Discussiones Mathematicae
Graph Theory 34 (2014) 633-634
doi:10.7151/dmgt. 1721

Note

A DIFFERENT SHORT PROOF OF BROOKS' THEOREM

Landon Rabern
Arizona State University
School of Mathematical \& Statistical Sciences
e-mail: landon.rabern@gmail.com

Abstract

Lovász gave a short proof of Brooks' theorem by coloring greedily in a good order. We give a different short proof by reducing to the cubic case.

Keywords: coloring, clique number, maximum degree.
2010 Mathematics Subject Classification: 05C15.

In [5] Lovász gave a short proof of Brooks' theorem by coloring greedily in a good order. Here we give a different short proof by reducing to the cubic case. One interesting feature of the proof is that it does not use any connectivity concepts. Our notation follows Diestel [2] except we write K_{t} instead of K^{t} for the complete graph on t vertices.

Theorem 1 (Brooks [1]). Every graph G with $\chi(G)=\Delta(G)+1 \geq 4$ contains $K_{\Delta(G)+1}$.

Proof. Suppose the theorem is false and choose a counterexample G minimizing $|G|$. Put $\Delta:=\Delta(G)$. Using minimality of $|G|$, we see that $\chi(G-v) \leq \Delta$ for all $v \in V(G)$. In particular, G is Δ-regular.

First, suppose $\Delta \geq 4$. Pick $v \in V(G)$ and let $w_{1}, \ldots, w_{\Delta}$ be v 's neighbors. Since $K_{\Delta+1} \nsubseteq G$, by symmetry we may assume that w_{2} and w_{3} are not adjacent. Choose a $(\Delta+1)$-coloring $\left\{\{v\}, C_{1}, \ldots, C_{\Delta}\right\}$ of G where $w_{i} \in C_{i}$ so as to maximize $\left|C_{1}\right|$. Then C_{1} is a maximal independent set in G and in particular, with $H:=$ $G-C_{1}$, we have $\chi(H)=\chi(G)-1=\Delta=\Delta(H)+1 \geq 4$. By minimality of $|G|$, we get $K_{\Delta} \subseteq H$. But $\left\{\{v\}, C_{2}, \ldots, C_{\Delta}\right\}$ is a Δ-coloring of H, so any K_{Δ} in H must contain v and hence w_{2} and w_{3}, a contradiction.

Therefore G is 3-regular. Since G is not a forest it contains an induced cycle C. Put $T:=N(C)$. Then $|T| \geq 2$ since $K_{4} \nsubseteq G$. Take different $x, y \in T$ and put
$H_{x y}:=G-C$ if x is adjacent to y and $H_{x y}:=(G-C)+x y$ otherwise. Then, by minimality of $|G|$, either $H_{x y}$ is 3-colorable or adding $x y$ created a K_{4} in $H_{x y}$.

Suppose the former happens. Then we have a 3 -coloring of $G-C$ where x and y receive different colors. We can easily extend this partial coloring to all of G since each vertex of C has a set of two available colors and some pair of vertices in C get different sets.

Whence adding $x y$ created a K_{4}, call it A, in $H_{x y}$. We conclude that T is independent and each vertex in T has exactly one neighbor in C. Hence $|T| \geq|C| \geq 3$. Pick $z \in T-\{x, y\}$. Then x is contained in a K_{4}, call it B, in $H_{x z}$. Since $d(x)=3$, we must have $A-\{x, y\}=B-\{x, z\}$. But then any $w \in A-\{x, y\}$ has degree at least 4 , a contradiction.

We note that the reduction to the cubic case is an immediate consequence of more general lemmas on hitting all maximum cliques with an independent set (see [4], [6] and [3]). Tverberg pointed out that this reduction was also demonstrated in his paper [7].

References

[1] R.L. Brooks, On colouring the nodes of a network, in: Math. Proc. Cambridge Philos. Soc. 37 Cambridge Univ. Press (1941) 194-197.
[2] R. Diestel, Graph Theory (Fourth Ed., Springer Verlag, 2010).
[3] A.D. King, Hitting all maximum cliques with a stable set using lopsided independent transversals, J. Graph Theory 67 (2011) 300-305. doi:10.1002/jgt. 20532
[4] A.V. Kostochka, Degree, density, and chromatic number, Metody Diskret. Anal. 35 (1980) 45-70 (in Russian).
[5] L. Lovász, Three short proofs in graph theory, J. Combin. Theory (B) 19 (1975) 269-271. doi:10.1016/0095-8956(75)90089-1
[6] L. Rabern, On hitting all maximum cliques with an independent set, J. Graph Theory 66 (2011) 32-37. doi:10.1002/jgt. 20487
[7] H. Tverberg, On Brooks' theorem and some related results, Math. Scand. 52 (1983) 37-40.

