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Abstract

In this note, we show how the determinant of the q-distance matrix
Dq(T ) of a weighted directed graph G can be expressed in terms of the
corresponding determinants for the blocks of G, and thus generalize the
results obtained by Graham et al. [R.L. Graham, A.J. Hoffman and H.
Hosoya, On the distance matrix of a directed graph, J. Graph Theory 1 (1977)
85–88]. Further, by means of the result, we determine the determinant of the
q-distance matrix of the graph obtained from a connected weighted graph G

by adding the weighted branches to G, and so generalize in part the results
obtained by Bapat et al. [R.B. Bapat, S. Kirkland and M. Neumann, On

distance matrices and Laplacians, Linear Algebra Appl. 401 (2005) 193–
209]. In particular, as a consequence, determinantal formulae of q-distance
matrices for unicyclic graphs and one class of bicyclic graphs are presented.
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1. Introduction

We consider graphs which have no loops or parallel edges. A weighted graph is
a (directed or undirected) graph in which each edge or arc is assigned a weight,
which is a positive number. An unweighted graph, or simply a graph, is thus
a weighted graph with each of the edges or arcs bearing weight 1. Let G be a
weighted directed graph with vertex set {v1, v2, . . . , vn}. For vertices vi, vj of G,
the distance from vi to vj , denoted by dij , is defined to be the minimum weight
of all paths from vi to vj , where the weight of a path is the sum of the weights
of the arcs in that path. We shall assume that G is strongly connected so that
dij always exists. The distance matrix D(G) of G is an n × n matrix which has
dij as its (i, j) entry.

Some q-analogs of the distance for a tree were considered in [2, 9]. Now we
generalize the notion for a general weighted directed graph. Let G be a weighted
directed graph and suppose that the distance from u to v is α. Define the q-

distance from u to v to be [α], where

[α] =

{

1−qα

1−q
, if q 6= 1;

α, otherwise.

By definition, [0] = 0 and [α] = 1 + q + q2 + · · ·+ qα−1 if α is a positive integer.
The q-distance matrix Dq(G) of G is the square matrix which has as its (i, j)
entry the q-distance from vi to vj . If q = 1 then Dq(G) is the distance matrix
D(G) of a graph G. Hence the distance matrix D(G) is a special case of the
q-distance matrix Dq(G).

Distance matrices of graphs, particularly trees, have been extensively inves-
tigated in the literature. A classical result concerning the determinant of the
distance matrix of a tree, due to Graham and Pollak [4], asserted that for a tree
Tn on n vertices, det(Tn) = (−1)n−1(n − 1)2n−2. Thus, det(Tn) is a function
dependent on n only, independent of the structure of Tn. Graham, Hoffman and
Hosoya [5] studied further and obtained the following result. For a square matrix
A, let cof(A) denote the sum of cofactors of A.

Theorem 1 [5]. If G is a strongly connected directed graph with blocks G1, G2, . . . ,

Gr, then

cof(D(G)) =
∏r

i=1
cof(D(Gi)),

det(D(G)) =
∑r

i=1
det(D(Gi))

∏

j 6=i
cof(D(Gj)).

Graham and Pollack determinantal formula for tree has been extended by Bapat
et al. to the weighted case [1] and further by Yan et al. to the q-distance matrix of
weighted tree [9]. We are not aware of Sivasubramanian’s work [7] until we have
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finished the paper. It is worth pointing that our Theorem 2 is a generalization
of Theorem 2 of [7] to the weighted case.

In this paper we show how the determinant of the q-distance matrix Dq(T )
of a weighted directed graph G can be expressed in terms of the corresponding
determinants for the blocks of G. Our proof is basically the same as Graham’s
proof, but this indeed generalizes Graham et al.’s result to q-distance matrix
case, and further, by applying the result we determine the determinant of the
q-distance matrix of the graph obtained from a connected weighted graph G by
adding the weighted branches to G, and so generalize in part the results obtained
by Bapat et al. in [1]. In particular, as a consequence, determinantal formulae
of q-distance matrices for unicyclic graphs and one class of bicyclic graphs are
presented.

2. Main Results

We begin with some notation and definition. Let G be a strongly connected
directed graph and D be its q-distance matrix which has its following form:

D =











0 [α1] · · · [αn−1]

[β1]
...

[βn−1]

D1











.

Denote by ξ(D) the cofactor in position (1, 1) of the matrix obtained by subtract-
ing the first row from all other rows, then pαi times the first column from the
(i + 1)th column of D for i = 1, . . . , n − 1. Observe that ξ(D) = det(D1 −M),
where M is the (n − 1) × (n − 1) matrix with [βi + αj ] as its (i, j) entry (since
[α+ β] = pβ [α] + [β] = [α] + pα[β]).

A block of a graph is defined to be a maximal subgraph having no cut vertices.

Theorem 2. If G is a strongly connected directed graph with blocks G1, G2, . . . ,

Gr, then

(1a) ξ(Dq(G)) =
∏r

i=1
ξ(Dq(Gi)),

(1b) det(Dq(G)) =
∑r

i=1
det(Dq(Gi))

∏

j 6=i
ξ(Dq(Gj)).

Proof. We proceed by induction on r, the number of blocks of G. The theorem
is trivial for r = 1 as G itself is a block in this case. Assume that it holds for
all strongly connected directed graphs with fewer than r blocks, and let G be a
strongly connected directed graph with r blocks. Then G is not a block and has



106 H.-H. Li, L. Su and J. Zhang

at least one block which contains exactly one cut vertex of G, say G1 with the
unique cut vertex labeled by 0. Let G∗

1 = G− (G1 −{0}) be the remainder of G.
Assume that V (G1) = {0, 1, . . . ,m} and V (G∗

1) = {0,m+ 1, . . . ,m+ n}. Let

Dq(G1)=











0 [a1] · · · [am]
[b1]
...

[bm]

E











, Dq(G
∗

1
)=











0 [f1] · · · [fn]
[g1]
...

[gn]

H











.

Thus we have

Dq(G) =





0 ā f̄

b̄ E ([bi + fj ])

ḡ ([gi + aj ]) H



 ,

where ā = ([a1], . . . , [am]), b̄ = ([b1], . . . , [bm])T , f̄ = ([f1], . . . , [fn]) and ḡ =
([g1], . . . , [gn])

T . Subtract qai (qfj , resp.) times the first column from the (i+1)th
((j +m + 1)th, resp.) column of Dq(G), for i = 1, . . . ,m and j = 1, . . . , n; and
also subtract the first row from every other row of Dq(G). Then

det(Dq(G)) =det





0 ā f̄

b̄ E − ([bi + aj ]) 0

ḡ 0 H − ([gi + fj ])





=det

(

0 ā

b̄ E − ([bi + aj ])

)

det(H − ([gi + fj ]))

+det

(

0 f̄

ḡ H − ([gi + fj ])

)

det(E − ([bi + aj ]))

=det(Dq(G1))ξ(Dq(D
∗
1)) + det(Dq(G

∗
1))ξ(Dq(D1)),

where the second equality follows by Laplace expansion of determinants. Also we
note that

ξ(Dq(G)) =det

(

E − ([bi + aj ]) 0

0 H − ([gi + fj ])

)

=det(E − ([bi + aj ])) det(H − ([gi + fj ]))

=ξ(Dq(D1))ξ(Dq(D
∗
1)).

By the induction hypothesis, the assertion (1a) and (1b) follow immediately.

Let ~T be a directed graph obtained from a tree of order n by replacing each
undirected edge fi = {u, v} with two arcs (oppositely oriented edges) ei = (u, v)
and e′i = (v, u). Let ui > 0 and vi > 0 be the weights of the arcs ei and e′i,
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respectively. Note that ~T is a strongly connected graph consisting of n−1 blocks,
denoted by G1, G2, . . . , Gn−1. Observe that each Gi actually consists of two

opposite arcs, say ei and e′i. As Dq(Gi) =

(

0 [ui]
[vi] 0

)

, det(Dq(Gi)) = −[ui][vi]

and ξ(Dq(Gi)) = −[ui + vi]. Applying Theorem 2 to ~T , we have ξ(Dq(~T )) =
∏n−1

i=1 (−[ui + vi]) and the following result.

Theorem 3. Let ~T be the directed graph on n vertices constructed as above.

Then

det(Dq(~T )) = (−1)n−1
∏n−1

i=1
([ui + vi])

∑n−1

i=1

[ui][vi]

[ui + vi]
.

Theorem 3 yields the following generalization of results of Yan and Yeh [9] and
also Bapat and Rekhi [3]. This can easily be seen if we replace each undirected
edge in a tree by two arcs of opposite orientations and then apply Theorem 3 to
the obtained directed graph.

Corollary 4 [3]. Let T be a weighted tree with n vertices and weights α1, α2, . . . ,

αn−1. Then

det(Dq(T )) = (−1)n−1
∏n−1

i=1
[2αi]

∑n−1

i=1

[αi]

1 + qαi
.

In particular, by letting q = 1 in Corollary 4, we obtain the following result.

Corollary 5 [1]. Let T be a weighted tree with n vertices and weights α1, α2, . . . ,

αn−1. Then

det(D(T )) = (−1)n−12n−2
(

∏n−1

i=1
αi

)(

∑n−1

i=1
αi

)

.

Next we shall focus ourself on undirected graphs. Let G be a weighted graph,
and suppose that we have a collection of weighted trees B1, . . . , Bk. Let Ḡ be
the graph obtained from G and B1, . . . , Bk by adding, for each i = 1, . . . , k, a
weighted edge between some vertex of Bi and some vertex of G. We say that
the new graph Ḡ is constructed by adding the weighted branches B1, . . . , Bk to G.
Note that trees, unicyclic graphs and bicyclic graphs all can be constructed in
this way. Let εn be the nth standard unit basis vector in R

n, 1 be the all ones
vector in R

n and J be the all-ones matrix of dimension n. In order to discuss
the determinant and inertia properties of distance matrices of weighted trees and
unicyclic graphs, Bapat et al. [1] obtained a key observation as follows:

Theorem 6 [1]. Let G be a connected weighted graph on n vertices with distance

matrix D, and suppose that D1 = d1. Form Ḡ from G by adding weighted

branches to G on a total of m vertices, with positive weights α1, . . . , αm on the new

edges. Let D̄ be the distance matrix for Ḡ. Then for each x ∈ R, det(D̄+ xJ) =
(−2)m det(D)(

∏m
i=1 αi)(1 +

nx
d
+ n

2d

∑m
i=1 αi).
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Now we determine the determinant of the q-distance matrix of Ḡ and thus gen-
eralize in part the above result.

Theorem 7. Let G be a connected weighted graph on n vertices with distance

matrix Dq(G), and suppose that Dq(G)1 = d1. Let Ḡ be the graph obtained from

G by adding weighted branches to G on a total of m vertices, with positive weights

α1, . . . , αm on the new edges. Then

(2)

det(Dq(Ḡ)) =
∏m

i=1
(−[2αi])

(

1 +
(n

d
+ q − 1

)

∑m

j=1

[αj ]

1 + qαj

)

det(Dq(G)).

Proof. According to the formation of Ḡ, G can not be a proper subgraph of any
block of Ḡ. By Theorem 2, we have

det(Dq(Ḡ)) =
∏m

i=1
(−[2αi]) det(Dq(G))

+ξ(Dq(G))
∏m

i=1
(−[2αi])

∑m

j=1

[αj ]
2

[2αj ]
.(3)

Now we will determine ξ(Dq(G)) in terms of det(Dq(G)).
Let G′ denote the graph obtained from G by adding a pendant vertex. With-

out loss of generality, assume that the vertex n+1 is pendant, adjacent to vertex
n, and that the weight of the corresponding pendant edge is α. Add −qα times
the nth row and nth column to the last row and last column, respectively. Then

Dq(G
′) =

(

I 0
qαεTn 1

)(

Dq(G) [α]1
[α]1T −2qα[α]

)(

I qαεn
0 1

)

.

And so

det(Dq(G
′)) = det

(

Dq(G) [α]1
[α]1T −2qα[α]

)

= (−2qα[α]) det(Dq(G) +
[α]

2qα
J),

where the second equality follows from Schur’s formula. Note that the eigenvalues
of Dq(G) may be written as d, λ2, . . . , λn, while the eigenvalues of Dq(G) + [α]

2qαJ

are d+ n[α]
2qα and λ2, . . . , λn. Then it follows from the preceding equation that

det(Dq(G
′)) = (−2qα[α])

(

d+
n[α]

2qα

)

∏n

j=2
λj

=−

(

2qα[α] +
n[α]2

d

)

det(Dq(G)).(4)

On the other hand, by Theorem 2, we have

det(Dq(G
′)) =det(Dq(G))ξ(Dq(P2)) + det(Dq(P2))ξ(Dq(G))

=(−[2α]) det(Dq(G)) + (−[α]2)ξ(Dq(G)).(5)
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Combining (4) and (5), we have

(6) ξ(Dq(G)) =
(n

d
+ q − 1

)

det(Dq(G))

and substitution in (3) implies that the assertion (2) holds.

Note that Corollary 4 can also be obtained in view of Theorem 7. The next two
results deal with the determinant of q-distance matrix of the unicyclic graphs and
one class of bicyclic graphs. We first recall some facts on circulant matrix.

A circulant matrix C is a special kind of Toeplitz matrix having the form

C =























c0 c1 c2 · · · cn−1

cn−1 c0 c1 c2
...

cn−1 c0 c1
. . .

...
. . .

. . .
. . . c2

c1
c1 · · · cn−1 c0























,

where each row vector is rotated one element to the right relative to the preceding
row vector. Note that a circulant matrix is fully specified by one vector and then
is denoted by Circ(c0, c1, . . . , cn−1) by convention. The eigenvalues of a circulant
matrix C = Circ(c0, c1, . . . , cn−1) are given by {fC(ζ

j)|j = 0, 1, . . . , n− 1}, where

fC(x) =
∑n−1

i=0 cix
i and ζ = e

2π
n
i. Consequently, the determinant of circulant

matrix C can be determined as in the following result.

Lemma 8 [8]. Let C = Circ(c0, c1, . . . , cn−1) and fC(x) =
∑n−1

i=0 cix
i. Then

det(C) =
∏n−1

j=0
fC(ζ

j),

where ζ is the nth root of unity e
2π
n
i.

As usual, the path and cycle of order n are denoted by Pn and Cn, respectively.

Theorem 9. Let G be a unicyclic graph with n+m vertices and cycle length n.

Then

(7) det(Dq(G)) = (−1)m(1 + q)m−1
(

1 + q +m
(n

d
+ q − 1

))

det(Dq(Cn))

with

(8) det(Dq(Cn)) =















∏2k
s=0

(

∑k
r=1 2[r] cos

2rsπ
2k+1

)

, if n = 2k + 1;

∏2k−1
s=0

(

∑k−1
r=1 2[r] cos

2rsπ
2k + (−1)s[k]

)

, if n = 2k.
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Proof. Observe that Dq(Cn) = Circ(0, [1], . . . , [k], [k], . . . , [1]) or Dq(Cn) = Circ
(0, [1], . . . , [k], [k− 1], . . . , [1]) depending on whether n = 2k+ 1 or n = 2k. Then
the hypothesis of Theorem 7 applies to G, and so (7) follows immediately. By
Lemma 8, the statement (8) holds obviously.

A bicyclic graph is a connected graph in which the number of edges equals the
number of vertices plus one. Let Cp and Cq be two vertex-disjoint cycles. Suppose
that a1 is a vertex of Cp and al is a vertex of Cq. Joining a1 and al by a path
a1a2 · · · al of length l− 1 results in a graph to be called an ∞-graph, where l ≥ 1
and l = 1 means identifying a1 with al. Let Pr+1, Ps+1 and Pt+1 be three vertex-
disjoint paths, where r, s, t ≥ 1 and at most one of them is 1. Identifying the
three initial vertices and terminal vertices of them respectively results in a graph
to be called a θ-graph. The bicyclic graphs consist of two types of graphs: one
type, denoted by B∞, are those graphs each of which is an ∞-graph with trees
attached; the other type, denoted by Bθ, are those graphs each of which is a
θ-graph with trees attached (one can see [6] for the details). Note that for any
G ∈ B∞, two of the blocks of G are cycles and the remainder are P2’s.

Theorem 10. Let G ∈ B∞ with n vertices and two cycle blocks of G be Cr and

Cs. Then

det(Dq(G)) = (−(1 + q))a
(

cr + cs +
a

1 + q
crcs

)

det(Dq(Cr)) det(Dq(Cs)),(9)

where a = n+1− r− s, cr =
r
dr

+ q− 1, cs =
s
ds

+ q− 1 and dr, ds denote the row

sum of Dq(Cr), Dq(Cs) respectively.

Proof. Applying Theorem 2 to G, we have

det(Dq(G)) = (−(1 + q))a(det(Dq(Cr))ξ(Dq(Cs)) + det(Dq(Cs))ξ(Dq(Cr)))

+ (−1)aa(1 + q)a−1ξ(Dq(Cr))ξ(Dq(Cs)).(10)

Letting G = Cn in (6), we have

(11) ξ(Dq(Cn)) =
(n

d
+ q − 1

)

det(Dq(Cn))

and substitutions in (10) for n = r, s yield the conclusion (9).

According to a result of Bapat et al. [1],

det(D(Cn)) =

{

0, if n ≡ 0 (mod 2);
⌈n2 ⌉⌊

n
2 ⌋, otherwise.

Now letting q = 1 particularly in the above theorem, we obtain the following
corollary, whose proof we omit.
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Corollary 11. Let G ∈ B∞ with n vertices and two cycle blocks of G be Cr and

Cs. Then

det(D(G)) =

{

0, if rs ≡ 0 (mod 2);
(−2)a

(

r⌈ s2⌉⌊
s
2⌋+ s⌈ r2⌉⌊

r
2⌋+

a
2rs

)

, otherwise,

where a = n+ 1− r − s.
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