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Abstract

A buttoning of a tree that has vertices v1, v2, . . . , vn is a closed walk that
starts at v1 and travels along the shortest path in the tree to v2, and then
along the shortest path to v3, and so forth, finishing with the shortest path
from vn to v1. Inspired by a problem about buttoning a shirt inefficiently,
we determine the maximum length of buttonings of trees.
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1. Introduction

At the retirement meeting of Jenny Piggott as director of the mathematics ed-
ucation project NRICH, Bernard Murphy posed the following problem (para-
phrased).

Problem 1. My shirt has eight buttons in a vertical line with a spacing of one
unit between each adjacent pair. Usually I button them from top to bottom,
so that my hands move a distance of seven units. Suppose I button them in a
different order; what is the maximum number of units my hands may travel?

In this partly expository note we address the more general problem of identifying,
for each finite tree T with graph metric d, the maximum value of the sum

(1) d(v1, v2) + d(v2, v3) + · · ·+ d(vn−1, vn) + d(vn, v1)

1The author thanks Jozef Širáň for helpful suggestions.
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among all lists v1, v2, . . . , vn of the vertices of T . Problem 1 is a particular case of
this more general problem when T is the linear graph of order 8. (To be precise,
we must remove the final term d(vn, v1) from (1) to recover Problem 1, but we
shall see that this is an insignificant complication.) Our problem is itself a special
case of the maximum travelling salesman problem. To see this, observe that the
sum (1) is the length of a Hamilton cycle in the weighted complete graph that
has vertices v1, v2, . . . , vn and has, for each distinct pair i and j, an edge of weight
d(vi, vj) between vi and vj .

All trees throughout the paper are finite. Further, T will always denote a tree
with graph metric d. We denote by VT the vertex set of T . Let [u, v] denote the
unique shortest path from one vertex u to another vertex v in T . A buttoning of
T is a closed walk in T consisting of n paths [v1, v2], [v2, v3], . . . , [vn−1, vn], [vn, v1],
where v1, v2, . . . , vn are the vertices of T . The length of this buttoning is the sum
(1). A centroid of T is a vertex v such that the sum

∑

u∈VT
d(v, u) is minimized.

Each tree has either one centroid or two adjacent centroids. Given a centroid v

we define
Φ(T ) = 2

∑

u∈VT

d(v, u).

The theory of centroids is covered briefly in [1, Section 1] and [2, Section 3]. The
authors of [1] emphasise the importance of centroids in distance calculations, and
our work supports this assertion. We can now state our main theorem.

Theorem 2. Given a tree T with vertices v1, v2, . . . , vn we have

(2) 2n− 2 ≤ d(v1, v2) + d(v2, v3) + · · ·+ d(vn−1, vn) + d(vn, v1) ≤ Φ(T ),

and the upper and lower bounds are each attained by the lengths of certain but-

tonings of T .

The lower inequality in (2) has been proven already, in [4, Theorem 1] (including
proof that the lower bound is attainable). There are results of a similar nature
to Theorem 2 in [3].

A maximal buttoning of a tree T is a buttoning of maximum length Φ(T ).
When T is the linear tree of order 8, the two middlemost vertices of T are both
centroids, and one can check that Φ(T ) = 32. We show in Lemma 5 that you can
choose d(vn, v1) = 1 in a maximal buttoning of such a tree, and so the solution
to Problem 1 is 31.

The quantity Φ(T ) is closely related to the Wiener distance W (T ), which is
given by W (T ) =

∑

a,b∈VT
d(a, b). It is known (see, for example, [2]) that, among

trees of order n, W (T ) is minimized when T is the star with n vertices and W (T )
is maximized when T is the linear graph with n vertices. The same is true of
Φ(T ), and we state this as a theorem (which is easily proven). Let ⌊x⌋ denote
the integer part of a real number x.
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Theorem 3. If T is a tree of order n then

(3) 2n− 2 ≤ Φ(T ) ≤
⌊

1

2
n2

⌋

.

Furthermore, the lower bound is attained when T is a star and the upper bound

is attained when T is a linear graph.

2. Proof of Theorem 2

Theorem 2 concerns the maximum and minimum lengths of buttonings of a tree
T of order n. Let us briefly summarize the proof from [4, Theorem 1] of the lower
bound in (2). Because a buttoning is a closed walk that visits every vertex, each
edge must be traversed at least twice, and this proves that each buttoning has
length at least 2n−2. To see that this lower bound can be attained, between any
two adjacent vertices in T introduce a new edge. By ‘opening out’ the resulting
graph to form a cycle it is straightforward to construct a buttoning of T of length
2n− 2. The remainder of this section concerns the upper bound of (2).

Lemma 4. Let [v1, v2], [v2, v3], . . . , [vn−1, vn], [vn, v1] be a buttoning of a tree T .

Then

d(v1, v2) + d(v2, v3) + · · ·+ d(vn−1, vn) + d(vn, v1) ≤ Φ(T ),

with equality if and only if each centroid of T is contained in every path [vi, vi+1]
(including [vn, v1]).

Proof. Let v be a centroid of T and let vn+1 = v1. Then the triangle inequality
gives

∑n

i=1
d(vi, vi+1) ≤

∑n

i=1

(

d(vi, v) + d(v, vi+1)
)

= Φ(T ).

Equality is attained in this inequality if and only if d(vi, vi+1) = d(vi, v) +
d(v, vi+1) for i = 1, 2, . . . , n. This occurs if and only if v is contained in each
path [vi, vi+1].

We must now prove that the upper bound Φ(T ) in (2) can always be attained.
We deal separately with trees that contain two centroids and trees that contain
just one centroid. It is an old result of C. Jordan (see [2, Theorem 1]) that a tree
with two centroids u and v has even order 2k, and there is an edge connecting
u and v which, once removed, leaves two disconnected subtrees U and V each of
order k, where u is a leaf of U and v is a leaf of V . We use this notation in the
next lemma.

Lemma 5. Suppose that a tree T has two centroids u and v and correspond-

ing subtrees U = {u1, u2, . . . , uk} and V = {v1, v2, . . . , vk}. Then the buttoning

[u1, v1], [v1, u2], [u2, v2], . . . , [vk, u1] of T is a maximal buttoning, and all maximal

buttonings arise in this fashion.
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Proof. By Lemma 4, each buttoning [u1, v1], [v1, u2], [u2, v2], . . . , [vk, u1] is a max-
imal buttoning because the paths [ui, vi] and [vi, ui+1] all contain u and v. Fur-
thermore, in any buttoning [w1, w2], [w2, w3], . . . , [w2k−1, w2k], [w2k, w1] not of this
form there must be two consecutive vertices wi and wi+1 that both lie in U , in
which case [wi, wi+1] does not contain v, and so, by Lemma 4, the buttoning is
not maximal.

All the maximal buttonings of T are described explicitly in Lemma 5, so we have
the following corollary.

Corollary 6. A tree T that has two centroids and is of order 2k has 2(k!)2

maximal buttonings.

Next we turn to trees with a single centroid. A preliminary lemma is needed.

Lemma 7. Let X1, X2, . . . , Xm, where m ≥ 2, be a collection of disjoint finite sets

such that
∑

i 6=j |Xi| ≥ |Xj | for each j. Then we can list the elements v1, v2, . . . , vn
of X1 ∪X2 ∪ · · · ∪Xm in such a way that no two consecutive terms vi and vi+1

both lie in the same set Xj.

Sketch of proof. Remove the elements of X1 ∪X2 ∪ · · · ∪Xm one by one and
place them in a sequence v1, v2, . . . , vn, each time choosing an element vi from a
set Xj of largest current size (excluding the set Xk from which vi−1 was chosen).
When m = 2, this strategy clearly gives a suitable list. When m > 2, the strategy
preserves the inequality

∑

i 6=j |Xi| ≥ |Xj | (until only two elements, in two distinct
sets Xj , remain), and hence eventually exhausts the sets Xj .

If a tree T has a single centroid v, then removing v from T , and removing
all edges connected to v, leaves a number of disconnected subtrees of T , say
X1, X2, . . . , Xm. Again, it was proven by C. Jordan (see [2, Theorem 1]) that
no one of these subtrees has order larger than the sum of the orders of all the
others; in other words

∑

i 6=j |Xi| ≥ |Xj | for each j. We use this notation in the
next lemma.

Lemma 8. Suppose that a tree T has a single centroid v0, and removing v0 and

its edges from T leaves disconnected subtrees X1, X2, . . . , Xm. Then we can label

the vertices of T \ {v0} as v1, v2, . . . , vn in such a way that no pair vi and vi+1

both lie in the same set Xj, and [v0, v1], [v1, v2], . . . , [vn−1, vn], [vn, v0] is a maximal

buttoning of T .

Proof. Lemma 7 shows that it is possible to choose the vertices v1, v2, . . . , vn in
the described fashion, and, because each path [vi, vi+1] passes through v0, we see
from Lemma 4 that the resulting buttoning is maximal.
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In fact, Lemma 4 shows that all maximal buttonings of T are of the form de-
scribed in Lemma 8, up to cyclic permutations of the paths [vi, vi+1] in the but-
toning [v0, v1], [v1, v2], . . . , [vn−1, vn], [vn, v0]. In contrast to Corollary 6, however,
there does not appear to be a simple general formula for the number of maximal
buttonings.

We proved in Lemma 4 that the length of a buttoning of a tree T is less
than or equal to Φ(T ), and Lemmas 5 and 8 show that this bound can always be
attained. This completes the proof of Theorem 2.

3. Concluding Remarks

The concept of a buttoning extends to all finite connected graphs, and we finish
with brief remarks about extremal buttoning lengths in this more general context.

From (2), a buttoning of a tree of order n has length at least 2n − 2. For
more general connected graphs of order n, however, the lower bound for buttoning
lengths is n, rather than 2n−2. This is because every buttoning has n constituent
paths each of length at least 1, which implies that the total length is at least n.
Furthermore, the lower bound of length n is achieved by any buttoning of the
complete graph of order n.

On the other hand, by (3), a buttoning of a tree of order n has length at
most

⌊

1

2
n2

⌋

, and this is also an upper bound for the length of a buttoning of a
graph of order n. This is because the length of a buttoning of a graph is less than
or equal to the length of the same buttoning on a spanning tree of the graph.
It follows that among connected graphs of order n, the linear graph has the
largest maximal buttoning length. In particular, the maximal buttoning length
in Problem 1 remains 31 even when we rearrange the eight buttons to form a
more general connected graph.
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