) and cover every vertex in N exactly twice. Using such triples for $i = 1, \ldots, K$ and j = 1, 2, 3, we cover every vertex exactly $6K \ge 2^k \ge r$ times and every set appears at most once. If r < 6K and is even, then we use not all triples.

If r is odd, then we pick a full pair (A, N - A). There are at most two triples $(S' \cup (B - B_{i,j}), S_1 \cup (B - B_{i,j+1}), S_2 \cup (B - B_{i,j+2}))$ containing A or N - A. Then we cover the set N once by the set A and N - A and r - 1 times with $\frac{r-1}{2} \leq 3K - 2$ triples $(S' \cup (B - B_{i,j}), S_1 \cup (B - B_{i,j+1}), S_2 \cup (B - B_{i,j+2}))$ containing neither A nor N - A. This contradicts the choice of \mathcal{F} . Therefore $|S| \geq n - 3k - 2$.

4. Proof of Theorem 1.4

If the theorem does not hold, then for some $3 \leq r < n$, $k = \lceil \log_2 r \rceil$ with $n \geq r+2k+1$, and for some *n*-vertex set *N*, there exists an (N, r)-strange hypergraph \mathcal{F} . Let *S* be the union of 1-edges in \mathcal{F} . By Lemma 3.9, $|S| \leq r-2 \leq n-2k-3$.

Let \mathcal{S}_{nf} denote the family of non-firm subsets of S. For every $S' \in \mathcal{S}_{nf}$, let

$$\mathcal{F}_{S'} := \{ W \in \mathcal{F} : W \cap S = S' \}.$$

Furthermore, let

$$\mathcal{F}_{nf} := \bigcup_{S' \in \mathcal{S}_{nf}} \mathcal{F}_{S'}.$$

Lemma 4.1. Let $M := \bigcup_{W \in \mathcal{F}_{nf}} W - S$. Then (a) $|M| \leq r - s - 2$; (b) $|\mathcal{F}_{nf}| \leq r - 2$.

Proof. Assume that (a) does not hold and that w_1, \ldots, w_{r-s-1} are in M. Let $M' := \{w_1, \ldots, w_{r-s-1}\}$. For $j = 1, \ldots, r-s-1$, let W_j be a member of \mathcal{F}_{nf} such that $w_j \in W_j$, and let $S_j = W_j \cap S$. By Lemma 3.3, $W'_j := S_j + w_j$ is in \mathcal{F} for every $j = 1, \ldots, r-s-1$. Since each S_j and 1-edges are non-firm, $S - S_j$ and $S - v_j$ are firm. Also $|N - S - M'| = n - s - (r - s - 1) = n - r + 1 \ge 2k + 2$, thus by Corollary 3.5, every set of the form $S \cup M' - S_j - w_j$ or of the form $S \cup M' - v_i$ is in \mathcal{F} . So, every member of the family $\{S \cup M', \{v_1\}, \ldots, \{v_s\}, S \cup M' - \{v_1\}, \ldots, S \cup M - \{v_s\}, W'_1, \ldots, W'_{r-s-1}, S \cup M' - W'_1, \ldots, S \cup M' - W'_{r-s-1}\}$

is in \mathcal{F} . Moreover, together they cover every vertex in $S \cup M'$ exactly r times. This proves (a).

Suppose now that W_1, \ldots, W_{r-1} are in \mathcal{F}_{nf} . Since $|M| \leq r - s - 2$, every member of the family $\{S \cup M, W_1, \ldots, W_{r-1}, S \cup M - W_1, \ldots, S \cup M - W_{r-1}\}$ is in \mathcal{F} . Moreover, together they cover every vertex in $S \cup M$ exactly r times. This proves (b).

Remark 4.2. Since no member of \mathcal{F}_{nf} contains any element in N - S - M, for every $w \in N - M - S$, every subset of N - S - w belongs to every firm $S' \subset S$. Let S' be a smallest firm subset of S. By Lemma 3.8 S' is not an 1-edge. Choose a partition $S' = S_1 \cup S_2$ of S' into nonempty subsets. By the minimality of S', sets S_1 and S_2 are not firm, and so $S - S_1$ and $S - S_2$ are firm.

Fix any element $z \in N - S - M$ and let B := N - S - z. Since $s \leq r - 2$, $|B| \geq n - (r - 2) - 1 \geq 2k + 2$. So, by Lemma 3.10, there are $K := \lceil 2^k/6 \rceil + 1$ partitions $(B_{1,1}, B_{1,2}, B_{1,3}), (B_{2,1}, B_{2,2}, B_{2,3}), \ldots, (B_{K,1}, B_{K,2}, B_{K,3})$ of B such that all $B_{i,j}$ are distinct. For every $i \in \{1, \ldots, K\}$ and every $j \in \{1, 2, 3\}$, the three sets $S' \cup (B - B_{i,j}), S_1 \cup (B - B_{i,j+1}), \text{ and } S_2 \cup (B - B_{i,j+2})$ (where j counts modulo 3) are in \mathcal{F} (by Remark 4.2) and cover every vertex in N - z exactly twice. Using such triples for $i = 1, \ldots, K$ and j = 1, 2, 3, we cover every vertex exactly $6K \geq 2^k \geq r$ times and every set appears at most once. If r < 6K and is even, then we use not all triples. If r is odd, then we pick a full pair (A, N - A). Then we cover the set N once by the set A and N - A and r - 1 times with the triples $(S' \cup (B - B_{i,j}), S_1 \cup (B - B_{i,j+1}), S_2 \cup (B - B_{i,j+2}))$ for $\frac{r-1}{2} (\leq 3K - 2)$ triples containing neither A nor N - A.

5. Size of Almost \mathcal{F} -free Subsets

A set A is almost \mathcal{F} -free if every $B \in \mathcal{F}$ such that $B \subseteq A$ has size 1.

The aim of this section is to prove the following theorem.

Theorem 5.1. If $n \ge 425$, then $|T| \le n - 15k - 6$ for each almost \mathcal{F} -free $T \subseteq N$. Observe that for $n \ge 425$,

(6)
$$n-15k-6 \ge \frac{n}{2} > 0$$
 and $n > (4k+4)(\lceil \log(k) \rceil + 6) + 2k + 6.$

We need some notation and lemmas. Let T be a maximum almost \mathcal{F} -free set, and Q = N - T. Assume that |Q| < 15k + 6, i.e., |T| > n - 15k - 6. For $Q' \subseteq Q$ and $T' \subseteq T$, we say that T' belongs to Q' if $Q' \cup T' \in \mathcal{F}$. A nonempty subset Q'of Q is solid if some $T' \subset T'$ with $|T'| \ge 3 + k$ belongs to Q'.

To show that Q is solid, let $B \subset T$ with |B| = 2. Since T is almosts \mathcal{F} -free, $B \notin \mathcal{F}$. Then $N - B = (T - B) \cup Q \in \mathcal{F}$. By (6), $|T - B| \ge n/2 - |B| = n/2 - 2 \ge k + 3$, and so Q is solid.

Lemma 5.2. Let $Q' \subseteq Q$ and $T' \subseteq T$. If T' belongs to Q', then every $T'' \subset T'$ with $|T''| \leq |T'| - 2$ belongs to Q'.

Proof. Since $T' \cup Q' \in \mathcal{F}$, by Lemma 2.2, either $Q' \cup T'' \in \mathcal{F}$ or $T - T'' \in \mathcal{F}$. But the latter does not hold, since T is almost \mathcal{F} -free. This proves the lemma.

Lemma 5.3. For every partition $Q = Q' \cup Q''$ of Q into nonempty subsets, exactly one of Q' and Q'' is solid.

Proof. Assume first that Q' is not solid. By (6), there exists a set $M \subset T$ with |M| = 3 + k. Since Q' is not solid, $Q' \cup M \notin \mathcal{F}$. Then $N - (Q' \cup M) \in \mathcal{F}$, and $N - (Q' \cup M) = Q'' \cup (T - M)$. So, since $|T - M| \ge n - 15k - 6 - (3 + k) \ge k + 3$, Q'' is solid.

Assume now that both Q' and Q'' are solid. We will show that if a set $M \subset T$ with $|M| \ge k+3$ belongs to both Q' and Q'', then \mathcal{F} has an *r*-regular subgraph with vertex set $Q \cup M$.

If $a \in M$, then the number of distinct subsets A_1, A_2, \ldots, A_r of M containing a with $2 \leq |A_i| \leq |M| - 2$ is at least

$$2^{|M|-1} - (|M|+1) = 2^{k+2} - k - 4 = 4r - k - 4 \ge r.$$

Note that $r \geq 2$, and $M - A_i \neq A_j$, since $a \in A_j$ and $a \notin M - A_j$. Let $\mathcal{H} = \{A_i \cup Q' : 1 \leq i \leq r\} \cup \{(M - A_i) \cup Q'' : 1 \leq i \leq r\}$. By construction, \mathcal{H} is *r*-regular, a contradiction.

If a set $M \subset T$ with |M| = k+4 belongs to neither of Q' and Q'', then T-Mbelongs to both, and again \mathcal{F} has an *r*-regular subgraph. Thus each $M \subset T$ with |M| = k + 4 belongs to exactly one of Q' and Q''. Let $\mathcal{R}_{Q'}$ (respectively, $\mathcal{R}_{Q''}$) denote the family of $M \subset T$ with |M| = k + 4 that belong to Q' (respectively, to Q''). By our assumption, both $\mathcal{R}_{Q'}$ and $\mathcal{R}_{Q''}$ are nonempty. Then there exist $M' \in \mathcal{R}_{Q'}$ and $M'' \in \mathcal{R}_{Q''}$ with $|M' \cap M''| = k + 3$. By Lemma 5.2, $M' \cap M''$ belongs to both Q' and Q'', and so \mathcal{F} has an *r*-regular subgraph, a contradiction.

Corollary 5.4. If Q' is a solid subset of Q, then every $M \subset T$ with $k + 3 \leq |M| \leq |T| - (k + 3)$ belongs to S'.

Lemma 5.5. The number of 1-edges not in full pairs of \mathcal{F} is at most k.

Proof. Assume that there are k + 1 distinct 1-edges $\{a_1\}, \{a_2\}, \ldots, \{a_{k+1}\}$ not in full pairs. If some nonempty $B \subset A = \{a_1, a_2, \ldots, a_{k+1}\}$ is not in \mathcal{F} , then $\overline{B} \in \mathcal{F}$ by (2). Then \overline{B} together with 1-edges contained in B cover N once and none of these is in a full pair. These sets together with r - 1 full pairs cover Nexactly r times, a contradiction. Thus every nonempty subset of A is in \mathcal{F} . There are 2^k distinct nonempty subsets of A containing a_1 , call them B_1, B_2, \ldots , B_{2^k} . Then all nonempty sets among $B_1, B_2, \ldots, B_r, A - B_1, A - B_2, \ldots, A - B_r$ are in \mathcal{F} , and they form an r-regular subgraph of \mathcal{F} , a contradiction. Therefore the number of 1-edges not in full pairs of \mathcal{F} is at most k.

Lemma 5.6. The number of 1-edges in full pairs in \mathcal{F} is at least n - 4k - 2. Thus at most 8k - 2 elements in full pairs are neither 1-edges nor (n - 1)-edges.

Proof. By Theorem 3.1, $|S| \ge n - 3k - 2$, so the number of 1-edges is at least n - 3k - 2. If fewer than n - 4k - 2 of them are in full pairs, then we get k + 1 distinct 1-edges $a_1, a_2, \ldots, a_{k+1}$ not in full pairs, a contradiction to Lemma 5.5.

Lemma 5.7. For each $a \in Q$, there is $A \in \mathcal{F}$ with $2 \leq |A| \leq 3$ such that $\{a\} = A \cap Q$.

Proof. Since T is a maximum almost \mathcal{F} -free set, $T \cup \{a\}$ is not almost \mathcal{F} -free. So, there is $B \subset T \cup \{a\}$ such that $B \in \mathcal{F}$ and $|B| \ge 2$. Take a smallest such B.

If $|B| = b \ge 4$, then there is $B' \subset B$ with |B'| = b - 2 > 1 and $B' \subset T$. Then $B' \notin \mathcal{F}$, and by Lemma 2.2, $B - B' \in \mathcal{F}$, so A = B - B' is what we need.

Lemma 5.8. The set Q contains at least one solid 1-edge.

Proof. Let B be a smallest solid set in Q. Suppose $|B| \ge 2$. Then there are disjoint nonempty $B'_1, B'_2 \subset B$ with $B'_1 \cup B'_2 = B$. By Lemma 5.3, $B_1 = Q - B'_1$ and $B_2 = Q - B'_2$ are solid.

By (6), $T \ge n - 15k - 6 \ge 3k + 9$. Let $K := \lfloor 2^k/6 \rfloor + 1$. Similarly to the proofs of Lemma 3.10 and Corollary 3.11, for each i = 1, 2, ..., K there are partitions $(T_{i,1}, T_{i,2}, T_{i,3})$ of T such that all $T_{i,j}$ are distinct and $|T_{i,j}| \ge k + 3$ for all i = 1, 2, ..., K and j = 1, 2, 3.

For every $i \in \{1, \ldots, K\}$ and every $j \in \{1, 2, 3\}$, the three sets $B \cup (T - T_{i,j})$, $B_1 \cup (T - T_{i,j+1})$, and $B_2 \cup (T - T_{i,j+2})$ (where j counts modulo 3) are in \mathcal{F} (by Corollary 5.4, and the fact that $|T - T_{i,j}| \leq |T| - (k+3)$) and cover every vertex in N exactly twice. Using such triples for $i = 1, \ldots, K$ and j = 1, 2, 3, we cover every vertex exactly $6K \geq 2^k \geq r$ times and every set appears at most once. If r < 6K and is even, then we use not all triples.

If r is odd, then we pick a full pair (A, N - A). There are at most two triples $(B \cup (T - T_{i,j}), B_1 \cup (T - T_{i,j+1}), B_2 \cup (T - T_{i,j+2}))$ containing A or N - A. Then we cover the set N once by the sets A and N - A and r - 1 times by $\frac{r-1}{2} \leq 3K - 2$ triples $(B \cup (T - T_{i,j}), B_1 \cup (T - T_{i,j+1}), B_2 \cup (T - T_{i,j+2}))$ containing neither A nor N - A. This contradicts the choice of \mathcal{F} .

Lemma 5.9. |Q| < 4k + 4.

Proof. Suppose $|Q| \ge 4k+4$. By Lemma 5.8, Q contains a solid 1-edge $\{a\}$. Let $Q-a = \{b_1, b_2, \ldots, b_{4k+3}, \ldots, b_{|Q|-1}\}$. By Lemma 5.7, for each $i = 1, 2, \ldots, 4k+3$, we can find B_i with $2 \le |B_i| \le 3$ such that $B_i \cap Q = \{b_i\}$. Let $L := N - a - \bigcup_{i=1}^{4k+3} B_i$. By definition, $|\bigcup_{i=1}^{4k+3} B_i| \le 12k+9$. Since $n \ge 13k+13$, $|L| \ge 13k+3-1-(12k+9) = k+3$. Let $L' \subseteq L$ with |L'| = k+3. Let M = N - L'. Then \mathcal{F} contains at least n - 4k - 5 edges $\{a_1\}, \{a_2\}, \ldots, \{a_{n-4k-5}\}$ such that all $M - a_i$ are also in \mathcal{F} , since $a \in M - a_i$ and $k+3 \le |M-a_i| \le |T| - k - 3$. Recall that for each $i = 1, \ldots, 4k+3$, $B_i \in \mathcal{F}$ and $M - B_i \in \mathcal{F}$. Since $r \le n - 1$, the edges $\{a_1\}, \ldots, \{a_{r+1-4k-5}\}, M - a_1, \ldots, M - a_{r+1-4k-5}, B_1, \ldots, B_{4k+3}, M - B_1, \ldots, M - B_{4k+3}, M$ form an r-regular subgraph of \mathcal{F} , a contradiction. ■

Lemma 5.10. If $\{a\}$ is a solid 1-edge and $B \in \mathcal{F}$ with $a \notin B$, then $|B \cap T| < \lceil \log k \rceil + 5$.

Proof. If there is a set B with $a \notin B$ and $|B \cap T| \ge \lceil \log k \rceil + 5$, then by Lemma 5.2, we can find $B_1, B_2, \ldots, B_{8k} \in \mathcal{F}$ such that $B_i \subset B, B \cap Q = B_i \cap Q$, since $2^{\lceil \log k \rceil + 4} - (\lceil \log k \rceil + 5) \ge 8k$. Let $X \subset N - (B \cup Q)$ with |X| = k + 3 and let M = N - X. Since at least n - 3k - 2 - (k + 3) = n - 4k - 5 of 1-edges $\{a_i\}$ are in M, the sets $B_1, B_2, \ldots, B_{4k+4}, M - B_1, \ldots, B - B_{4k+4}, \{a_1\}, \{a_2\}, \ldots, \{a_{r-4k-5}\}, M - a_1, M - a_2, \ldots, M - a_{r-4k-5}, M$ form an r-regular subgraph of \mathcal{F} , a contradiction.

Lemma 5.11. There are at most 4k + 3 sets $A_i \in \mathcal{F}$ such that no A_i is a 1-edge and no solid 1-edge a is contained in A_i .

Proof. Suppose that there are 4k + 4 such sets $A_1, A_2, \ldots, A_{4k+4}$. Then by Lemma 5.10,

$$\left| T \cap \bigcup_{i=1}^{4k+4} A_i \right| \le (4k+4)(\lceil \log k \rceil + 5) \le |T| - k - 3.$$

Thus, as in the proof of Lemma 5.10, we can find an *r*-regular subgraph of \mathcal{F} by using A_i instead of B_i .

Lemma 5.12. If $\{a\}$ is a solid 1-edge, then there is at most one $D \notin \mathcal{F}$ with $a \in D$.

Proof. Suppose $D_1, D_2 \notin \mathcal{F}$ with $a \in D_1 \cap D_2$. By Lemma 5.10, $|D_i \cap T| \ge |T| - k + 3$ for i = 1, 2. So, $|D_1 \cap D_2 \cap T| \ge |T| - 2k - 6$.

By Lemmas 5.10 and 5.11, at least $|T| - (4k+4)(\log k+6)$ elements in T are covered only by 1-edges and sets containing a.

By (6), $|T| - (4k + 4)(\log k + 6) - 2k - 6 > 0$. So there is $c \in D_1 \cap D_2$ such that c is not covered by any edge of size at least 2 not containing a. Since \mathcal{F} is (n, r)-strange, Then at most $2^{n-1} + 1 - 2 = 2^{n-1} - 1$ edges of \mathcal{F} contain c. Thus

the family $\mathcal{F}_c = \{A \in \mathcal{F} : c \in A\}$ has at least $2^{n-2} + r - 1$ edges on n-1 vertices, and by Theorem 1.2 we get an *r*-regular subgraph of \mathcal{F}' which is also a subgraph of \mathcal{F} , a contradiction.

Proof of Theorem 5.1. By Lemma 5.8, \mathcal{F} has a solid 1-edge $\{a\}$. By Lemma 5.12, there is at most one set $D \notin \mathcal{F}$ with $a \in D$. Since \mathcal{F} is (n, r)-strange, such D exists and exactly r-1 edges of \mathcal{F} do not contain a, call them $B_1, B_2, \ldots, B_{r-1}$.

Case 1. $\bigcup_{i=1}^{r-1} B_i = N - a$. Let l be the minimum integer such that we can renumber B_1, \ldots, B_{r-1} so that $\bigcup_{i=1}^l B_i = N - a$. Let $\mathcal{B} = \{B_{l+1}, B_{l+2}, \ldots, B_{r-1}\}$. Let $C_1 = B_1, C_2 = B_2 - B_1, C_3 = B_3 - B_2 - B_1, \ldots, C_l = B_l - B_1 - B_2 - \cdots - B_{l-1}$. By the minimality of $l, C_i \neq \emptyset$ for every $i = 1, \ldots, l$. By construction, $\{C_1, \ldots, C_l\}$ is a partition of N - a.

For every i = 1, ..., l, there are $2^{|C_i|} - 2$ ways to choose a nonempty proper subset A of C_i . By Lemma 2.2, for each proper subset A of C_i , one of A and $B_i - A$ is in \mathcal{F} , and hence it is in \mathcal{B} . It follows that \mathcal{B} contains at least $\frac{1}{2}(2^{|C_i|} - 2) = 2^{|C_i|-1} - 1 \ge |C_i| - 1$ sets B such that (i) $0 < |B \cap C_i| < |C_i|$ and (ii) $B \cap C_j = \emptyset$ for all $i + 1 \le j \le l$. Since all C_i s are disjoint, we conclude that $|\mathcal{B}| \ge \sum_{i=1}^{l} (|C_i| - 1) = n - 1 - l$. Together with B_1, B_2, \ldots, B_l , we have at least n - 1 members of \mathcal{F} not containing a. This contradicts the fact that \mathcal{F} has only $r - 1 \le n - 2$ sets not containing a.

Case 2. There is $y \in N - a - \bigcup_{i=1}^{r-1} B_i$. Since $N - D \in \mathcal{F}$ and $a \notin N - D$, $y \notin N - D$. So, $y \in D$. Thus y belongs to at most $2^{n-2} - 1$ members of \mathcal{F} containing a and to none not containing a. So, the family $\mathcal{F}' = \mathcal{F} - y$ has at least $2^{n-1} + r - 2 - (2^{n-2} - 1) = 2^{n-2} + r - 1$ members. By Theorem 1.2, \mathcal{F}' has an r-regular subgraph, which is also a subgraph of \mathcal{F} , a contradiction.

6. Proof of Theorem 1.5

Suppose \mathcal{F} is (n, r)-strange hypergraph on N. By Theorem 5.1,

(7) every $S \subseteq N$ with $|S| \ge n - 15k - 5$ contains some $A \in \mathcal{F}$ with $|A| \ge 2$.

Let B_1, B_2, \ldots, B_l be the 1-edges not in full pairs. Let $N_1 = N - B_1 - B_2 - \cdots - B_l$. By Lemma 5.5, $|N_1| \ge n - k$. So, by (7), N_1 contains some $B_{l+1} \in \mathcal{F}$ with $|B_{l+1}| \ge 2$. Then by Lemma 2.2, we can choose such B_{l+1} with $2 \le |B_{l+1}| \le 3$. Let $N_2 = N_1 - B_{l+1}$. Since $|N_2| \ge (n - k) - 3$, again by (7) and Lemma 2.2, N_2 contains some $B_{l+2} \in \mathcal{F}$ with $2 \le |B_{l+2}| \le 3$. Similarly, we find $B_{l+3}, \ldots, B_{5k+2}$. Since at least n - 4k - 2 of 1-edges are in full pairs, by Lemma 5.6, at most 4k + 1 full pairs have no 1-edges. Among the at most 8k + 2 sets in these full pairs, at most 4k + 1 of the sets are in $\{B_1, B_2, \ldots, B_{5k+2}\}$, since $|B_i| \le 3$ and $n \ge 425$. Thus some k + 1 sets among $B_1, B_2, \ldots, B_{5k+2}$ are not in full pairs. Call them $A_1, A_2, \ldots, A_{k+1}$. Then for any $I \subset [k+1]$, $A_I = \bigcup_{i \in I} A_i$ is in \mathcal{F} , otherwise $\overline{A_I}$ and $\{A_j : j \in I\}$ together with r-1 full pairs yield an r-regular subgraph of \mathcal{F} . Therefore \mathcal{F} contains $2^{k+1-1} \ge r$ different pairs of edges of the kind $A_I, A_{[k+1]-I}$. They form an r-regular subgraph of \mathcal{F} covering $A_{[k+1]}$, a contradiction.

References

- N. Alon, S. Friedland, and G. Kalai, Regular subgraphs of almost regular graphs, J. Combin. Theory (B) **37** (1984) 79–91. doi:10.1016/0095-8956(84)90047-9
- M. Kano, Regular subgraphs of a regular graph, Annals of the New York Academy of Sciences 576 (1989) 281–284. doi:10.1111/j.1749-6632.1989.tb16409.x
- [3] D. Mubayi and J. Verstraëte, Two-regular subgraphs of hypergraphs, J. Combin. Theory (B) 99 (2009) 643–655. doi:10.1016/j.jctb.2008.10.005
- [4] L. Pyber, Regular subgraphs of dense graphs, Combinatorica 5 (1985) 347–349. doi:10.1007/BF02579250
- [5] L. Pyber, V. Rödl, and E. Szemerédi, Dense graphs without 3-regular subgraphs, J. Combin. Theory (B) 63 (1995) 41–54. doi:10.1006/jctb.1995.1004
- [6] V. Rödl and B. Wysocka, Note on regular subgraphs, J. Graph Theory 24 (1997) 139–154.
 doi:10.1002/(SICI)1097-0118(199702)24:2(139::AID-JGT2)3.0.CO;2-R
- [7] V.A. Tashkinov, 3-regular subgraphs of 4-regular graphs, Mat. Zametki 36 (1984) 239–259..
- [8] V.A. Tashkinov, Regular parts of regular pseudographs, Mat. Zametki 43 (1988)) 263–275.

Received 20 June 2012 Revised 30 January 2013 Accepted 31 January 2013