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Abstract

In this paper we observe that the minimal signless Laplacian spectral
radius is obtained uniquely at the kite graph PKn−ω,ω among all connected
graphs with n vertices and clique number ω. In addition, we show that the
spectral radius µ of PKm,ω (m ≥ 1) satisfies

1

2
(2ω − 1 +

√

4ω2 − 12ω + 17) ≤ µ ≤ 2ω − 1.

More precisely, for m > 1, µ satisfies the equation

µ− ω − ω − 1

µ− 2ω + 3
= am

√

µ2 − 4µ+
1

t1
,

where am = 1
1−t

2m+3

1

and t1 =
µ−2+

√
(µ−2)2−4

2 . At last the spectral radius

µ(PK∞,ω) of the infinite graph PK∞,ω is also discussed.
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1. Introduction

All graphs considered here are connected and undirected. Let G be a graph with
vertex set V (G) = {v1, v2, . . . , vn} and edge set E(G) = {e1, e2, . . . , em}. The
adjacency matrix of G is the n× n matrix A(G) = [aij ] given by: aij = 1 if vi is
adjacent to vj , and aij = 0 otherwise. The signless Laplacian of G is defined as
Q(G) = D(G) + A(G), where D(G) = diag(d1, d2, . . . , dn) with di = d(vi) being
the degree of vertex vi of G (1 ≤ i ≤ n). The maximum eigenvalue of Q(G) is
called the signless Laplacian spectral radius of G, denote by µ(G).

The signless Laplacian has received more and more attention since 2005.
The papers [5, 6] provide spectral uncertainties with respect to the adjacency
matrix, the Laplacian and signless Laplacian of sets of all graphs with order
not more than 11. It was found that the spectra of signless Laplacian is more
efficient in characterizing graph structure than those of other matrices. An idea
was expressed in [5] that, among matrices associated with a graph, the signless
Laplacian seems to be the most convenient for use in studying graph properties.
Partially it is the reason to make us a believer on the power of signless Laplacian.

Stevanović et al. [9] have considered the problem of characterizing the mini-
mum spectral radius of adjacency matrix among all graphs in Gn,ω, of connected
graphs of order n with a maximum clique size ω. We are interested in the same
problem for the signless Laplacian. In this paper we observe that the minimal
signless Laplacian spectral radius is obtained uniquely at the kite graph PKn−ω,ω

among all connected graphs with n vertices and clique number ω. Recall that the
kite graph PKm,ω is a graph on m+ ω vertices obtained from the path Pm and
the complete graph Kω by adding an edge between an end vertex of Pm and a
vertex of Kω. In addition, we show that the spectral radius µ of PKm,ω (m ≥ 1)
satisfies

1

2
(2ω − 1 +

√

4ω2 − 12ω + 17) ≤ µ ≤ 2ω − 1.

More precisely, for m > 1, µ satisfies the equation

µ− ω − ω − 1

µ− 2ω + 3
= am

√

µ2 − 4µ+
1

t1
,

where am = 1
1−t2m+3

1

and t1 =
µ−2+

√
(µ−2)2−4

2 . At last the spectral radius

µ(PK∞,ω) of the infinite graph PK∞,ω is also discussed.

2. The Extremal Graph in Gn,ω

In this section we will characterize the graph(s) in Gn,ω with minimum signless
Laplacian spectral radius for given ω. We denote by Pn the path of order n. First
we list some lemmas which will be used in the sequel.
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Lemma 1 [3]. Let G(k, l; v) (k, l ≥ 0) be the graph obtained from a non-trivial

connected graph G by attaching pendent paths of lengths k and l at some vertex

v. If k ≥ l ≥ 1, then µ(G(k, l; v)) > µ(G(k + 1, l − 1; v)).

Lemma 2 [4]. Let u v be the adjacent vertices of a connected graph G, both of

degree at least two. Let G(k, l;u, v) (k, l ≥ 0) be the graph obtained from G by

attaching pendent paths of lengths k and l at u and v respectively. If k ≥ l ≥ 1,
then µ(G(k, l;u, v)) > µ(G(k + 1, l − 1;u, v)).

Let T be a tree, v (d(v) ≥ 3) be a given vertex of T at which two distinct
pendant paths P = vu1 · · ·uk and Q = vv1 · · · vl are attached. Then we form a
tree T ′ by removing the paths P and Q and replacing them with a longer path
vu1 · · ·ukv1 · · · vl. We say that T ′ is a π-transform of T .

Lemma 3 [8]. Every tree which is not a path contains a vertex of degree at least

three at which (at least) two pendant paths are attached. In particular, every tree

can be transformed into a path by a sequence of π-transformations.

The following result follows directly from the Perron-Frobenius Theorem.

Lemma 4. Let H be a proper subgraph of a connected graph. Then µ(H) < µ(G).

Theorem 5. If G ∈ Gn,ω, n ≥ ω ≥ 2, then

µ(G) ≥ µ(PKn−ω,ω),

where the equality holds if and only if G is isomorphic to PKn−ω,ω.

Proof. Assume n and ω are two given positive integers such that n ≥ ω ≥ 2.
We have two cases.

Case 1. n = ω. In this case obviously Gn,ω consists of a single graph Kn,
which is also a kite graph PK0,n.

Case 2. n > ω.

Case 2.1. ω = 2. It was known that Pn has the minimal signless Laplacian
spectral radius among all connected graphs of order n (see [1]), so is in Gn,ω.
Note that PKn−2,2 = Pn and the assertion follows immediately.

Case 2.2. ω ≥ 3. Next we will adopt the following methods to transform an
arbitrary graphG ∈ Gn,ω into a kite graph PKn−ω,ω by a series of transformations
in which the signless Laplacian spectral radius decreases at each step.

i) Denote by K the maximum clique in G. Delete from G (in an arbitrary
order) any edge not in K which belongs to a cycle as long as they exist. The
resulting graph is denoted by G1. Note that G1 consists of the clique K with a
number of rooted trees attached to clique vertices. It is known from Lemma 4
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that the spectral radius of G1 has been strictly decreased. In addition, G1 still
belong to Gn,ω.

ii) Let T be a rooted tree of G1, attached to a clique vertex. If T is not a
path, then the tree T can be transformed into a path by applying a sequence of
π-transformations by Lemma 3, in which the signless Laplacian spectral radius
decreases every time by Lemma 4. Finally, we reach a graph G2 in which every
rooted tree, attached to a vertex of K, becomes a path.

iii) Suppose that G2 consist of clique K and the paths Pk1 , Pk2 , . . . , Pks at-
tached to s distinct vertices of K. Without loss of generality, let Pk1 be one of the
longest paths among Pk1 , Pk2 , . . . , Pks . By repeatedly using Lemma 2 to paths
Pk1 and Pki , 2 ≤ i ≤ m, we may decrease the signless Laplacian spectral radius
of G2 until the attached paths Pk2 , . . . , Pkm disappear, and we finally arrive to
the kite graph PKn−ω,ω.

Since the signless Laplacian spectral radius of G has been decreased strictly
at each step, we may conclude that the kite graph PKn−ω,ω has minimum spectral
radius in Gn,ω. From the above process, if a graph G ∈ Gn,ω is not isomorphic to
a kite graph PKn−ω,ω, then µ(PKn−ω,ω) < µ(G). Therefore it follows that the
result holds.

3. Estimating the Value of µ(PKm,ω)

Though the values of µ(PKm,ω), m ≥ 1 are not straightforward to obtain, we
may get a small interval to which the spectral radius of kite graphs µ(PKm,ω)
belongs.

Lemma 6 [2]. Let G be a graph on n vertices with vertex degrees d1, d2, . . . , dn.

Then

min(di + dj) ≤ µ ≤ max(di + dj),

where (i, j) runs over all pairs of adjacent vertices of G. If G is connected,

then equality holds in either of these inequalities if and only if G is regular or

semiregular bipartite.

Since Kω is a proper subgraph of PKm,ω and by Lemma 4, we have µ(PKm,ω) >
µ(Kω) = 2ω − 2. Meantime by Lemma 6 it follows immediately that

(1) 2ω − 2 ≤ µ(PKm,ω) ≤ 2ω − 1.

Recall that the kite graph PKm,ω may be obtained by joining a vertex of a
complete graphKω to an end vertex of a path Pm. Let x be a principal eigenvector
of PKm,ω. By symmetry, all vertices but the vertex to which the path Pm is joined
has the same value, name it x−1, with respect to x. Let x0, x1, x2, . . . xm be the
components of x along the path vertices.
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(a) m = 1. In this case the eigenvalue equation reads

µx−1 = (ω − 2)x−1 + x0 + (ω − 1)x−1,

µx0 = (ω − 1)x−1 + x1 + ωx0,

µx1 = x0 + x1.

These equations, taken together, imply that

(µ2 + (1− 2ω)µ+ 2ω − 4)(µ+ 1− ω) = 0,

whose maximum root is 1
2(2ω− 1+

√
4ω2 − 12ω + 17), which is also the value of

µ(PK1,ω).
(b) m > 1. The eigenvalue equation Q(PKm,ω)x = µx yields the following

recurrence equation

(2) (µ− 2)xi = xi−1 + xi+1,

whose characteristic equation has roots

t1,2 =
µ− 2±

√

(µ− 2)2 − 4

2
, 0 < t2 < 1 < t1.

The eigenvalue equation written for component xm yields the following boundary
condition

(3) (µ− 1)xm = xm−1.

We may use the recurrence equation (2) to formally extend the sequence x0, x1,

. . . , xm with new terms xm+1, xm+2, . . ., where terms xm+1, xm+2 and so on are
imaginary, so that it represents a particular solution of (2). Thus, an imaginary
equation (µ − 2)xm = xm−1 + xm+1, together with the real boundary condition
(3), implies that (µ− 1)xm = xm−1 = (µ− 2)xm − xm+1, namely,

(4) xm = −xm+1.

According to the well known result in combinatorics on solving linear recurrence
equation, there exist constants am and bm such that for i ≥ 0 it holds

(5) xi = amti1 + bmti2.

Applying (5) to (4), we have amtm1 + bmtm2 = xm = −xm+1 = −(amtm+1
1 +

bmtm+1
2 ), and by simplifying it becomes

(6) amtm+1
1 (t1 + 1) = −bmtm+1

2 (t2 + 1).
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Also, note that,

(7) x0 = am + bm.

With appropriate scaling to x, we may suppose that x0 = 1. The values of am
and bm may be obtained by solving (6) and (7),

am =
1

1− t2m+3
1

, bm =
−t2m+3

1

1− t2m+3
1

.

Consider the eigenvalue equation written for component x−1 and x0,

µx−1 = (ω − 2)x−1 + x0 + (ω − 1)x−1,(8)

µx0 = (ω − 1)x−1 + x1 + ωx0.(9)

From (8), (µ − 2ω + 3)x−1 = x0 = 1; and from (9), µ − ω = (ω − 1)x−1 + x1.
Combining these two equations, we have

(10) µ− ω − ω − 1

µ− 2ω + 3
= x1.

Note that x1 = amt1+bmt2 = amt1+(1−am)t2 = am(t1−t2)+t2 = am
√

µ2 − 4µ+
1
t1
. Therefore we come to the following main result.

Theorem 7. The signless Laplacian spectral radius µ of the kite graph PKm,ω

(m ≥ 1) satisfies

1

2
(2ω − 1 +

√

4ω2 − 12ω + 17) ≤ µ < 2ω − 1.

More precisely, for m > 1, µ satisfies the equation

(11) µ− ω − ω − 1

µ− 2ω + 3
= am

√

µ2 − 4µ+
1

t1
,

where am = 1
1−t2m+3

1

and t1 =
µ−2+

√
(µ−2)2−4

2 .

4. Some Remarks on µ(PK∞,ω)

Let PK∞,ω denote the infinite kite graph which consist of a clique Kω, to one
vertex of which an infinite path is attached. Note that PK∞,ω is an infinite
locally finite graph. More details on the spectra of infinite graphs may be found
in [7]. Since PKm,ω is a proper subgraph of PKm+1,ω and so by Lemma 4, the
sequence µ(PKm,ω)m≥0 is strictly increasing and bounded from above by 2ω− 1,
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which implies that limm→∞ µ(PKm,ω) exists with a value between 2ω − 2 and
2ω − 1.

Consider the equation (11). Note that limm→∞ am = 0 since t1 > 1. Then
the equation (11) becomes

µ− 2ω + 2− 2(ω − 1)

µ− 2ω + 3
= −

√

µ2 − 4µ.

Thus we conclude that µ(PK∞,ω) is the maximal root of the equation

x− 2ω + 2− 2(ω − 1)

x− 2ω + 3
= −

√

x2 − 4x.

While solving this cubic equation explicitly is possible, the obtained solution is
cumbersome.
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