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Abstract

A contribution is made to the classification of lattice-like total perfect
codes in integer lattices Λn via pairs (G,Φ) formed by abelian groups G
and homomorphisms Φ : Zn → G. A conjecture is posed that the cited
contribution covers all possible cases. A related conjecture on the unfinished
work on open problems on lattice-like perfect dominating sets in Λn with
induced components that are parallel paths of length > 1 is posed as well.
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1. Introduction: Lattice Perfect Dominating Sets

Motivation for this work is the processing of elements in a supercomputer that
communicates through a network with the topology of the Cartesian product of
cycles. It is an aim to place the Input/Output devices into the network in such
a way that the communication of all elements in the network is optimized and
each element is at distance at most t = 1 from exactly one I/O device. This
is related to the well-known conjecture of Golomb and Welch [8] that a perfect
t-error correcting Lee code of length larger than 1 over a large alphabet exists
only for t = 1. See also [1, 11] for additional notions, results and references.

http://dx.doi.org/10.7151/dmgt.1715
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Let Γ = (V,E) be a graph. Let S ⊂ V . The subgraph of Γ induced by S is
denoted by [S]. The set S is a perfect dominating set (PDS) of Γ if each vertex
w ∈ V \ S has a unique neighbor v ∈ S [19]. A PDS of Γ is a total perfect

code (TPC) (resp. a perfect code or efficient dominating set (EDS)) of Γ if the
components of its induced graph are copies of K2 [4, 12], (resp. K1 [2, 5, 13]).
For 0 < n ∈ Z, let Λn be the graph whose vertex set is the integer lattice Z

n,
with an edge between any two vertices whenever their Euclidean distance is 1.
A TPC in Λn is a particular case of a distance perfect Lee code [7, 11], namely
a DPL(n, 4). The following result is an extension of one of [19] for n-cubes to
integer-lattice graphs Λn and is proved in more generality in [1].

Theorem 1. Given a PDS S in Λn, the components of [S] in Λn are Cartesian

products of connected subgraphs of Λ1.

The components of [S] in the statement above will be called components of S.
If t ≥ 1 and Γ = (V,E) is a graph, then Araujo, Dejter and Horak [1] define a
t-perfect distance-dominating set (t-PDDS) in Γ as a subset S ⊂ V such that,
for each v ∈ V , there is a unique component Cv of [S], so that for the distance
d(v, Cv) from v to Cv it is d(v, Cv) ≤ t, and there is in Cv a unique vertex w with
d(v, w) = d(v, Cv). Moreover, Araujo, Dejter and Horak conjecture in [1] that
if H is a finite path or a Cartesian product of two finite paths, then a t-PDDS
whose induced components are isomorphic to H exists in Λn if and only if: either
(i) t = 1, n ≥ 2, and H = Pk, k ≥ 1; or (ii) t ≥ 1, n = 2, and H = Pk, k ≥ 1;
or (iii) t ≥ 1, n = 2, and H = P2�Pk, k ≥ 2; or (iv) t = 1, n = 3r + 2, r ≥ 0,
and H = P2�P2; or (v) t = 2, n = 3, and H = P2. Noting that a PDS in Λn is
a 1-PDDS in Γ = Λn, we have the following related conjecture, settled below as
Theorem 6.

Conjecture 2. Let Pr be a path of length r − 1. Then, a PDS in Λn whose

components are isomorphic to Pr exists if and only if n ≥ 1 and r ≥ 1.

As in [1], all PDS s S in Λn treated here are obtained by means of an algebraic
construction that makes them lattice-like, meaning that there exists a lattice L
(namely a subgroup of (Zn,+) = component-wise additive group on Z

n) such
that for any two components Θ0 = (V0, E0) and Θ1 = (V1, E1) induced by S in
Λn, there exists z ∈ L with Θ1 = Θ0 + z = (V ′

0 , E
′
0), where V ′

0 = V0 + z = {w ∈
Z
n; ∃ v ∈ V0, w = v+ z}, and uv ∈ E0 if and only if (u+ z)(v+ z) ∈ E′

0, where we
also have that for any z ∈ L, Θi + z is a component of S, both for i = 0 and 1.
Different variations of the construction can be found throughout the literature,
see e.g. [3, 9, 10, 14, 15, 16, 17, 18].

So, following for example the steps of Molnár [14] for a classification of all
lattice-like perfect Lee codes in Λn (0 < n ∈ Z) via abelian groups G and homo-
morphisms Φ : Zn → G (see an implementation of a construction due initially to
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Stein [17] in Theorem 3 and Corollary 4 below) we proceed likewise in the case
of lattice-like TPC s in Λn and present a collection of pairs (G,Φ) that produce
such TPC s. Conjecture 12 below claims that such a collection covers all cases
of lattice-like TPC s. In order to pose such claim, we stream down to a list of
cases in Theorem 8 and encode the resulting information via concepts defined
in successive subsections of Section 2: quadruple stacks; Υ-sequences and their
breadths; a further convenient shorthand notation and finally a generalization of
that notation. Conjecture 7 refers to the unfinished work of open problems on
lattice-like PDS s in Λn for which the induced components are parallel paths of
length > 1.

The above mentioned algebraic construction consists of: (a) letting L be a
distinguished lattice in (Zn,+) generated by elements u1, . . . , un ∈ Z

n, so that
L = {α1u1 + · · · + αnun;αi ∈ Z, i = 1, . . . , n}; (b) letting T ⊆ Z

n be a set
containing one element from each coset of Zn/L, so that {T + u;u ∈ L} is a
partition of Zn into parts of size |Zn/L|, with all induced subgraphs [T + u] of
T + u in Λn pairwise isomorphic, where u ∈ L.

For a given lattice L, we can partition the vertex set of Λn into parts such
that the corresponding induced subgraphs have different shapes depending on
the choice of T . For example, set L = {α1(5, 1) + α2(2, 2);αi ∈ Z, i = 1, 2} in
Λ2. Then, (Z

2,+)/L = Z8 and the graph [T ] might be a path of length 7 or the
union of a 6-cycle and a path of length 3, as shown in Figure 1.

Figure 1. Example with L = {α1(5, 1) + α2(2, 2);αi ∈ Z, i = 1, 2}.

If no confusion arises, n-tuples representing elements of Zn will be written without
external parentheses or commas, and 00 · · · 0 = O, 10 · · · 0 = e1, 010 · · · 0 =
e2, . . . , 00 · · · 1 = en. A PDS in Λn whose components are all isomorphic to a
fixed finite graph Θ is denoted by PDS[Θ]. Our main tool can be stated as
follows.

Theorem 3 [1, 11]. Let D = (V,E) be a subgraph of Λn. Then there is a lattice-

like tiling of Λn by copies of D if and only if there is an abelian group G and a

homomorphism Φ : Zn → G so that the restriction of Φ to V is a bijection.

Corollary 4. In the setting of Theorem 3, if n = 2m, (0 ≤ m ∈ Z), and

u ∈ U2m+2 ⊂ Z2m+2 , then there is one homomorphism Φ = Φu for which
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Φu(e1) = u which is unique up to permutations of e2, . . . , en and transpositions

(−e2 e2), . . . , (−en en). Moreover, all TPC s obtained from the resulting homo-

morphisms Φu are pairwise equivalent.

Let Θ0 = (V,E′) be a subgraph of Λn and let z ∈ Z
n. Then Θ0 + z denotes a

graph Θ1 = (V ′, E′′), where V ′ = V + z = {v + z; v ∈ V } and uv ∈ E′ ⇐⇒
(u + z)(v + z) ∈ E′′. A PDS can be constructed via Corollary 4 if and only if
it is lattice-like. Moreover, every lattice-like PDS S in Λn is periodic, that is to
say that there are integers p1, . . . , pn such that v ∈ S implies v ± piei ∈ S, for
all i = 1, . . . , n. However, not every periodic PDS in Λn is lattice-like, as can be
seen in Sections 6–7 of [1].

1.1. Lattice PLC(n, 1) codes

Every PDS[K1] in Λn can be considered as a perfect 1-error correcting Lee code
PLC(n, 1) [1]. The existence of such codes has been proved independently by
several authors. Kárteszi asked whether there exists a PLC(3, 1). Feller, for
n = 3, and then Korchmáros, and Golomb and Welch [8] showed that there is a
PLC(n, 1) for every n ≥ 2. The following stronger theorem has been proved by
Molnár [14].

Theorem 5. The number of lattice-like PLC(n, 1) codes equals the number of

abelian groups of order 2n+ 1.

[1] illustrates the method of Corollary 4 in the setting of Theorem 5 by showing
that each abelian group of order 2n+1 generates a PLC(n, 1). Since in this case
Θ is an isolated vertex, the graph Θ∗ is of order 2n + 1. Let Θ∗

0 = (V,E) be a
copy of Θ∗ such that V = {±ei ; i = 1, . . . , n} ∪ {O}. Let G be an abelian group
of order 2n + 1. Choose a set K = {g1, . . . , gn} formed by n distinct elements
of G such that K contains exactly one element from each pair g, g−1. Since no
element of G is of order 2, the restriction Φ : V → G of the homomorphism
Φ : Z

n → G given by Φ((a1, . . . , an)) = Φ(e1)
a1 ◦ · · · ◦ Φ(en)

an = ga11 ◦ · · · ◦
gann to V is a bijection. Thus, each abelian group of order 2n + 1 generates a
PLC(n, 1). In order to give some examples that serve as models for what follows,
let x1, x2, . . . , xn be the coordinate directions of Zn ⊂ R

n. As said above, the
set V is formed by O, e1,−e1, . . . , en,−en ∈ Z

n. The middle sections of V in
the planes x1x2;x1x3; . . . ;x1xn, (that is, respectively with x3 = · · · = xn = 0;
x2 = x4 = · · · = xn = 0; . . . ;x2 = x3 = · · · = xn−1 = 0), can be taken with
its vertices associated bijectively via Φ to the elements in the nonempty boxes
strictly between the columns n

G and B of the following table, for n = 2, 3, 4.
In this table, elements of a direct sum G are expressed as ordered tuples

(without parentheses), and the central horizontal row in each box (as said above)
contains the values Φ(−e1), Φ(O), Φ(e1). Also, each such box having header x1xj
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has on its central vertical row the values Θ(−ej), Θ(O), Θ(ej). To follow up a
notation of [14], notice that Φ is determined by the values Φ(ei), for i = 1, . . . , n,
expressed as the column B = (Φ(e1), . . . ,Φ(en))

t = Υt in the table, where t
stands for transpose. For example in the last case of the table: Φ(e1) = 1, 0 ,
Φ(e2) = 0, 1, Φ(e3) = 1, 1 and Φ(e4) = 1, 2. In general, Ker(Φ) ⊆ Z

n is a
sublattice of Zn as well as a linear 1-perfect code in Λn. In the table, Ker(Φ)
is determined in each case by the n × n-matrix M written on the right, where:
(a) the rows correspond to e1, e2, . . . , en; (b) Υ = Bt times each column is null
in G; and (c) the columns of M constitute a basis of Ker(Φ). Thus, the inner
product, in each G exemplified in the table, of the column B times each column
of M is null in G. Furthermore, the columns of M are linearly independent.
The elements of the diagonal of each M on the rows indicated by the elements
Φ(e1), etc., of a basis of G are shown in boldface, meaning that boldface is used
just when the only nonzero element of a column is on the diagonal, for further
reference.

n
G x1x2 x1x3 x1x4 B M

n=2 3

Z5

4 0
2

1 1
2

5
0

3
1

n=3 5 4 1 7 5 4

Z7

6 0
2

1 6 0
3

1 2
3

0
0

1
0

0
1

n=4 7 6 5
1
2

9
0

7
1

6
0

5
0

Z9

8 0
2

1 8 0
3

1 8 0
4

1 3
4

0
0

0
0

1
0

0
1

n=4 0,2 2,2 2,1
1,0
0,1

3
0

0
3

2
2

2
1

Z3⊕Z3

2,0 0,0
0,1

1,0 2,0 0,0
1,1

1,0 2,0 0,0
1,2

1,0 1,1
1,2

0
0

0
0

1
0

0
1

1.2. PDS s in Λn with components Pr

The following is a result of [1] that can be established via Corollary 4.

Theorem 6. A PDS in Λn whose components are all isomorphic to Pr exists for

every n ≥ 1 and r ≥ 2. Thus, Conjecture 2 is true.

Before concentrating in Section 2 on the characterization of lattice-like TPC s,
we give an idea and examples of the proof of Theorem 6. The statement follows
from Corollary 4 with G = Z2nr−r+2. Now, V ⊆ Z

n is composed by the vertices
O, e1, 2e1, . . . , (r − 1)e1 and their 2nr − 2r + 2 neighbors, (namely −e1, re1 and
±ei, (e1 ± ei), . . . , ((r − 1)e1 ± ei, for i = 2, . . . , n). Initial examples of this case,
for r = 3, are as follows, in a framework as in Subsection 1.1.

We could add here column vectors B = Br
n as in Subsection 1.1, namely, in

our present case, B3
1 = (1), B3

2 = (1, 4)t, B3
3 = (1, 4, 7)t and B3

4 = (1, 4, 7, 10)t,
and matrices M , obtained from the identity r × r matrices Ir by replacing the
first rows respectively by (5), (11, 7), (17, 13, 10) and (23, 19, 16, 13), respectively
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for n = 1, 2, 3, 4. In general, Br
n = (1, 1 + r, 1 + 2r, . . . , 1 + (n − 1)r)t and M is

obtained from Ir by replacing its first row by the row vector (m = 2nr − r +
2,m− r − 1,m− 2r − 1, . . . ,m− nr − 1).

n=1
Z5

4 0 1 2 3

n=2 7 8 9

Z11

10 0
4

1
5

2
6

3

n=3 13 14 15 10 11 12

Z17

16 0
4

1
5

2
6

3 16 0
7

1
8

2
9

3

n=4 19 20 21 16 17 18 13 14 15

Z23

22 0
4

1
5

2
6

3 22 0
7

1
8

2
9

3 22 0
10

1
11

2
12

3

Each display of a middle section of V parallel to one of the planes x1xj , (j =
2, . . . , n), as exemplified, contains just one row formed by r + 2 contiguous el-
ements, and two rows formed by r contiguous elements of Z2nr−r+2. However,
r divides r + 2 if and only if r ∈ {1, 2}. Assuming r > 2, it can be seen that
r does not divide r + 2 and the smallest value of 2nr − r + 2 divisible by a
prime square happens for n = 4 and r = 14; (however, if r = 2 and n = 2,
then 2nr − r + 2 = 8 is divisible by 22). The elements of the resulting group
Z2nr−r+2 = Z2·14·4−4+2 = Z100 can be distributed into the entries of the corre-
sponding V by means of Υ = Bt = (1, 15, 29, 43), with M obtained from Ir by
replacing its first row by (100, 85, 71, 57). Trying to fit the elements of a non-
cyclic abelian group G of order 100 into V would mean having 16 successive
elements occupying corresponding entries along x1 starting say one position pre-
vious to O, so that a cyclic summand of such a G should have order larger that
r + 2 = 16. However, any divisor 20, 25 and 50, of 100, cannot be the order of
such a summand, because we would be left with either 20−16 = 4 or 25−16 = 9
or 50− 16− 14− 14 = 6 elements that do not fit into 14 successive entries along
x1 that start from some ei. Thus, in this case, only Z100 works out.

Conjecture 7. In the setting of Theorem 6 for r > 2, the group G of Corollary
4 is necessarily G = Z2nr−r+2. Moreover, there exists just one Φ for each such

G.

This conjecture would complete the classification of PDS[Pr] s in Λn, for r > 2.

2. The Case of Lattice-like Total Perfect Codes

As expressed above, in the rest of this paper we contribute to the characterization
of lattice-like TPC s. We start by stating and proving the following result.

Theorem 8. In the setting of Theorem 6 for r = 2, there exists at least one

group homomorphism Φ : Zn → G, for each abelian group G decomposable as a
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direct sum of factors of even order, but not of the form (⊕m
i=1Z2)⊕Ψ(G), where

Ψ(G) is maximum factor of G of order twice an odd number. On the other hand,

there is no such a Φ whose domain is of the form G = (⊕m
i=1Z2)⊕Ψ(G).

The proof of Theorem 8 is postponed to Subsection 2.4, so first we provide some
examples that further illustrate the tables above and the convenience of encoding
notation that will be assumed in Subsections 2.3, 2.5. and 2.7. Let r = 2. Then,
V ⊂ Z

n is formed by the vertices O and e1 and their 4n − 2 neighbors in Λn,
(namely −e1, 2e1, ±e2, (e1 ± e2), . . . ,±en, (e1 ± en)).

2.1. Subcase n = 2m, (0 ≤ m ∈ Z)

Given a group homomorphism Φ : Zn → G as in the statement of Theorem 8,
the middle sections of V in the planes x1x2, x1x3, . . . , x1xr, . . . , x1xn now, can
be taken with its vertices associated bijectively, via Φ, to the following elements
of G, for n = 2m and m = 0, 1, 2:

n=1
Z4

3 0 1 2

n=2 5 6

Z8

7 0
3

1
4

2

n=2 1,3 1,0

Z2⊕Z4

0,3 0,0
1,1

0,1
1,2

0,2

n=4 d e b c 9 a

Z16

f 0
3

1
4

2 f 0
5

1
6

2 f 0
7

1
8

2

n=4 1,7 1,0 0,5 0,6 1,5 1,6

Z2⊕Z8

0,7 0,0
1,1

0,1
1,2

0,2 0,7 0,0
0,3

0,1
0,4

0,2 0,7 0,0
1,3

0,1
1,4

0,2

n=4 3,3 3,0 2,3 2,0 1,3 1,0

Z4⊕Z4

0,3 0,0
1,1

0,1
1,2

0,2 3,3 0,0
2,1

0,1
2,2

0,2 0,3 0,0
3,1

0,1
3,2

0,2

n=4 1,0,3 1,0,0 0,1,3 0,1,0 1,1,3 1,1,0

(Z2)2⊕Z4

0,0,3 0,0,0
1,0,1

0,0,1
1,0,2

0,0,2 0,0,3 0,0,0
0,1,1

0,0,1
0,1,2

0,0,2 0,0,3 0,0,0
1,1,1

0,0,1
1,1,2

0,0,2

where lowercase hexadecimal notation makes a = 10, etc., the images via Φ of
{O, e1} are in boldface and the central left-to-right horizontal (resp. the first, sec-
ond, . . ., last pair of central top-to-bottom vertical) disposition of elements of G in
each case corresponds to their assignation from the vertices −e1, O, e1, 2e1, (resp.
−e2, O, e2 and e1−e2, e1, e1+e2; −e3, O, e3 and e1−e3, e1, e1+e3; . . . ;−en, O, en
and e1 − en, e1, e1 + en) of Λn via Φ. Again, to follow up a notation of [14] (as
in the right side of the table in the illustration following the statement of Theo-
rem 5) observe that columns B = Υt (with Φ(e1) in boldface), and matrices M
associated to the four cases of n = 4 above are as follows.

1
3

16
0

13
1

11
0

9
0

0,1
1,1

2
0

0
8

5
0

1
1

0,1
1,1

4
0

0
4

1
2

2
1

0,0,1
1,0,1

2
0

0
2

0
0

1
1

5
7

0
0

0
0

1
0

0
1

0,3
1,3

0
0

0
0

1
0

1
1

2,1
3,1

0
0

0
0

1
0

0
1

0,1,1
1,1,1

0
0

0
0

4
0

1
1
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For these cases of n = 2m and cyclic G, given a unit u of G = Z2m+2 , namely
an element of the multiplicative group U2m+2 ⊂ Z2m+2 (realized by an odd in-
teger), there exists only one homomorphism Φ for which Φ(e1) = u, (because if
Φ(e1) /∈ U2r+2 , then the least positive integer realizing Φ(e1) divides 2r+2 = 4n,

so that Φ(e1)
2 would appear twice in the image of Φ, which then cannot re-

strict to a bijection, as required, thus providing a contradiction). The follow-
ing corollary follows from the fact that, in these cases, the images of the pairs
{e1,−e1}, . . . , {en,−en} via any of these homomorphisms Φ cover all the pairs
{u,−u} ⊆ U2r+2 and thus yield pairwise equivalent lattice-like tilings.

Corollary 9. In the setting of Theorem 8, if n = 2m, (0 ≤ m ∈ Z), and

u ∈ U2m+2 ⊂ Z2m+2 , then there is one homomorphism Φ = Φu for which

Φu(e1) = u which is unique up to permutations of e2, . . . , en and transpositions

(e2 − e2), . . . , (en − en). Moreover, all TPC s obtained from the resulting homo-

morphisms Φu by means of Corollary 4 are pairwise equivalent.

However, we will see after Remark 10 (for n = 23 = 8 and specific non-cyclic
groups G of order 4n = 32) that there are homomorphisms Φ for cases of n = 2m

in which the direction x1 along which {O, e1} lies is associated to different non-
equivalent summands of G = ⊕s

i=1Zci . This is also the case for n 6= 2m, (starting
with n = 24).

2.2. Subcase n 6= 2m, (0 ≤ m ∈ Z)

We will see now some cases of n 6= 2m, for 0 ≤ m ∈ Z, starting with the
following three examples, disposed as those above, with corresponding vectors B
and matrices M shown to the right:

n=3 9 a 7 8 1 12 9 7

Z12

b 0
3

1
4

2 b 0
5

1
6

2 3
5

0
0

1
0

0
1

n=3 b 2 7 a 1 3 0 1

Z12

9 0
1

3
4

6 9 0
5

3
8

6 3
5

3
0

4
0

2
1

n=3 a 1 8 b 2 3 0 4

Z12

9 0
2

3
5

6 9 0
4

3
7

6 3
4

2
0

4
0

0
1

where the order of x1, . . . , xn differs now, so that e1, . . . , en have their images via
Φ as shown in the column B for the second and third cases, for which x1 and x2
appear permuted in order for us to obtain all possible patterns. Likewise, for any
n > 1 and abelian group G of order 4n, we can partition G \Φ({−e1, 0, e1, 2e1})
into quadruples {−di,−di + Φ(e1), di, di + Φ(e1)}, where 2 ≤ i ≤ n. Then, a
group homomorphism Φ as above is determined by setting Φ(ei) = di, for every
1 ≤ i ≤ n. What follows simplifies encoding this.
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2.3. Quadruple stacks

The table above represents three different homomorphisms Φ : Z3 → Z12, with
their data further representable by three quadruples each, namely ((Φ(−e1),
Φ(O), Φ(e1), Φ(2e1)) and ((Φ(−ej),Φ(e1 − ej), Φ(ej), Φ(e1 + ej)), for j = 2, 3.
These quadruples can be arranged as on upper-left, upper-center-left and upper-
center-right of the following table, for the three homomorphisms, as stacks of
three quadruples each:

b
9

0
a

1
3

2
4

b
9

2
0

1
3

4
6

a
9

1
0

2
3

5
6

18
16

3
1

2
4

7
9

7 8 5 6 7 a 5 8 8 b 4 7 15
14

0
19

5
6

10
11

− − − − − − − − − − − −
12
−

17
−

8
−

13
−

19
17

0
18

1
3

2
4

19
17

4
2

1
3

6
8

19
18

4
3

1
2

6
7

17
16

2
1

3
4

8
9

15
13

16
14

5
7

6
8

15
13

0
18

5
7

10
12

15
12

0
17

5
8

10
13

15
14

0
19

5
6

10
11

11
−

12
−

9
−

10
−

11
−

16
−

9
−

14
−

11
−

16
−

9
−

14
−

13
−

18
−

7
−

12
−

where, indicated in boldface, are the values of G corresponding to the elements
of an associated lattice-like TPC S. On all the bottom and the upper-right parts
of the table, there are five similar quadruple stacks, for n = 5 and G = Z20.

Pairs of images via Φ of adjacent vertices in G along coordinate direction x1
in each such a quadruple stack, except for the quadruple Φ({−e1, 0, e1, 2e1}), only
appear as the first two and as the last two entries in each participant quadruple.

Matrices whose columns generate Ker(Φ) are given for the quadruple stacks
for n = 5 and G = Z20 at the bottom and upper-right of the table above are:

1 20 17 15 13 11 1 5 2 0 3 1 1 5 3 0 3 1 3 5 2 0 4 3 2 5 1 0 4 2
3
5

0
0

1
0

0
1

0
0

0
0

3
5

0 1 0 0 0
3 34 2 2

2
5

0 1 0 0 0
3 34 2 2

4
5

0 1 0 0 0
1 24 2 2

4
5

0 1 0 0 0
2 34 2 2

7
9

0
0

0
0

0
0

1
0

0
1

7
9

0 0 0 1 0
0 0 0 0 1

8
9

0 0 0 1 0
0 0 0 0 1

6
7

0 0 0 1 0
0 0 0 0 1

6
8

0 0 0 1 0
0 0 0 0 1

This table contains not only matrices whose columns generate Ker(Φ) but also
the vectors B.

2.4. Proof of Theorem 8

Proof. Clearly, the data of a group homomorphism Φ as in the statement of The-
orem 8 can always be arranged as a quadruple stack. This implies that all factors
of Gmust be of even order. However, if the excluded case of G = (⊕m

i=1Z2)⊕Ψ(G)
were to yield such a Φ, then at most by taking a change of coordinates in G pro-
duced by replacing Φ by its composition with a group automorphism γ of G allows
to assume that each quadruple in the stack has terms with fixed coordinates in
the first m factors. (For example, if G = Z2 ⊕ Z4 with Φ given by Φ(e1) = 1, 1
and Φ(e2) = 0, 1 , then composing Φ with the automorphism γ of G given by
γ(0, 1) = 1, 1 and γ(1, 0) = 1, 0 allows to replace Φ by Φ′ = γΦ that effectively
has each quadruple in the corresponding stack with fixed coordinate in the first
factor, since in this case m = 1.) This leaves a selection for such fixed coordinates
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of twice an odd number, which is not a multiple of 4, as needed for the existence
of Φ (or Φ′). Thus, G 6= (⊕m

i=1Z2)⊕Ψ(G), as in the statement. It is clear that if
this inequality holds, then a quadruple stack as required always takes place.

The simplest example of the excluded situation is that of G = Z2⊕Z6, for n = 3.
Each element i, j of Z2 ⊕ Z6 will be written ij (without the separating comma).
In G, there are 3 cyclic orbits of order larger than 4, namely order 6. These orbits
are generated by 01, 11 and 12, or their opposites, so only these may be taken
as images of e1 (or −e1) via Φ. For example, take H = Φ({−e1, O, e1, 2e1}) =
{05, 00, 01, 02}. Then Φ(e2) (or Φ(e3)) can only be selected as an element ij ∈ G
of order at least 3 not in H and such that ij + 01 is neither in H. Such an
element is any of these: 11, 12, 14, 15. Filling the eight elements of V in the plane
x1x2 with images via Φ by assuming Φ(e2) is one of these four elements excludes
either {03, 04, 13, 14} or {03, 04, 10, 11}, neither of which can fill the images Φ(e3),
Φ(e1 + e3), Φ(−e3) and Φ(e1 − e3) via the group epimorphism Φ.

2.5. Υ-sequences

To continue, we return to the two tables of Subsection 2.3: note that there are no
more cases for n = 3, 5, than those presented there. We say that the x1-increment

Υ1 = Φ(e1) of each resulting lattice-like TPC is the element immediately to the
right of 0 (the null element of G) in each quadruple stack, namely for n = 3:
Υ1 = 1,3,3; for n = 5: Υ1 = 1,5,5,5,5. In general, we specify an xj-increment
Υj = Φ(ej), for each j = 1, . . . , n, as the third entry of a corresponding tabulated
quadruple, and we do this for all such quadruples, preserving boldface just for 0
and Υ1. To concentrate and encode the introduced notion of a quadruple stack,
from now on, the row vectors Υ = Bt of xj-increments Υj will be rearranged
as Υ-sequences of the form (Υj , . . . ,Υn,Υ1,Υ2, . . . ,Υj−1), starting each at the
“smallest” Υj and, after Υn is written, continuing with Υ1, where: (a) positions
Υ1 appear as boldface entries; (b) the subindex j in each case advances one unit
stepwise to the right, then back to the first entry if necessary, and so on. For
example for n = 3 and 5 of Subsection 2.3, and now also for 6, the Υ-sequences
are:

(1,
(1,

3,
3,

5);
5);

( 1,

( 1,
3,
3,

5,
5,

7,
7,

9,
9,

11);
11);

(2,
(1,

3,
3,

4);
5, 7, 9);

( 2,
(01,

3,
03,

4,
05,

8,
11,

9,
13,

10);
15);

(1,
(1,

3,
2,

5,
5,

7,
8,

9);
9);

(01,
(01,

03,
03,

05,
05,

11,
12,

13,
13,

15);
14);

(3,
(2,

4,
4,

5,
5,

6,
6,

7);
8);

(02,
(02,

03,
03,

04,
04,

11,
12,

13,
13,

15);
14);

where the groups G involved in the eight sequences on the right are equal to
Z24 (first three sequences) and to Z2 ⊕ Z12 (final five sequences) and we agree
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that commas that separate components of elements of direct-sum groups are
eliminated in expressing Υ-sequences, for simplicity of notation.

The first two Υ-sequences with G = Z2 ⊕ Z12 above have associated matrices,
(where a = 10, b = 11, c = 12 and the agreement above is taken into account).

01
03

c 9 7 a 0 b
0 1 0 0 b 0

01
03

3 0 1 a 0 b
34 2 0 b 0

01
03

3 0 1 8 2 2
34 2 0 1 0

02
03

3 0 1 5 0 0
24 2 0 0 2

02
03

3 0 1 a 0 b
24 2 0 b 0

05
11

0 0 1 0 b b
0 0 02 0 1

05
11

0 0 1 0 b b
0 0 22 0 1

05
12

0 0 1 0 0 0
0 0 02 0 3

04
11

0 0 1 0 1 0
0 0 02 0 1

04
12

0 0 1 0 b b
0 0 02 0 1

13
15

0 0 0 0 1 0
0 0 0 0 1 1

13
15

0 0 0 0 1 0
0 0 0 0 1 1

13
14

0 0 0 0 1 0
0 0 0 0 1 1

13
15

0 0 0 0 1 0
0 0 0 0 1 1

13
14

0 0 0 0 1 0
0 0 0 0 1 1

2.6. Characterizing lattice like TPC s and their Υ-sequences

Remark 10. In order to help characterizing lattice-like PDS s as in Theorem 8,
notice that a minimal list of expressions of abelian groups G of order 4n leading to
different lattice-like TPC s of Λn by means of the theorem is composed by Z4n, if
G is cyclic, and by the direct sums G = ⊕s

i=1Zci of maximal cyclic subgroups Zci

of G, if G is non-cyclic, where gcd(c1, . . . , cs) > 1, with the numbers ci = 2biai,
for i = 1, . . . , s, having: (a) bi maximal; (b) ai, (resp. bi), taken as large
as possible, successively for the descending indices i = s, s − 1, . . . , 2, 1, (resp.
i = s − 1, . . . , 2, 1); (c) the summand Zcs in G = ⊕s

i=1Zci associated to the
direction x1 of Zn along which {O, e1} lies.

For example, if n = 6, then we consider G = Z2 ⊕ Z12 instead of its equivalent
form G = Z4⊕Z6. If n = 8, then we consider two expressions of the same group,
namely G = Z4⊕Z8 and G = Z8⊕Z4, leading to two different lattice-like TPC s of
Λ8. We will suggest below a procedure to determine how many homomorphisms
Φ exist for each expression of a G in the list claimed in Remark 10, to be stated
as Conjecture 12.

For n = 8, there are two different homomorphisms Φ : Z
n → G with a

common target group G of order 4n = 32 [1]. In the setting of Remark 10, we
may write G = Z8 ⊕ Z4 or G = Z4 ⊕ Z8, so we can associate the last summand
of G, in each of these two cases, to the direction x1 of Z8 along which {O, e1}
lies. Corresponding quadruple stacks, column vector B and matrices M for both
cases are respectively on the left and right halves of the following table.

0,3
1,3

0,0
1,0

0,1
1,1

0,2
1,2

0,1
1,1

4 0 1 2 3 4 5 6
08 6 5 4 3 2 1

0,7
0,5

0,0
0,6

0,1
0,3

0,2
0,4

0,1
0,3

8 5 4 2 3 1 3 0
0 1 0 0 0 0 0 0

2,3
3,3

2,0
3,0

2,1
3,1

2,2
3,2

2,1
3,1

0 0 1 0 0 0 0 0
0 0 0 1 0 0 0 0

1,7
1,5

1,0
1,6

1,1
1,3

1,2
1,4

1,1
1,3

0 04 5 7 5 7 5
0 0 0 1 0 0 0 0

4,3
5,3

4,0
5,0

4,1
5,1

4,2
5,2

4,1
5,1

0 0 0 0 1 0 0 0
0 0 0 0 0 1 0 0

2,7
2,5

2,0
2,6

2,1
2,3

2,2
2,4

2,1
2,3

0 0 0 0 1 0 0 0
0 0 0 0 0 1 0 0

6,3
7,3

6,0
7,0

6,1
6,1

6,2
7,2

6,1
7,1

0 0 0 0 0 0 1 0
0 0 0 0 0 0 0 1

3,7
3,5

3,0
3,6

3,1
3,3

3,2
3,4

3,1
3,3

0 0 0 0 0 0 1 0
0 0 0 0 0 0 0 1

It is clear now that the list mentioned in Remark 10 has at least a representative
from each group G of order 4n leading to a lattice-like TPC of Λn. We keep
on this track in order for us to be able to count which homomorphisms Φ lead
effectively to non-equivalent lattice-like TPC s of Λn.
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We present now Υ-sequences for n = 9, where the boldface entries yield the
positions Υ1:

(1,
(1,

3,
2,

5,
3,

7,
4,

9,
9,

11,
14,

13,
15,

15,
16,

17);
17);

(5,
(2,

6,
4,

7,
6,

8,
8,

9,
9,

10,
10,

11,
12,

12,
14,

13);
16);

where G = Z4n = Z4(2k+1) = Z36. In fact, we consider the generic concatenation

Υ = (y1, . . . , yk,n, 2n− yk, . . . , 2n− y1) = Y ′|n|(2n− Y ′),(1)

where, for each Y ′ = (y1, . . . , yk) such that {y1, . . . , yk} ⊆ {1, 2, . . . , 2k} and
y1 < y2 < · · · < yk, only one entry in {yi, n − yi} is present in Y ′, for each
i = 1, . . . , k. Each of these concatenations corresponds to an Υ-sequence with
n, as indicated, taken boldface, that is as Υ1. If Y ′ is composed by the odd
numbers in {1, . . . , k}, then any divisor of n could also be taken boldface. We

denote the sequences (1) in each case orderly as Y 1, . . . , Y i, . . . , Y j , . . . , Y 2k ,
setting a super-index to each term, as in Y i = (yi1, y

i
2, . . . , 2n − yi1). Their order

is given by majorization: if the terms of Y i = (yi1, . . . , 2n − yi1) are less than or
equal to the corresponding terms of Y j = (yj1, . . . , 2n− yj1), then i < j.

Because of (1), the four-line table above can be extended to t = 16 lines,
of which in the table are represented those corresponding to Y ′ = (1, 3, 5, 7),
(leading to three lattice-like TPC s, as observed), Y ′ = (1, 2, 3, 4), Y ′ = (5, 6, 7, 8)
and Y ′ = (2, 4, 6, 8), (each leading to a single lattice-like TPC). Thus, there are
eighteen homomorphisms Φ : Z9 → Z36: 16 withΥ1 = 9 and one each forΥ1 = 1
and Υ1 = 3.

2.7. Breadths of Υ-sequences

For n = 9 and G = Z3 ⊕ Z12, the following constitutes a table corresponding to
the one previous to the concatenation (1):

A=(01,
B=(02,

03,
03,

05,
04,

10,
10,

12,
12,

14,
14,

16,
16,

18,
18,

1a);
1a);

C=(01,
D=(02,

03,
03,

05,
04,

11,
11,

13,
13,

15,
15,

21,
21,

23,
23,

25);
25);

E=(02, 03, 04, 12, 13, 14, 22, 23, 24);

This allows to see that there is a total of ten homomorphisms Φ : Z9 → Z3⊕Z12,
one per distinguished boldface entry. Succinctly, some initial columns of the
transpose matrices M t associated to such homomorphisms are:
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A(01)
−−−

A(03)
−−−

B(03)
−−−

C(01)
−−−

C(03)
−−−

C(11)
−−−

C(13)
−−−−

D(03)
−−−

E(03)
−−−

E(13)
−−−−

c 0 0 0
9 1 0 0

3 3 0 0
04 0 0

3 3 0 0
04 0 0

c 0 0 0
9 1 0 0

3 3 0 0
04 0 0

3 0 0 9
9 1 0 0

3 0 0 0 3
9 1 0 0 0

3 2 0 0
04 0 0

3 2 0 0
04 0 0

3 2 0 0 0
0 1 0 0 3

7 0 1 0
0 0 03

7 0 1 0
0 0 03

4 0 1 0
0 0 03

7 0 1 0
9 0 03

7 0 1 0
9 0 03

7 0 1 0
0 0 0 c

7 0 1 0 0
5 0 0 1 2

4 0 1 0
0 3 03

4 0 1 0
0 2 03

4 0 1 0 0
2 0 0 1 2

a 0 0 2
8 0 0 2

a 0 0 2
8 0 0 2

5 0 0 2
4 0 0 2

7 0 0 2
5 0 0 2

7 0 0 2
5 0 0 2

7 0 0 2
5 0 0 2

0 0 0 0 c
1 0 0 0 2

2 1 0 2
1 1 0 2

1 1 0 2
2 0 0 2

0 0 0 0 c
1 0 0 0 2

6 0 0 2
4 0 0 2

6 0 0 2
4 0 0 2

3 0 0 2
2 0 0 2

a 0 0 1
8 0 0 1

a 0 0 1
8 0 0 1

a 0 0 1
8 0 0 1

8 0 0 0 1
6 0 0 0 1

5 0 0 1
4 0 0 1

4 0 0 1
0 1 1 1

5 0 0 0 4
3 0 0 0 1

2 0 0 2 2 0 0 2 1 0 0 2 6 0 0 1 6 0 0 1 6 0 0 1 4 0 0 0 1 3 0 0 1 3 0 0 1 4 0 0 0 4

with the final remaining columns coinciding with those of the identity 9× 9 ma-
trix in the same positions, and where each of the ten cases is indicated with the
corresponding capital letter in {A,B,C,D,E} of the first display in this subsec-
tion, followed by a valid (two-digit) boldface Υ1 expressed between parenthesis.
Here, we also highlighted in boldface those diagonal entries > 1.

Given an Υ-sequence with x1-increment Υ1, we define the breadth β(Υ,Υ1)
as the distance between the two vertices O(S′) and O(S′′) that correspond to
the vertex Φ(0) = O = O(Θ∗

0) of Θ∗
0 (via adequate translations induced by

the lattice L = Φ−1(0)) in two components S′ and S′′ of the lattice-like TPC
determined by Υ and Υ1, where S

′ and S′′ are consecutive components along the
x1 axis. In the table above for example, β(C,01) = β(C,11) = β(C,13) = 12,
while β(C,03) = 4, determining just two different breadths for Υ-sequence C.
Considering the other six cases for A,B,D,E, we see that there are between
8 and 10 distinct homomorphisms Φ : Z9 → Z3 ⊕ Z12. It rests to answer the
following.

Conjecture 11. Any two TPC s with the same breadth are equivalent.

In general, det(M) = |T | = |G| = 4n, the volume of a fundamental domain
of L. Also, if the last summand Zcs in G = ⊕s

i=1Zci (as in (b) of Remark 10)
corresponds with the first coordinate x1 in Z

n along which {O, e1} lies, then the
diagonal entry of M corresponding to Υ1 is cs

πs(Υ1)
, where πs : G → Zcs is the

projection of G onto that last summand, since πs(Υ1) divides cs.
Corresponding Υ-sequences for n = 12, with G not involving Z2 as a sum-

mand are:

( 1,

(01,
3,

03,
5,

05,
7,

10,
9,

12,
11,
14,

13,
16,

15,
18,

17,
1a,

19,
21,

21,
23,

23);
25);

(02,
(01,

03,
03,

04,
05,

10,
11,

12,
13,

14,
15,

16,
21,

18,
23,

1a,
25,

22,
31,

23,
33,

24);
35);

(02,
(01,

03,
03,

04,
05,

12,
13,

13,
13,

14,
14,

22,
21,

23,
23,

24,
25,

32,
32,

33,
33,

34);
34);

(02, 03, (04, 11, 13, 15, 22, 23, 24, 31, 33, 35);

where the first line provides two Υ-sequences for G = Z48 and the remaining
lines provide eleven Υ-sequences for G = Z4 ⊕ Z12, of which the fourth line
has β(Υ,01) = β(Υ,11) = 12 and β(Υ,03) = β(Υ,13) = 4 and the fifth line
has β(Υ,01) = β(Υ,13) = 4, so that there are eight distinct resulting lattice-
like TPC s. There are two other Υ-sequences comprisable in one line for G =
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Z2⊕Z24, one for each of Υ1 = 01 and Υ1 = 03, and still nine other Υ-sequences
comprisable in eight lines for G = Z2 ⊕ Z2 ⊕ Z12, of which one has Υ1 = 001
and eight have Υ1 = 003. All of these remaining Υ-sequences provide distinct
lattice-like TPC s.

For n = 15 and G = Z60, the Υ-sequences are:

(1,
(1,

3,
2,

5,
3,

7,
4,

9,
5,

11,
6,

13,
7,

15,
15,

17,
23,

19,
24,

21,
25,

23,
26,

25,
27,

27,
28,

29);
29);

(8,
(2,

9,
4,

10,
6,

11,
8,

12,
10,

13,
12,

14,
14,

15,
15,

16,
16,

17,
18,

18,
20,

19,
22,

20,
24,

21,
28,

22);
30);

so that by (1) there are 27 = 128 homomorphisms Φ with boldface 15 and three
additional arising from the first line, with boldface entries 1, 3 and 5, yielding
a total of 131 homomorphisms Φ : Z15 → Z60 that lead to different lattice-like
TPC s.

2.8. Adoption of a shorthand notation

For n = 18 and G = Z6 ⊕Z12, we adopt the following shorthand for the different
Υ-sequences. Let Y 1

i = 135, Y 2
i = 234, (resp. for Y ′ = {1}, Y ′ = {2}; see (1)

above), Pi = 024 and Qi = 246, where i ∈ Z6. Let Xi = xi1xi2xi3 stand for either
Y 1
i , Y

2
i , Pi, Qi. A 6-tuple (X0X1X2X3X4X5)y stands for an Υ-sequence formed by

the concatenation of the triples Xi, from i = 0 to i = 5, with an element y among
the composing elements of G taken as the boldface element. (This Υ-sequence
must be understood with the subindex i of each Xi taken as the Z6 entry of each
considered element of G = Z6 ⊕ Z12, while the corresponding Z12 entry corre-
sponds to the components of Xi)). This way for example (Y 1

0 Y
1
1 Y

1
2 Y

1
3 Y

1
4 Y

1
5 )01 =

(01, 03, 05, 11, 13, 15, 21, 23, 25, 31, 33, 35, 41, 43, 45, 51, 53, 55).
Then, a set of representatives of different Υ-sequences for homomorphisms

Φ : Z18 → Z6 ⊕ Z12 is given by:

(a) (Y 1
0 X1X2Y

1
3 X4X5)01, where (Xi, X6−i) ∈ {(Y 1

i , Y
1
6−i), (Pi, Q6−i)}, if xi ∈

{1, 2}, (4 cases);

(b) (X0X1X2X3X4X5)03, where Xi ∈ {Y 1
i , Y

2
i } if i ∈ {0, 3} and (Xi, X6−i) ∈

{(Y 1
i , Y

1
6−i), (Y

2
i , Y

2
6−i), (Pi, Q6−i)}, if xi ∈ {1, 2}, (36 cases);

(c) (Y 1
0 Y

1
1 Y

1
2 Y

1
3 Y

1
4 Y

1
5 )j , where j = 11, 13, 21, 23, 31, 33, (6 cases, with their

breadths β(Υ,Υ1) already present in items (a) and (b)).

This yields a lower bound of 40 distinct lattice-like TPC s, in this case. We have
to add to this the numbers of Υ-sequences for Z72, Z3 ⊕ Z24 and Z2 ⊕ Z36 in
order to obtain a better estimation for the homomorphisms Φ : Z18 → G yielding
lattice-like TPC s by means of Corollary 4.
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2.9. Generalization via the shorthand notation

If G = ⊕s
i=1Zci as in Remark 10, then the last summand Zcs yields the coordinate

direction x1 along which the component {O, e1} lies, where cs = 2bsas with 1 ≤ as
odd (=maximal ai, for i = 1, . . . , s) and bs ≥ 2. Let G′ = ⊕s−1

i=1Zci . We generalize
the setting of the last example as in the following items (A)–(B), where G′ is
assumed with s = 2.

(A) First, assume b2 > 2. Let k = a2−1
2 . Because of (1), there are 2k sequences

of length a2 with terms in Z2a2 . We denote these sequences by Y 1, Y 2, . . . , Y 2k ,
where Y 1 = {1, 3, . . . , a2−2, a2, a2+2, . . . , 2a2−1}. These sequences can be used,
as in the examples above, to express the different possible lattice-like TPC s. Let
P = {2j; 0 ≤ 2j < 2b2a2} and Q = {2j; 0 < 2j ≤ 2b2a2}. Then we have

x1-increments Υ1 and functions X : G′ → {Y 1, . . . , Y 2k , P,Q} inspired in the
previous example (where G′ = Z6 provided the subindexes i of the sequences
Xi ∈ Φ(G) in each of the 40 cases), with the following characteristics:

(a) Υ1 = (0, . . . ,0,1) and: (a1) X(i) = Y 1, if 2i = 0 in G′, and either (a2)
X(i) = X(−i) = Y 1 or (a3) (X(i), X(−i)) = (P,Q), otherwise;

(b) Υ1 = (0, . . . ,0,a2) and: (b1) X(i) ∈ {Y 1, . . . , Y 2k}, if 2i = 0 in G′, and ei-

ther (b2) X(i) = X(−i) ∈ {Y 1, . . . , Y 2k} or (b3) (X(i), X(−i)) = (P,Q),
otherwise;

(c) Υ1 = (x1, . . . ,x2), where 1 < x2|a2 and 0 ≤ xj ≤
cj
2 , and X(i) = Y 1, for

every i ∈ G′.

The Υ-sequences arising in item (c) have breadths already present in items (a)
and (b).

(B) Second, if b2 = 2, then the sequences Y j in item (b) above are reduced just
to Y 1. In fact, we dispose only of Y 1 as a sequence of length a2 with terms in
Z2a2 that conducts to a lattice-like TPC for this case.

To the cases above, we will need to add just the lattice-like TPC s resulting
from the following consideration, in order to obtain all of those mentioned in
Theorem 8, below.

2.10. General pattern for quadruple stacks

In the examples above, we observe the following pattern for the quadruple stacks.
If we can express n = qm = q(2k + 1) for nonnegative integers q, k, then the
following sequence yields a set of xj-increments Υj for a quadruple stack leading
to a corresponding homomorphism Φ : Zn → Z4n, where Υ1 is a boldface entry
and we use the sequence (1) above but with n = 2k + 1 replaced by m = 2k + 1:
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(y1,...,yk, m,
3m,

2m−yk,
4m−yk,

...,

...,
2m−y1,
4m−y1,

2m+y1,
4m+y1,

...,

...,
3m−yk,
5m−yk,

(2) ...,

(q−3)m,

...,

(q−2)m−yk,
...,
...,

...,

(q−2)m−y1,

...,

(q−2)m+y1,
...,
...,

...,

(q−1)m−yk,
(q−1)m, qm−yk, ..., qm−y1).

A particular case of this sequence is:
(1,2,...,k, m,

3m,
2m−k,
4m−k,

...,

...,
2m−1,
4m−1,

2m+1,
4m+1,

...,

...,
2m+k,
4m+k,

...,

(q−3)m,

...,

(q−2)m−k,
...,
...,

...,

(q−2)m−1,
...,

(q−2)m+1,
...,
...,

...,

(q−2)m+k,
(q−1)m, qm−k, ..., qm−1).

The sequence Y1 happens here when q = 1 and m = n. With m = 9 we have for
example:

q=1
q=2

(1,2,3,4,9, 14,15,16,17);
(1,2,3,4,9, 14,15,16,17,19,20,21,22, 27, 32,33,34.35);

q=3 (1,2,3,4,9, 14,15,16,17,19,20,21,22, 27 ,32,33,34,35,37,38,39,40, 45, 50,51,52,53).

If q = 1, we already have the contributions to Υ-sequences given by the functions
X in items (a)-(c) above, and their corresponding homomorphisms Φ. If q > 1,
however, there are just 2k homomorphism Φ with Υ1 = m to be counted in each
case, for example: 16 for n = 18, G = Z72 and m = Υ1 = 9, so q = 2; two for
n = 18, G = Z72 and m = Υ1 = 3, so q = 1; etc.

In more detail, for example, the quadruple stacks in the above case q = 2 are as
follows:

71 8 1 10 53 62 19 28
70 7 2 11 52 61 20 29
69 6 3 12 51 60 21 30
68 5 4 13 50 59 22 31
63 0 9 18 45 54 27 36
58 67 14 23 40 49 32 41
57 66 15 24 39 48 33 42
56 65 16 25 38 47 34 43
55 64 17 26 37 46 35 44

that can be further displayed as in the third table in the proof of Theorem 8,
above:

71 8 58 67 53 62 40 49 45 54
63 0

1
9
10

18 63 0
14

9
23

18 63 0
19

9
28

18 63 0
32

9
41

18 63 0
27

9
36

18

70 7 57 66 52 61 39 48
63 0

2
9
11

18 63 0
15

9
24

18 63 0
20

9
29

18 63 0
33

9
42

18

69 6 56 65 51 60 38 47
63 0

3
9
12

18 63 0
16

9
25

18 63 0
21

9
30

18 63 0
34

9
43

18

68 5 55 64 50 59 37 46
63 0

4
9
13

18 63 0
17

9
26

18 63 0
22

9
31

18 63 0
35

9
44

18
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2.11. Final Conjecture

We can summarize the developments above, including Corollary 9 and Subsec-
tions 2.2–10, as the following suggestion of a procedure to determine how many
homomorphisms Φ exist for each expression of a G in the list claimed in Remark
10, as follows.

Conjecture 12. Assume the setting of Theorem 8. If n = 2k then for each

abelian group G of order 4n as in Remark 10 there exists just one homomorphism

Φ : Z
n → G leading to a lattice-like TPC of Λn. Otherwise, let n = qm =

q(2k+1), where 0 ≤ q, k ∈ Z. If q = 1, then the homomorphisms Φ from Z
n onto

the groups G listed in Remark 10 are as indicated in items (A)(a)–(c) and (B)
of Subsection 2.9, taking into account the possible elimination of repeated cases

provided by the concept of breadth of an Υ-sequence in Subsection 2.7. If q > 1,
then the existing Υ-sequences for such homomorphisms are as indicated in (2)
above.
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