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Abstract

A spanning subgraph F of a graph G is called a star-cycle factor of G if
each component of F' is a star or cycle. Let G be a graph and f : V(G) —
{1,2,3,...} be a function. Let W = {v € V(G) : f(v) = 1}. Under this
notation, it was proved by Berge and Las Vergnas that G has a star-cycle
factor F with the property that (i) if a component D of F is a star with
center v, then degp(v) < f(v), and (ii) if a component D of F is a cycle,
then V(D) C W if and only if iso(G — 5) < > g f(z) for all S C V(G),
where iso(G — S) denotes the number of isolated vertices of G — S. They
proved this result by using circulation theory of flows and fractional factors
of graphs. In this paper, we give an elementary and short proof of this
theorem.
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1. INTRODUCTION

We consider simple graphs, which have neither loops nor multiple edges. For
a graph G, let V(G) and E(G) denote the set of vertices and the set of edges
of G, respectively. For a vertex v of G, we denote by degq(v) the degree of v
in G. For a vertex set S of G, let G[S] and G — S denote the subgraph of G
induced by S and V(G) — S, respectively. Let iso(G) and Iso(G) denote the
number of isolated vertices and the set of isolated vertices of G, respectively.
Thus iso(G) = |Iso(G)|.

For a set S of connected graphs, a spanning subgraph F of a graph G is called
an S-factor of G if each component of F' is isomorphic to an element of S. The
cycle of order n is denoted by C),. The complete bipartite graph with bipartition
(A, B) of |A] = m and |B| = n is denote by K;,,. A complete bipartite graph
K1, is called a star, and its vertex of degree n is called the center. For K1,
either of the two vertices can be regarded as its center.

For two sets X and Y, X C Y means that X is a proper subset of Y. Let G
be a graph. For two vertices z and y of GG, we write zy or yx for the edge joining
x and y. For a vertex v of G, we denote by Ng(v) the neighborhood of v. For
a subset S of V(G), we define Ng(S) := U,eg Na(x). A component of G — S
that is not an isolated vertex is called a nontrivial component, which has order
at least two.

Tutte obtained the following criterion for a graph to have a { Ky, C,, : n > 3}-
factor, and its elementary and short proof can be found in [1].

Theorem 1 (Tutte [5], [1] Theorem 7.2). A graph G has a {K3,Cy : n > 3}-
factor if and only if iso(G — S) < |S| for all S C V(G).

On the other hand, a graph G that satisfies iso(G — S) < n|S| for all S C V(G)
has the following property.

Theorem 2 (Las Vergnas [4], Amahashi and Kano [2]). Let n > 2 be an integer.
Then a graph G has a {K1 1, K1 2,..., Ki,}-factorif and only if iso(G—S) < n|S]
for all S C V(G).

Berge and Las Vergnas generalized the above two theorems to the following theo-
rem, and they proved it by using circulation theory of flows and fractional factors
of graphs. In this paper, we give another elementary short proof of this theorem,
where by a star-cycle factor, we mean a {Ky ,, Cp, :n > 1, m > 3}-factor.

Theorem 3 (Berge and Las Vergnas [3]). Let G be a graph and f : V(G) —
{1,2,3,...} be a function, and let W = {v € V(Q) : f(v) = 1}. Then G has a
star-cycle factor F having the property that

(i) if a component of F is a star with center v, then degp(v) < f(v); and



STAR-CYCLE FACTORS OF GRAPHS 195

(ii) if a component of F is a cycle, then its vertex set is included in W,

if and only if

(1) iso(G — S) < ers f(x) forall S CV(G).

It is easy to see that the condition (1) is equivalent to

|1 X| < ZzeNG(X) f(z) for all independent subsets X C V(G),

which is given in [3]. We do not make use of Theorem 2 in our proof of Theorem 3,
but the proof relies on Theorem 1. For completeness, we also include a proof of
Theorem 1 which follows the same line of argument as our proof of Theorem 3,
and is almost as short as the proof given in [1].

2. PROOF OF THEOREM 3

In order to prove Theorem 3, we need the following lemma.

Lemma 4 (Generalized Marriage Theorem, [1] Theorem 2.10). Let G be a bi-
partite graph with bipartition (A,B), and let f : A — {1,2,3...}. If |B] =
2 vea f(2), and

INa(X)[ =)

then G has a star factor F such that degp(a) = f(a) for alla € A, and f(b) =1
for allb e B.

ex f(x) for all X C A,

Proof of Theorem 3. We refer to a star-cycle factor satisfying conditions (i)
and (ii) in Theorem 3 as an SC-factor with respect to f. We first prove the neces-
sity. Assume that G has an SC-factor F' with components D1, Do, ..., D,,. Let
0 # S C V(G). By inspection, we see that iso(D;—SNV (D)) < 3=, cgqv(py f(2)
for each 7, and hence

iso(G — 5)

IN

iso(F = 8) =" iiso(D; = SNV (Dy))
< Zzl erSmV(Di) f(z) = ZmGS f(z).

We shall prove the sufficiency of Theorem 3 by induction on erv(G) f(x). We

may assume that G is connected since otherwise by applying the induction hy-

pothesis to each component, we can obtain the desired SC-factor of G.
Obviously, >, cy () f(2) = |G| since f(z) > 1 for all z € V(G).
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If 3 ev(e) f(@) = |G|, then f(z) =1 for all z € V(G). Thus the condition (1)
becomes

iso(G —S) < |S| for all S C V(G).

By Theorem 1, G has a {Kj 1,C,, : n > 3}-factor, which is the desired SC-factor
of G. So we may assume that v () f(x) = [G[+1. Then there exists a vertex
w € V(G) such that f(w) > 2.

Let us define the number 8 by

8= min{ZreX fz) —iso(G—X) : 0#X C V(G)} .
Thus 8 > 0 by (1), and it follows from the definition of 3 that
(2) iso(G—Y) < ery f@)—p  forall P#Y CV(Q).

Take a maximal subset S of V(G) such that

(3) > f@) —iso(G - §) = B.

zeSs

Case 1. 8> 1.
Define f*: V(G) — {1,2,3,...} by

s | fle) =1 if x =w;
f(@) = { f(z) otherwise.

Let ) # X C V(G). Thus

iso(G-X)<y flo)-B<Yy  flo)-1<y (@)

By induction, G has an SC-factor F* with respect to f*. If w is contained in a
star of F*, then F™* is also an SC-factor of G with respect to f. Assume that w
is contained in a cycle D of F*. Note that f(w) > 2. If |V(D)] is even, D has
a {K1}-factor. If |[V(D)| is odd, then D has a {K; 1, K 2}-factor consisting of
one copy of Kj o, and (|[V(D)| — 3)/2 copies of K1 such that w is the center of
K1 . Therefore, G has the desired SC-factor.

Case 2. 5 =0.
We start with a claim.

Claim 2.1 FEvery nontrivial component of G — S has an SC-factor with respect
to f.
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Proof. Let D be a nontrivial component of G—S, and let ) # X C V(D). Then,
by (2),

iso(G — S) +iso(D — X) = iso(G—SUX)SZzequ
_ Zzes f(x)—i—zxexf(a?)-

Thus iso(D — X) < Y . f(x) by (3), which implies that D has an SC-factor
by induction.

We construct a bipartite graph B with bipartition (S, so(G — S)) in which
two vertices z € S and y € Iso(G — S) are adjacent if and only if x and y are
adjacent in G. 0O

f(z)

Claim 2.2 For every Y C S, we have [INg(Y')| > >,y f(x), and |[Np(S)| =
>ves f(@).

Proof. Since G is connected, Np(S) = Iso(G — S), and hence |[Np(S)| =
> zes f(x) by (3) and 8 = 0. Let 0 #£Y C S. We may assume that Ng(Y) C
Iso(G—S). Then Iso(G—S)—Np(Y) is a set of isolated vertices of G— (S —Y).
Thus, it follows from (2) and (3) that

S @) =S f@) = S @) = iso(G—(S—Y))

€S €Y zeS-Y

iso(G—9S) — |Ng(Y |—Zf — [Ng(Y)|.

zesS

A\

Hence, Claim 2.2 holds. 0

By Claim 2.2, B has a star-factor described as in Lemma 4. By combining this
star-factor and SC-factors of nontrivial components of G — S, guaranteed by
Claim 2.1, we obtain the desired SC-factor of G. [

Proof of Theorem 1. The proof of the necessity is the same as that in Theo-
rem 3. We prove the sufficiency by induction on |E(G)|. We may assume that
|[V(G)| > 3, G is connected, and G is not a star. Let

B =min{|X| —iso(G—-X) : 0 #X C V(G)}.

If 8 = 0, then we can argue exactly as in Case 2 of the proof of Theorem 3.
Thus, we may assume S > 1. Since G is not a star, G has an edge e = ab
such that Iso(G —e) = 0. If iso(G — e — X) < |X]| for all X C V(G), then we
obtain the desired factor by applying the induction hypothesis to G — e. Thus,
we may assume that there exists S C V(G) such that iso(G —e—.S) > |S|. Since
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Iso(G —e) = (), we have S # ). Hence, iso(G —S) < |S| = < |S| — 1, which
implies |S| < iso(G — S —e) <iso(G —S)+2 < |S| + 1, and thus

Iso(G —e—S)=1so(G— S)U{a,b}, iso(G—S)=1|S]—1 and g=1.

Define a bipartite graph B with bipartition (S, Iso(G — S)) as in the proof of
Theorem 3. Arguing as in Claim 2.2, we see that |[Ng(Y)| > |Y| for all Y C S.
Since Iso(G — ¢e) = 0, it follows that Ng(a)NS # 0, Ng(b)NS # 0 and G[{a, b}]
is a component of G — S. Take u; € Ng(a) NS and ug € Ng(b) N S. By
Lemma 4, B — w; has a {K ;}-factor F; for each i. Let H be the graph defined
by V(H) = SUIso(G — S) and E(H) = Fy U F,. Hence, one of the components
of H is a path joining w; and uz, and each of the other components is either
a cycle or isomorphic to Ki ;. Consequently, adding the edges uia, ab, bus to
H, we get a {K11,Cy, : n > 3}-factor of G[S U Iso(G — S) U {a,b}] (note that
this argument works even if uqy = ug, in particular, it works in the case where
|S| = 1 as well). Combining this factor with {K; 1,Cy : n > 3}-factors of the
components of G — S — Iso(G — S) — {a, b}, where existence follows from the
induction hypothesis as in Claim 2.1, we obtain a {K; 1, C), : n > 3}-factor of G.

|
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