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Abstract

Let Cm and Sm denote a cycle and a star on m edges, respectively. We
investigate the decomposition of the complete graphs, Kn, into cycles and
stars on the same number of edges. We give an algorithm that determines
values of n, for a given value of m, where Kn is {Cm, Sm}-decomposable.
We show that the obvious necessary condition is sufficient for such decom-
positions to exist for different values of m.
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1. Introduction

In [6], Alspach conjectured that a multiple length cycle each of length at most
n, decomposition of λKn exists, if 2|λ(n − 1) and the number of edges λKn is
equal the total number of edges of all the cycles. Multiple articles discussed
special cases of the conjecture. Results of Alspach, Gavlas, and S̆anja solve the
conjecture when all the cycles have the same length and λ = 1 in [7, 9]. In [8],
Bryant, Horsley, Maenhaut and Smith extended the results for a general λ ≥ 1.

A graph-pair of order t consists of two non-isomorphic graphs G and H on t
non-isolated vertices for which G ∪H ∼= Kt. In [3], Abueida and Daven showed
that there exists a {Km,K1,m}-decomposition of λKn for all m ≥ 3, λ ≥ 1, and
n ≡ 0, 1(mod m). For graph-pairs of order 4 and 5, G and H, Abueida, Daven,
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and Roblee (in [2, 4]) determined the values of n for which there exists {G,H}-
decomposition of λKn for λ ≥ 1. In [5], Abueida and O’Neil showed that there
exists a {Cm,K1,m−1}-decomposition of λKn for m = 3, 4, and 5 and n ≥ m+1.

Recently, Shyu [10] gave decompositions of the complete graph Kn into p
copies of Pk+1 and q copies of Sk+1 when n ≥ 4k, k(p + q) =

(

n
2

)

, and either

k is even and p ≥ k
2 , or k is odd and p ≥ k. In [11], Shyu investigated the

decomposition of Kn into paths and cycles. He obtained necessary and sufficient
condition for decomposingKn into p copies of P5 and q copies of C4 for all possible
values of p ≥ 0 and q ≥ 0.

A graph G is said to be {Cm, Sm}-decomposable if there exists a decompo-
sition of G into edge-disjoint subgraphs where each subgraph is isomorphic to
either Cm or Sm and where there is at least one copy of Cm and at least one copy
of Sm. In this paper we give an algorithm that determines values of n, for a given
value of m, where Kn is {Cm, Sm}-decomposable. We also show that the obvious
necessary edge condition is sufficient for some small values of m. Namely, the
main results are:

Theorem 1. For integers m,n with 4 ≤ m < n and m even, if n ≡ 0, 1(mod 2m)
and n ≥ 4m, then Kn is {Cm, Sm}-decomposable.

Theorem 2. For all n ≥ 4m such that m|n(n − 1)/2, if m is even or n is odd,

then Kn is {Cm, Sm}-decomposable.

2. Preliminaries

As per convention, Kn denotes the complete graph on n vertices. In addition,
Cm denotes a cycle of length m, and Sm denotes a star with m edges, that is,
Sm

∼= K1,m. Cycles are denoted by (v0, v1, . . . , vn), where {vivi+1 : 0 ≤ i <
n} ∪ {vnv0} are the edges of the cycle. Stars are denoted by (v0; v1, . . . , vn),
where {v0vi : 1 ≤ i ≤ n} are the edges of the star. The set of positive integers is
denoted by N.

If a graph G is the union of edge-disjoint subgraphs H1 and H2, then we
write G = H1⊕H2. If G = H1⊕H2⊕· · ·⊕Hk, where H1

∼= H2
∼= · · · ∼= Hk

∼= H,
we write G = kH; the expression 0H denotes the null graph.

To facilitate discussion, let ∆m denote the set of all {Cm, Sm}-decomposable
graphs and let ∆∗

m denote the set of all Cm-decomposable graphs, Sm-decomposa-
ble graphs, and {Cm, Sm}-decomposable graphs. We note that there may be
multiple decompositions for a given G ∈ ∆m.

To avoid verbosity, let it be understood that all variables introduced are pos-
itive integers, unless otherwise specified. In addition, for the sake of consistency,
we shall reserve the variables m and n to discuss the {Cm, Sm}-decomposition
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of Kn. As such, it should be understood that 3 ≤ m < n whenever Kn ∈ ∆m.
Clearly, for Kn to be {Cm, Sm}-decomposable, the number of edges in Kn must
be a multiple of m. As such, given any m ≥ 3, if we want to find all n such that
Kn ∈ ∆m, we only need to consider all n such that m|n(n−1)/2. In this section,
we develop an algorithm to determine {n : m|n(n− 1)/2} for any given m.

We begin with two elementary facts.

Proposition 3. If gcd(a, b) = 1 and b ≥ 2, then there exists a unique integer

0 ≤ x < b such that ax ≡ 1(mod b).

Proposition 4. If gcd(a, b) = 1 and c|ab, then c = gcd(c, a) · gcd(c, b).

Proof. Suppose a =
∏A

i=1 p
αi

i and b =
∏B

i=1 q
βi

i are prime factorizations with
positive exponents. Then gcd(a, b) = 1 implies that {pi : 1 ≤ i ≤ A} ∩ {qi : 1 ≤
i ≤ B} = ∅. Since c|ab, we have c =

∏A
i=1 p

γi
i ·

∏B
i=1 q

δi
i , where 0 ≤ γi ≤ αi and

0 ≤ δi ≤ βi. Evidently, gcd(c, a) =
∏A

i=1 p
γi
i and gcd(c, b) =

∏B
i=1 q

δi
i .

It is trivial that m|n(n− 1)/2 if and only if 2m|n(n− 1). We can strengthen this
condition by imposing an additional restriction: If m is odd, then m|n(n− 1)/2
if and only if m|n(n − 1). We now introduce a new variable M for convenience.
The rest of the results in this section should be applied with M = 2m if m is
even, and M = m if m is odd.

Proposition 5. For n ≥ 0 and M ≥ 1, let 0 ≤ r < M be the unique integer such

that n ≡ r (mod M). Then M |n(n− 1) if and only if M |r(r − 1).

Proof. Simply note that n(n− 1) ≡ r(r − 1)(mod M).

For the remainder of this section, the variables n, M , and r are defined as in the
above proposition.

Theorem 6. Let AM = {a < M : a|M, gcd(a,M/a) = 1}. For every a ∈ AM ,

let xa denote the unique integer in {0, 1, 2, . . . ,M/a − 1} such that axa ≡ 1
(mod M/a). Then M |n(n− 1) if and only if r ∈ RM = {axa : a ∈ AM} ∪ {0}.

Proof. By Proposition 5, it suffices to show thatM |r(r−1) if and only if r ∈ RM .
We first demonstrate sufficiency: if r = 0, then the conclusion is trivial; otherwise,
since a|axa and M/a|axa−1, it follows that M |axa(axa−1). Conversely, if r = 0,
then we are done; otherwise, let d = gcd(M, r) and d′ = gcd(M, r − 1). Since
gcd(r, r − 1) = 1, we have M = dd′ by Proposition 4. Thus, gcd(d,M/d) =
gcd(d, d′) = 1, so d ∈ AM . Now, r = dx for some x, which implies that r − 1 =
dx − 1, hence d′|dx − 1. But dx = r < M = dd′ gives x < d′, in which case
Proposition 3 guarantees the uniqueness of x, that is, x = xd.

Proposition 7. For integers r and M , we have 1 < r < M and M |r(r − 1) if

and only if 1 < M + 1− r < M and M |(M + 1− r)(M − r).
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Proof. Some elementary algebraic manipulation shows that the inequalities 1 <
r < M and 1 < M + 1 − r < M are equivalent. Furthermore, r(r − 1) ≡
(−r)(1− r) ≡ (M − r)(M + 1− r)(mod M).

Now, we use an example to illustrate how Theorem 6 is applied. Then, we show
how Proposition 7 simplifies half the work.

Example 8. We shall find all n such that 30|n(n− 1)/2. Since m = 30 is even,
we use M = 2m = 60. By Proposition 5, it suffices to examine all integers less
than 60. For a number of this magnitude, a brute-force approach is tedious but
not difficult; however, Theorem 6 provides us with a more sophisticated method.

We begin by writing 60 = 22 ·3 ·5. Then A60 = {1, 22, 3, 5, 22 ·3, 22 ·5, 3 ·5} =
{1, 3, 4, 5, 12, 15, 20}. Next, we find xa for each a ∈ A60. For M = 60, inspection
is probably the quickest way to solve for these inverses. For larger numbers, the
Euclidean algorithm with back substitution is needed.

1·1 ≡ 1(mod 60), 3·7 ≡ 1(mod 20), 4·4 ≡ 1(mod 12), 12·3 ≡ 1(mod 5), 15·
3 ≡ 1(mod 4), 20 · 2 ≡ 1(mod 3).

Thus, R60 = {0, 1, 16, 21, 25, 36, 40, 45}, so 30|n(n − 1)/2 if and only if n ≡
0, 1, 16, 21, 25, 36, 40, 45(mod 60).

Now, we shall see how this process of obtaining R60 can be simplified. It
is trivial that 0, 1 ∈ RM for any M . For the remaining r ∈ R60, observe that
16 + 45 = 21 + 40 = 25 + 36 = 61 = 60 + 1. But this should come as no surprise
because it simply follows from Proposition 7. This means that, aside from 0 and
1, we only need the “first half” of R60 in order to obtain the “second half” by
means of subtraction, instead of the less efficient Euclidean algorithm.

The next two corollaries follow immediately from Theorem 6.

Corollary 9. If m = 2k for some k, then m|n(n− 1)/2 if and only if

n ≡ 0, 1(mod 2m).

Proof. Sincem is even, we useM = 2m. It is not difficult to see that A2m = {1},
so R2m = {0, 1}.

Corollary 10. If m is odd and has exactly one prime factor, then m|n(n− 1)/2
if and only if n ≡ 0, 1(mod m).

Proof. Since m is odd, we use M = m. Again, Am = {1}, so Rm = {0, 1}.

3. Decompositions

The first two lemmas follow from observing that Ka+1 = Ka ⊕ Sa, and more
generally, Ka+b = Ka ⊕Kb ⊕Ka,b.
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Lemma 11. If Kkm ∈ ∆∗

m with at least one copy of Cm, then Kkm+1 ∈ ∆m.

Proof. Observe that Kkm+1 = Kkm ⊕ Skm = Kkm ⊕ kSm.

Lemma 12. If Kam,Kb ∈ ∆∗

m and there exist {Cm, Sm}-decompositions of Kam,

and of Kb, with at least one copy of Cm, then Kam+b ∈ ∆m.

Proof. Observe that Kam+b = Kam ⊕Kb⊕Kam,b = Kam ⊕Kb⊕ bSam = Kam ⊕
Kb ⊕ abSm.

We make use of the following well-known theory in obtaining our results:

Theorem 13 [7, 9]. For any positive integers m and n, there exists a Cm-

decomposition of Kn if and only if n is odd, 3≤m ≤ n, and n(n−1)≡0(mod 2m).

Theorem 14 [13]. Ka is Sm-decomposable if and only if a ≥ 2m and m|a(a −
1)/2.

Corollary 15 [13]. K2m is Sm-decomposable.

Theorem 16 [12]. For any positive integers a, b and m, there exists a C2m-

decomposition of Ka,b if and only if a and b are even, m ≥ 2, a ≥ m, b ≥ m, and

ab ≡ 0(mod 2m).

Corollary 17 [12]. For any positive even integer m, K2m,2m is Cm-decomposable.

The next two results provide conditions for {Cm, Sm}-decompositions when m is
odd.

Theorem 18. For integers m,n with 3≤ m < n and m odd, if n≡0, 1(mod m),
then Kn ∈ ∆m.

Proof. By Theorem 13, Km is Cm-decomposable. Consequently, Km+1 ∈ ∆m

by Lemma 11. Next, Lemma 12 implies that K2m = Km+m ∈ ∆m. We complete
the proof by applying Lemma 12 inductively.

Combining Theorem 18 and Corollary 10, we obtain

Theorem 19. Suppose 3 ≤ m < n are integers with m ∈ {pk : p is an odd prime,

k ∈ N}. Then Kn ∈ ∆m if and only if n ≡ 0, 1(mod m).

Lemma 20. If Ka ∈ ∆m, then Ka+2km ∈ ∆m for all k ≥ 0.

Proof. This is trivial when k = 0. Since K2m is Sm-decomposable by Corol-
lary 15, andKa+2km ∈ ∆m by the induction hypothesis, it follows from Lemma 12
that Ka+2(k+1)m = K2m+(a+2km) ∈ ∆m.

The next theorem is analogous to Theorem 18 in the case that m is even.
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Theorem 21. For integers m,n with 4≤ m< n and m even, if n ≡ 0, 1(mod 2m)
and n ≥ 4m, then Kn ∈ ∆m.

Proof. By Lemma 20, it suffices to show that K4m,K4m+1 ∈ ∆m. Corollary 15
and Corollary 17 imply that K4m = K2m+2m = K2m ⊕K2m ⊕K2m,2m ∈ ∆m. By
Lemma 11, K4m+1 ∈ ∆m.

Now, we shall temporarily remove the restriction of parity and examine the condi-
tions for {Cm, Sm}-decompositions when m is arbitrary. The following discussion
refers to Proposition 7 with M = 2m. Recall that M = 2m is in fact a weaker
condition than M = m in the case that m is odd. Thus, the following results
apply to all m, regardless of parity.

Since r and 2m+ 1− r have different parities, r 6= 2m+ 1− r. Moreover, if
r ≤ m, then 2m+1−r ≥ m+1, and if r ≥ m+1, then 2m+1−r ≤ m. Thus, every
r ∈ {2, . . . ,m} has exactly one complement 2m + 1 − r ∈ {m + 1, . . . , 2m − 1},
and vice versa.

The significance of this idea of complements is best illustrated through an
example. Recall from Example 8 that 16 and 45 are complements of each other
for M = 60. It turns out that if K60k+16 ∈ ∆30, then K60k+45 ∈ ∆30, and if
K60k+45 ∈ ∆30, then K60(k+1)+16 ∈ ∆30. In general, for any 1 < r ≤ m, if
K2km+r ∈ ∆m, then K2km+(2m+1−r) ∈ ∆m, and if K2km+(2m+1−r) ∈ ∆m, then
K2(k+1)m+r ∈ ∆m. Evidently, if we can find an appropriate “starting point”,
then this chain of implications gives us an infinite list of values of n such that
Kn ∈ ∆m. We now prove this.

Lemma 22. If a is odd, then Ka is S(a−1)/2-decomposable.

Proof. Let V (Ka) = {vi : 0 ≤ i < a}. Then
{(vi; vi+1(mod a), . . . , vi+(a−1)/2(mod a)) : 0 ≤ i < a}

is one possible set of stars into which Ka can be decomposed.

An example should make the previous lemma abundantly clear. For instance,
K5 can be decomposed into 5 copies of S2: (v0; v1, v2), (v1; v2, v3), (v2; v3, v4),
(v3; v4, v0), and (v4; v0, v1).

Lemma 23. If a is odd and Kbm−(a−1)/2 ∈ ∆∗

m with at least one cycle Cm, then

Kbm+(a+1)/2 ∈ ∆m.

Proof. Notice that Kbm+(a+1)/2 = Kbm−(a−1)/2 ⊕Ka ⊕Kbm−(a−1)/2,a. For each
v ∈ V (Ka), we have b copies of Sm: The first b − 1 copies are the edges from
v to (b − 1)m vertices in Kbm−(a−1)/2; the last copy is obtained by combining
an S(a−1)/2 (from Lemma 22) with the remaining m − (a − 1)/2 edges from v
to Kbm−(a−1)/2. This gives an Sm-decomposition of Ka ⊕ Kbm−(a−1)/2,a, which
completes the proof.
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The next corollary proves our above claim that if K60k+16 ∈ ∆30, then K60k+45 ∈
∆30.

Corollary 24. If 1 < r ≤ m and K2km+r ∈ ∆m, then K2km+(2m+1−r) ∈ ∆m.

Proof. Apply Lemma 23 with a = 2m+ 1− 2r and b = 2k + 1.

Naturally, the next corollary proves our second claim that if K60k+45 ∈ ∆30, then
K60(k+1)+16 ∈ ∆30.

Corollary 25. If 1 < r ≤ m and K2km+(2m+1−r) ∈ ∆m, then K2(k+1)m+r ∈ ∆m.

Proof. Apply Lemma 23 with a = 2r − 1 and b = 2k + 2.

Theorem 26. For all n ≥ 4m such that m|n(n− 1)/2, if m is even or n is odd,

then Kn ∈ ∆m.

Proof. First, Kn = K2m ⊕ Kn−2m ⊕ K2m,n−2m. By Corollary 15, K2m is Sm-
decomposable.

If n is even (and also is m from the hypothesis of the theorem), then so is
n− 2m. Since n ≥ 4m gives n− 2m ≥ 2m, and m divides

(n− 2m)(n− 2m− 1)

2
=

n(n− 1)

2
− 2mn+ 2m2 +m,

it follows that Kn−2m is Sm-decomposable by Theorem 14. Now, it is clear that
m is even, m ≤ 2m, m ≤ n − 2m and m|2m(n − 2m), so K2m,n−2m is Cm-
decomposable by Theorem 16. Thus, Kn ∈ ∆m.

It remains to show that Kn ∈ ∆m when n is odd (for any parity of m), in
which case n − 2m is odd. We have shown that m|(n − 2m)(n − 2m − 1)/2, so
Kn−2m is Cm-decomposable by Theorem 13. Furthermore, K2m,n−2m is clearly
Sm-decomposable, so Kn ∈ ∆m.

If we relax the hypothesis so that n > 5m, then the restrictions on the parities
of m and of n can be removed.

Corollary 27. If n > 5m and m|n(n− 1)/2, then Kn ∈ ∆m.

Proof. We only have to examine the case in which m is odd and n is even. Note
that Kn = Km ⊕Km ⊕Kn−2m ⊕Km,n−2m ⊕Km,n−2m ⊕Km,m. By Theorem 13,
each copy of Km is Cm-decomposable. Similar to arguments in the proof of
Theorem 26, as n − 2m > 3m > 2m, and m|n − 2m)(n − 2m − 1)/2, we use
Theorem 14 to show that Kn−2m is Sm-decomposable. Finally, it is clear that
Km,n−2m and Km,m are Sm-decomposable. Hence, Kn ∈ ∆m.
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Note that this corollary also implies that for every m, the list of all n such that
Kn ∈ ∆m is “almost” complete in the sense that there are only finitely many n
for which the {Cm, Sm}-decomposability of Kn is unknown.

We now present results on {Cm, Sm}-decompositions for specific values of m.
Henceforth, we adopt the labeling convention V (Kn) = {v0, v1, v2, . . . , vn−1}.

Theorem 28. Kn ∈ ∆4 if and only if n ≡ 0, 1(mod 8).

Proof. One possible {C4, S4}-decomposition of K8 is: (v0, v1, v2, v3), (v4, v5, v6,
v7), (v1, v5, v2, v6), (v0; v2, v4, v5, v6), (v3; v1, v5, v6, v7), (v4; v1, v2, v3, v6), (v7; v0,
v1, v2, v5). By Lemma 11, K9 ∈ ∆4. Theorem 21 completes the proof of suffi-
ciency. Necessity follows from Corollary 9.

From the above proof, it is not difficult to see that in general, for any m = 2k, if
we can find a {Cm, Sm}-decomposition of K2m, then it immediately follows that
Kn ∈ ∆m if and only if n ≡ 0, 1(mod 2m).

We digress momentarily to present a result whose proof is similar in nature
to a later lemma.

Proposition 29. If m is even and G is an Sm-decomposable graph in which every

vertex is of odd degree, then the center of every star (into which G decomposes)
is a leaf of another star (into which G decomposes).

Proposition 30. If m and n are even and Kn ∈ ∆m, then the number of stars

Sm is at least three.

Proof. Write Kn = GC ⊕ GS , where GC is Cm-decomposable and GS is Sm-
decomposable. Since the degree of any vertex in Kn is odd, and that of any
vertex in GC is even, every vertex in GS must be of odd degree. Consequently,
the center of each star must be a leaf of at least one other star. It is then easy to
see that three is the minimum number of stars required to satisfy this condition.

Proposition 31. If K2m ∈ ∆m and the number of Sm is three, then there is only

one way to obtain the three stars (every other way is isomorphic to this).

Proof. Note that each vertex can be the center of at most one star. Without
loss of generality, let (v0; v1, v2, . . . , vm) be the first star. Now, v0 must be the
leaf of another star. Again, without any loss of generality, let vm+1 be the center
of the second star. We shall momentarily skip the other leaves of the second
star. There must be a third star centered at a leaf of the first star, say v1. The
star centered at v1 must have a leaf at vm+1. At this point, we have added the
following edges: v0v1, . . . , v0vm, vm+1v0, v1vm+1. Now, there are m − 1 vertices,
namely v2, . . . , vm, with degree 1, and m − 2 vertices, namely vm+2, . . . , v2m−1,
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with degree 0. After completing the second star, we must have exactly m − 1
vertices with even degree, so that each of these vertices can be a leaf for the third
star. But there is only one way to do this: use m/2 vertices in {v2, . . . , vm} and
m/2− 1 vertices in {vm+2, . . . , v2m−1} as leaves for the second star.

Before we present a necessary and sufficient condition for n so that Kn ∈ ∆6, we
first need the following lemma.

Lemma 32. K9 /∈ ∆6.

Proof. SupposeK9 ∈ ∆6. SinceK9 has 36 edges, it follows that the total number
of copies of C6’s and S6’s is 6.

Case 1. One copy of C6 and five copies of S6. Let (v0, v1, v2, v3, v4, v5) be
the 6-cycle. Since there are five copies of S6, some vk with 0 ≤ k ≤ 5 is not the
center of a star. Since vk must have degree 8 and the cycle contributes 2 to the
degree, vk must be a leaf for 6 other stars, contradicting that there are five copies
of S6.

Case 2. Two copies of C6 and four copies of S6. Let (v0, v1, v2, v3, v4, v5) be
the first 6-cycle. Since there are four copies of S6, some vk with 0 ≤ k ≤ 5 is the
center of a star. Without loss of generality, assume k = 0. Then the star centered
at v0 is (v0; v2, v3, v4, v6, v7, v8). Now, if v1 is not the center of a star, then either
(a) it is a leaf for 6 other stars, contradicting that there are four copies of S6,
or (b) it is a leaf for 4 other stars, as well as a vertex in the second cycle, again
contradicting that there are four copies of S6, so there must be a star centered at
v1. There is another star centered at v5 for identical reasons. A slightly modified
version of the above argument shows that there are stars centered at v6, v7, and
v8 as well. This gives us 6 stars, contradicting that there are four copies of S6.

Case 3. Five copies of C6 and one copy of S6. Let (v0; v1, v2, v3, v4, v5, v6) be
the S6. Then v1, . . . , v6 all have odd degree 1, so it is impossible to add cycles to
obtain a complete graph.

Case 4. Four copies of C6 and two copies of S6. Let (v0; v1, v2, v3, v4, v5, v6)
be the first S6. Note that each star switches the parity of the degree of exactly 6
vertices (the parity of the degree of the center does not change as it increases by
6, the parity of the degree of each leaf changes as it increases by 1). In order to
decompose the rest of the graph into cycles, we need the degree of every vertex
to be even after adding the second star. Without loss of generality, we can only
have one such star: (v7; v1, v2, v3, v4, v5, v6). Now, the cycle through v0 must
contain the sequence (. . . , v7, v0, v8, . . .), and the cycle through v7 must contain
the sequence (. . . , v0, v7, v8, . . .), rendering it impossible to have a 6-cycle through
v0 or v7, which is a contradiction.
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Case 5. Three copies of each C6 and S6. Let (v0; v1, v2, v3, v4, v5, v6) be the
first S6. We shall skip the second star momentarily. After adding the third star,
every vertex must have even degree, which means that exactly 6 vertices must
have odd degree after adding the second star. But there are exactly 6 vertices
with odd degree after adding the first star. The only way to preserve the number
of vertices with odd degree after adding the second star is to switch the parities of
3 odd vertices and 3 even vertices. The even vertices are v0, v7, and v8. Without
loss of generality, let the odd vertices be v1, v2, and v3. To switch the parities
of these 6 vertices, the second star must be centered at v4, v5, or v6, but it is
impossible to add another edge from any of these vertices to v0.

Theorem 33. Kn ∈ ∆6 if and only if n ≡ 0, 1, 4, 9(mod 12) and n ≥ 12.

Proof. If Kn ∈ ∆6, then 6|n(n − 1)/2. Equivalently, 12|n(n − 1). Now, A12 =
{1, 22, 3} = {1, 3, 4} and 1·1 ≡ 1(mod 12), 3·3 ≡ 1(mod 4), 4·1 ≡1(mod 3).

Thus, R12 = {0, 1, 4, 9}, so n ≡ 0, 1, 4, 9(mod 12). By Lemma 32, n 6= 9, so
n ≥ 12.

Conversely, by Lemma 20, we only have to show that K12,K13,K16,K21

∈ ∆6.

One possible {C6, S6}-decomposition of K12 is: (v0; v1, v2, v3, v4, v5, v6), (v11;
v0, v1, v2, v6, v9, v10), (v5; v1, v2, v6, v7, v8, v11), (v1, v2, v3, v4, v5, v9), (v1, v3, v5, v10,
v6, v8), (v0, v7, v1, v10, v2, v8), (v1, v4, v2, v7, v3, v6), (v0, v9, v2, v6, v4, v10), (v3, v8,
v4, v7, v6, v9), (v3, v10, v7, v9, v8, v11), (v4, v9, v10, v8, v7, v11).

By Lemma 11, K13 ∈ ∆6.

To see that K16 ∈ ∆6, start with the above decomposition of K12, add the cy-
cle (v0, v13, v1, v14, v2, v12), and add the following stars: (vi; v6, v7, v8, v9, v10, v11)
for 12 ≤ i ≤ 15, and (v12; v1, v3, v4, v5, v13, v15), (v13; v2, v3, v4, v5, v14, v15), (v14; v0,
v3, v4, v5, v12, v15), (v15; v0, v1, v2, v3, v4, v5).

To see that K21 ∈ ∆6, simply apply Corollary 24: start with the above
decomposition of K16 and add the following stars: (vi; v4, v5, v6, v7, v8, v9) and
(vi; v10, v11, v12, v13, v14, v15) for 16 ≤ i ≤ 20, and (v16; v0, v1, v2, v3, v17, v18), (v17;
v0, v1, v2, v3, v18, v19), (v18; v0, v1, v2, v3, v19, v20), (v19; v0, v1, v2, v3, v20, v16), (v20;
v0, v1, v2, v3, v16, v17).

Theorem 34. If n ≡ 0, 1, 5, 16(mod 20) and n ≥ 25, then Kn ∈ ∆10.

Proof. By Lemma 20 and Theorem 21, we only have to show that K25,K36 ∈
∆10.

To see that K25 ∈ ∆10, start with an S10-decomposition of K20 (this is possi-
ble by Corollary 15), add the cycle (v0, v21, v1, v22, v2, v23, v3, v24, v4, v20), and add
the following stars: (vi;v10, v11, v12, v13, v14, v15, v16, v17, v18, v19) for 20≤ i≤ 24,
and (v20;v1, v2, v3, v5, v6, v7, v8, v9, v21, v22), (v21;v2, v3, v4, v5, v6, v7, v8, v9, v22, v23),
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(v22; v3, v4, v0, v5, v6, v7, v8, v9, v23, v24), (v23; v4, v0, v1, v5, v6, v7, v8, v9, v24, v20),
(v24; v0, v1, v2, v5, v6, v7, v8, v9, v20, v21).

To see that K36 ∈ ∆10, simply apply Corollary 24: start with the above de-
composition of K25 and add the following stars: (vi; v5, v6, v7, v8, v9, v10, v11, v12,
v13, v14) and (vi; v15, v16, v17, v18, v19, v20, v21, v22, v23, v24) for 25 ≤ i ≤ 35, and

(v25; v0, v1, v2, v3, v4, v26, v27, v28, v29, v30),

(v26; v0, v1, v2, v3, v4, v27, v28, v29, v30, v31),

(v27; v0, v1, v2, v3, v4, v28, v29, v30, v31, v32),

(v28; v0, v1, v2, v3, v4, v29, v30, v31, v32, v33),

(v29; v0, v1, v2, v3, v4, v30, v31, v32, v33, v34),

(v30; v0, v1, v2, v3, v4, v31, v32, v33, v34, v35),

(v31; v0, v1, v2, v3, v4, v32, v33, v34, v35, v25),

(v32; v0, v1, v2, v3, v4, v33, v34, v35, v25, v26),

(v33; v0, v1, v2, v3, v4, v34, v35, v25, v26, v27),

(v34; v0, v1, v2, v3, v4, v35, v25, v26, v27, v28),

(v35; v0, v1, v2, v3, v4, v25, v26, v27, v28, v29).

Theorem 35. If n ≡ 0, 1, 9, 16(mod 24) and n ≥ 33, then Kn ∈ ∆12.

Proof. By Lemma 20 and Theorem 21, we only have to show that K33,K40 ∈
∆12.

To see that K33 ∈ ∆12, start with an S12-decomposition of K24 (this is possi-
ble by Corollary 15), add the cycles (v0, v25, v1, v26, v2, v27, v3, v28, v4, v29, v5, v24),
(v6, v28, v7, v29, v8, v30, v9, v31, v10, v32, v11, v27), and (v12, v31, v13, v32, v14, v24, v15,
v25, v16, v26, v17, v30), and add the following stars:

(v24; v1, v2, v3, v4, v6, v7, v8, v9, v25, v26, v27, v28),

(v24; v10, v11, v12, v13, v16, v17, v18, v19, v20, v21, v22, v23),

(v25; v2, v3, v4, v5, v6, v7, v8, v9, v26, v27, v28, v29),

(v25; v10, v11, v12, v13, v14, v17, v18, v19, v20, v21, v22, v23),

(v26; v0, v3, v4, v5, v6, v7, v8, v9, v27, v28, v29, v30),

(v26; v10, v11, v12, v13, v14, v15, v18, v19, v20, v21, v22, v23),

(v27; v0, v1, v4, v5, v7, v8, v9, v10, v28, v29, v30, v31),

(v27; v12, v13, v14, v15, v16, v17, v18, v19, v20, v21, v22, v23),
(v28; v0, v1, v2, v5, v8, v9, v10, v11, v29, v30, v31, v32),

(v28; v12, v13, v14, v15, v16, v17, v18, v19, v20, v21, v22, v23),

(v29; v0, v1, v2, v3, v6, v9, v10, v11, v24, v30, v31, v32),

(v29; v12, v13, v14, v15, v16, v17, v18, v19, v20, v21, v22, v23),

(v30; v0, v1, v2, v3, v4, v5, v6, v7, v24, v25, v31, v32),

(v30; v10, v11, v13, v14, v15, v16, v18, v19, v20, v21, v22, v23),

(v31; v0, v1, v2, v3, v4, v5, v6, v7, v24, v25, v26, v32),

(v31; v8, v11, v14, v15, v16, v17, v18, v19, v20, v21, v22, v23),

(v32; v0, v1, v2, v3, v4, v5, v6, v7, v24, v25, v26, v27),
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(v32; v8, v9, v12, v15, v16, v17, v18, v19, v20, v21, v22, v23).
We know that K40 ∈ ∆12 by Corollary 24.

Theorem 36. If n ≡ 0, 1, 8, 21(mod 28) and n ≥ 36, then Kn ∈ ∆14.

Proof. By Lemma 20 and Theorem 21, we only have to show that K36,K49

∈ ∆14.
To see that K36 ∈ ∆14, start with an S14-decomposition of K28 (this is possi-

ble by Corollary 15), add the cycles (v0, v28, v1, v29, v2, v30, v3, v31, v4, v32, v5, v33,
v6, v34), and (v7, v28, v8, v29, v9, v30, v10, v31, v11, v32, v12, v33, v13, v34), with the fol-
lowing stars:

(v28; v2, v3, v4, v5, v6, v9, v10, v11, v12, v13, v29, v30, v31, v35),
(v28; v14, v15, v16, v17, v18, v19, v20, v21, v22, v23, v24, v25, v26, v27),
(v29; v0, v3, v4, v5, v6, v7, v10, v11, v12, v13, v30, v31, v32, v35),
(v29; v14, v15, v16, v17, v18, v19, v20, v21, v22, v23, v24, v25, v26, v27),
(v30; v0, v1, v4, v5, v6, v7, v8, v11, v12, v13, v31, v32, v33, v35),
(v30; v14, v15, v16, v17, v18, v19, v20, v21, v22, v23, v24, v25, v26, v27),
(v31; v0, v1, v2, v5, v6, v7, v8, v9, v12, v13, v32, v33, v34, v35),
(v31; v14, v15, v16, v17, v18, v19, v20, v21, v22, v23, v24, v25, v26, v27),
(v32; v0, v1, v2, v3, v6, v7, v8, v9, v10, v13, v28, v33, v34, v35),
(v32; v14, v15, v16, v17, v18, v19, v20, v21, v22, v23, v24, v25, v26, v27),
(v33; v0, v1, v2, v3, v4, v7, v8, v9, v10, v11, v28, v29, v34, v35),
(v33; v14, v15, v16, v17, v18, v19, v20, v21, v22, v23, v24, v25, v26, v27),
(v34; v1, v2, v3, v4, v5, v8, v9, v10, v11, v12, v28, v29, v30, v35),
(v34; v14, v15, v16, v17, v18, v19, v20, v21, v22, v23, v24, v25, v26, v27),
(v35; v0, v1, v2, v3, v4, v5, v6, v7, v8, v9, v10, v11, v12, v13),
(v35; v14, v15, v16, v17, v18, v19, v20, v21, v22, v23, v24, v25, v26, v27).

We know that K49 ∈ ∆14 by Corollary 24.

We conclude by stating that Lemma 20 and Theorem 21 can be used to obtain
more results for different values of m.
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