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Abstract
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1. Introduction

To distinguish close and very close transmitters in a wireless communication sys-
tem, Griggs and Yeh [6] proposed a variation of the Frequency Assignment Prob-
lem (or simply FAP) by introducing the L(2, 1)-labeling which was generalized
by Georges and Mauro [4] as follows.

For any two positive integers p and q, a k-L(p, q)-labeling of a graph G is a
mapping ℓ from the vertex set V (G) to the set {0, 1, . . . , k} such that

(i) |ℓ(u)− ℓ(v)| ≥ p if u and v are at distance 1 in G,

(ii) |ℓ(u)− ℓ(v)| ≥ q if u and v are at distance 2 in G.

The L(p, q)-span λp,q(G) of a graph G is defined as min{k | G has a k-L(p, q)-
labeling }. For a family F of graphs, λp,q(F) = max{λp,q(H) | H ∈ F}.

A common feature of graph theoretic models for FAP is that communication
is assumed to be possible in both directions (duplex) between two radio transmit-
ters and, therefore, these models are based on undirected graphs. But in reality,
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to model FAP on directed or oriented graphs could be interesting as pointed by
Aardal et al. [1] in their survey.

An oriented graph is a directed graph with no cycle of length 1 or 2. By
replacing each edge of a simple graph G with an arc (ordered pair of vertices)
we obtain an oriented graph ~G; ~G is an orientation of G and G is the underlying
graph of ~G. We denote by V (~G) and A(~G) respectively the set of vertices and
arcs of ~G. Similarly, V (G) and E(G) denote respectively the set of vertices and
edges of G. An arc (x, y) (where x and y are vertices) is denoted by ~xy. A path
obtained by two consiqutive arcs ~xy and ~yz is called a 2-dipath. In this paper
every undirected graph is a simple graph and every directed graph is an oriented
graph, unless otherwise stated.

There are two different oriented versions of L(p, q)-labeling, namely 2-dipath
L(p, q)-labeling, introduced by Chang et al. [3], and oriented L(p, q)-labeling,
introduced by Gonçalves, Raspaud and Shalu [5].

A 2-dipath k -L(p, q)-labeling of an oriented graph ~G is a mapping ℓ from the
vertex set V (~G) to the set {0, 1, . . . , k} such that

(i)|ℓ(u)− ℓ(v)| ≥ p if u and v are adjacent in ~G,
(ii) |ℓ(u)− ℓ(v)| ≥ q if u and v are connected by a 2-dipath in ~G.
The 2-dipath span ~λp,q(~G) of an oriented graph ~G is defined as min{k | ~G has a

2-dipath k-L(p, q)-labeling }. The 2-dipath span ~λp,q(G) of an undirected graph G

is defined as max{~λp,q(~G) | ~G is an orientation ofG}. The 2-dipath span ~λp,q(F) of

a family F of (oriented or undirected) graphs is defined as max{~λp,q(H) | H ∈ F}.

An oriented k-L(p, q)-labeling of an oriented graph ~G is a mapping ℓ from
the vertex set V (~G) to the set {0, 1, . . . , k} such that

(i) ℓ is a 2-dipath k-L(p, q)-labeling of G,
(ii) if ~xy and ~uv are two arcs in ~G then, ℓ(x) = ℓ(v) implies ℓ(y) 6= ℓ(u).
The oriented spans λo

p,q(~G), λo
p,q(G) and λo

p,q(F) are defined similarly as 2-
dipath spans.

From the definitions, the following is immediate:

Lemma 1. For every (undirected or oriented) graph G and every p, q > 0,
~λp,q(G) ≤ λo

p,q(G).

An oriented k-coloring of an oriented graph ~G is a mapping f from the vertex
set V (~G) to the set {0, 1, . . . , k − 1} such that,

(i) f(u) 6= f(v) whenever u and v are adjacent,
(ii) if ~xy and ~uv are two arcs in ~G, then f(x) = f(v) implies f(y) 6= f(u).
The oriented chromatic number ~χ(~G) of an oriented graph ~G is defined as

min{k | ~G has an oriented k-coloring}. The oriented chromatic number ~χ(G) of
an undirected graph G is defined as max{~χ(~G) | ~G is an orientation of G}. The
oriented chromatic number ~χ(F) of a family F of (oriented or undirected) graphs
is defined as max{~χ(H) | H ∈ F}.
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The additional condition in oriented L(p, q)-labeling ensures that any oriented
L(p, q)-labeling is an oriented coloring [11]. Note that any oriented k-L(p, q)-
labeling is an oriented (k + 1)-coloring but a 2-dipath k-L(p, q)-labeling is not
necessarily an oriented (k + 1)-coloring.

The most frequently studied L(p, q)-labeling, other than the ones that corre-
spond to chromatic numbers, is for (p, q) = (2, 1) (both undirected and oriented
versions). In this paper, we mainly focus on studying 2-dipath and oriented
L(2, 1)-span of some families of planar graphs. For the family P of planar graphs
and for the family Pg of planar graphs with girth at least g, where the girth of
a graph is the size of its smallest cycle, for g = 5, 11 and 16, we will prove the
following result in Section 3.

Theorem 2. (a) 18 ≤ ~λ2,1(P) ≤ λo
2,1(P) ≤ 83.

(b) 6 ≤ ~λ2,1(P5) ≤ λo
2,1(P5) ≤ 22.

(c) 4 ≤ ~λ2,1(P11) ≤ λo
2,1(P11) ≤ 10.

(d) 4 ≤ ~λ2,1(P16) ≤ λo
2,1(P16) ≤ 7.

Theorem 2(b) disproves the conjecture ~λ2,1(P5) ≤ 5 proposed by Calamoneri and

Sinaimeri [2] and Theorem 2(c,d) improve the previous bounds ~λ2,1(P11) ≤ 12

and ~λ2,1(P16) ≤ 8 given by the same authors [2]. For the family O of outerplanar
graphs, we prove in Section 5 the following:

Theorem 3. 9 ≤ ~λ2,1(O) ≤ λo
2,1(O) ≤ 10.

As we were not able to provide exact results for the family of outerplanar graphs,
we also consider a planar superfamily and a planar subfamily of it, namely the
family T2 of partial 2-trees and the family C of cacti. For both these families we
managed to give exact results. In fact, in Section 4 we prove the following general
result for the family Tk of partial k-trees:

Theorem 4. (a) ~λ2,1(T2) = λo
2,1(T2) = 10.

(b) ~λ2,1(T3) ≤ λo
2,1(T3) ≤ 22.

(c) ~λ2,1(Tk) ≤ λo
2,1(Tk) ≤ (k + 1)(2k + 1)− 2.

In [2] Calamoneri and Sinaimeri proved that 6 ≤ ~λ2,1(C) ≤ 8. We improve this
result as follows (proof in Section 6):

Theorem 5. ~λ2,1(C) = λo
2,1(C) = 7.

The precise definitions of these families are given in the beginning of their respec-
tive sections. In Section 2, we mainly define, state and prove some results which
we will use for the main proofs in the following sections. In particular, we prove
a general upper bound for the 2-dipath and oriented L(p, q)-span of multipartite
graphs, which in some cases is tight.
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Figure 1. ~B is a 4-nice graph.

2. Preliminaries

The set of all adjacent vertices of a vertex v in a graph is called its set of neighbors
and is denoted by N(v). For oriented graphs, if there is an arc from u to v, then
u is an in-neighbor of v and v is an out-neighbor of u. The sets of all in-neighbors
and out-neighbors of v are denoted by N−(v) and N+(v) respectively.

An oriented clique or simply oclique is an oriented graph whose any two
distinct vertices are either adjacent or connected by a 2-dipath. Ocliques are
therefore precisely those oriented graphs ~G for which ~χ(~G) = |V (~G)|.

A homomorphism f of an oriented graph ~G to an oriented graph ~H is a
mapping f : V (~G) −→ V ( ~H) such that ~xy ∈ A(~G) implies ~f(x)f(y) ∈ A( ~H).

From these definitions, we easily get the following:

Lemma 6. If there is a homomorphism f : ~G −→ ~H, then ~λp,q(~G) ≤ ~λp,q( ~H) and

λo
p,q(~G) ≤ λo

p,q( ~H), for every p, q > 0. In particular, ~G ⊆ ~H implies ~λp,q(~G) ≤
~λp,q( ~H) and λo

p,q(~G) ≤ λo
p,q( ~H), for all p, q > 0.

Now we prove a general upper bound on oriented L(p, q)-span of multipartite
graphs.

Theorem 7. For every k-partite oriented graph ~G, where k ≥ 3, we have

~λp,q(~G) ≤ λo
p,q(~G) ≤ |V (~G)|q + k(max(p, q)− q)−max(p, q).

In particular for p ≥ q, both the equalities hold if ~G is a complete k-partite oclique.

Proof. Let, K = Kn1,n2,...,nk
be the complete k-partite graph with the parts

being V1, V2, . . . Vk with |Vi| = ni for all i = 1, 2, . . . , k. Also, let the vertices of
Vi be denoted by {vi1, vi2, . . . , vini

}.
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Let ~K be any orientation of K. Now, consider the labeling L of ~K given by
L(vij) =

(
∑

t<i(nt − 1)q
)

+ (j − 1)q + (i − 1)max(p, q), for i = 1, 2, . . . , k and
j = 1, 2, . . . , ni.

For any i, vir and vis (r 6= s) cannot be connected by an arc but can be
connected by a 2-dipath. While for any vir and vjs, i 6= j, can be connected by
either an arc or a 2-dipath.

Then we have,
|L(vir)− L(vis)| =

∣

∣

[(
∑

t<i(nt − 1)q
)

+ (r − 1)q + (i− 1)max(p, q)
]

−
[

(
∑

t<i(nt − 1)q) + (s− 1)q + (i− 1)max(p, q)
]
∣

∣

= |
[(
∑

t<i(nt − 1)q
)

− (
∑

t<i(nt − 1)q)
]

+[(r − 1)q − (s− 1)q]
+[(i− 1)max(p, q)− (i− 1)max(p, q)]|
= |(r − s)q| ≥ q, for r 6= s

and
|L(vir)− L(vjs)| =

∣

∣

[(
∑

t<i(nt − 1)q
)

+ (r − 1)q + (i− 1)max(p, q)
]

−
[(

∑

t<j(nt − 1)q
)

+ (s− 1)q + (j − 1)max(p, q)
]∣

∣

∣

= |(
∑

j<t<i(nt − 1)q) + (nj − 1)q + (r − 1)q − (s− 1)q

+(i− j)max(p, q)|
(without loss of generality, assume i > j)

=
∣

∣

∣

(

∑

j<t<i(nt − 1)q
)

+ (nj − s)q + (r − 1)q

+ (i− j)max(p, q)| (nj ≥ s as vjs ∈ Vj)
≥ max(p, q).

As all vertices have different labels, L is an oriented coloring of ~K.

Hence we have,

λo
p,q(K) ≤ ~λp,q(K) ≤

∑k−1

t=1
(nt − 1)q + (nk − 1)q + (k − 1)max(p, q)

= |V (K)|q + k(max(p, q)− q)−max(p, q).

Now as any oriented k-partite graph ~G is a subgraph of some orientation of the
complete k-partite graph K, using Lemma 1 and Lemma 6 the theorem follows.

In particular, if ~K is an oclique, then any two vertices are at distance at most
2. Moreover, if ~K is also an orientation of the complete k-partite graph, then any
two vertices from different parts, are adjacent. Hence both the equalities hold for
p ≥ q.

For any prime p ≡ 3(mod 4) and for any positive integer n the Paley tournament
Pq of order q = pn is the oriented graph with set of vertices {0, 1, 2, . . . , q − 1}
and set of arcs { ~xy | y − x (mod p) is a non-zero square}.

As −1 (mod p) is not a square , either (x− y) or (y − x) (but not both) is a
square for all x, y ∈ Fq. Hence Pq is a tournament.

The Tromp graph [11] T2q+2 of order (2q + 2) is the oriented graph with set
of vertices V (T2q+2) = {0, 1, . . . , (q− 1)}∪{0′, 1′, . . . , (q− 1)′}∪{v, v′} and set of
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Figure 2. (a) Tromp graph T8 (thick arrows refer to the three arcs between v or v′ AND
{1, 2, 3} or {1′, 2′, 3′}). (b) Adjacency of a vertex of the Zielonka graph Z3.

arcs A(T2q+2) = {~ij, ~i′j′, ~j′i, ~ji′ | i, j ∈ {0, 1, . . . , (q − 1)} and (j − i) (mod p) is a

non-zero square } ∪ {~iv, ~vi′, ~i′v′, ~v′i | i ∈ {0, 1, . . . , (q − 1)}}. Intuitively, in T2q+2

there are two vertices v, v′ such that N+(v) = N−(v′) and N+(v) = N−(v′) with
each of the sets N+(v) and N−(v) inducing a Paley tournament Pq. Also, if ~ij

is an arc in the Pq induced by N+(v) and ~i′j′ is the corresponding arc of the Pq

induced by N−(v), then we also have the arcs ~ji′ and ~j′i. Note that, T2q+2 is
a complete (q + 1)-partite oclique with all parts of size two. For further details
about this graph, see Marshall’s paper [8]. For example, the graph depicted in
Figure 2(a) is the Tromp graph T8.

For any positive integer k the Zielonka graph [11] Zk of order k × 2k−1 is
the oriented graph, with set of vertices V (Zk) =

⋃

i=1,2,...,k Si, where Si = {x =

(x1, . . . , xk) |xj ∈ {0, 1} for j 6= i and xi = ∗} and set of arcs A(Zk) = { ~xy | x =
(x1, . . . , xk) ∈ Si, y = (y1, . . . , yk) ∈ Sj and either xj = yi and i < j or xj 6= yi

and i > j}. Note that Zk is a complete k-partite oclique with all parts of size
2k−1. For example, we depicted the adjacency of a vertex of the Zielonka graph
Z3 in Figure 2(b).

So, by Theorem 7 we have the following:

Corollary 8. ~λ2,1(T2q+2) = λo
2,1(T2q+2) = 3q + 1.

Corollary 9. ~λ2,1(Zk) = λo
2,1(Zk) = k(2k−1 + 1)− 2.

In this paper, we shall use the following notion from [7]. A pattern Q of length k
is a word Q = q0q1 · · · qk−1 with qi ∈ {+,−} for every i, 0 ≤ i ≤ k− 1. A Q-walk
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in a digraph ~G is a walk P = x0x1 · · ·xk such that for every i, 0 ≤ i ≤ k − 1,
xixi+1 ∈ A(~G) if qi = + and xi+1xi ∈ A(G) otherwise. For X ⊆ V (~G) we denote
by NQ(X) the set of all vertices y such that there exists a Q-walk going from some

vertex x ∈ X to y. We then say that a digraph ~G is k-nice if for every pattern Q
of length k and for every vertex x ∈ V (~G) we have NQ({x}) = V (~G). In other
words, a digraph is k-nice if for all pairs of vertices x, y (allowing x = y) there
is a k-walk from x to y for each of the 2k possible oriented patterns. Observe
that if a digraph G is k-nice for some k, then it is k′-nice for every k′ ≥ k. For
example, the graph ~B (Figure 1) is a 4-nice graph.

The girth of a graph is the length of its shortest cycle (by the girth of an
oriented graph we will mean the girth of its underlying graph). We denote the
family of planar graphs by P and the family of planar graphs with girth at least
g by Pg.

Now we state a theorem from [7].

Theorem 10 (Hell et al. 1997). Let Nk be a k-nice oriented graph, k ≥ 3. Every
oriented graph whose underlying graph is in P5k−4 admits a homomorphism to
Nk.

3. Planar Graphs

A planar graph is a graph that can be drawn in the plane in such a way that no
two edges cross each other. Now we prove Theorem 2.

Proof of Theorem 2. (a) Raspaud and Sopena [10] showed that every oriented
planar graph admits a homomorphism to the Zielonka graph Z5. Hence, using
Lemma 6 and Corollary 9, we get the upper bound.

For proving the lower bound, assume ~O∗ is an outerplanar graph with 2-
dipath span at least 9 and also contains an outerplanar oclique of order 7. Now,
take a 2-dipath ~Q along with six disjoint copies of ~O∗. Then, connect (different)
two copies of ~O∗ with each of the vertices of ~Q by adding arcs. We choose
orientations of the new arcs in such a way that, for each vertex v ∈ V ( ~Q), the
graph induced by Nα(v) contains ~O∗ as a subgraph for α = +,−. For each
vertex ∈ Nα(v) add two dipaths to the graph and connect it with v and w in
such a way that both Nα(w) and Nβ(v) ∩ Nβ(w) each contains a 2-dipath for
{α, β} = {+,−}. Name this graph ~R. Notice that ~R is a planar graph.

Now let f be a 2-dipath k-L(2, 1)-labeling of ~R for some k. Then there will be
a vertex v ∈ V ( ~Q) such that f(v) 6= 0, k. This means f(t) /∈ {f(v)−1, f(v), f(v)+
1} for t ∈ N(v). Also, we know that f(x) 6= f(y) for x ∈ N+(v) and y ∈ N−(v).
Moreover, as ~O∗ is a subgraph of both N+(v) and N−(v) we need at least 16
labels other than {f(v)− 1, f(v), f(v) + 1} to label N(v). Hence, k ≥ 18.
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Figure 3. ~F is an oriented planar graph with girth 5.

We will construct such an outerplanar graph ~O∗ in the proof of Theorem 3 (5).
That will complete the proof of Theorem 2(a).

(b) We know that every planar graph of girth at least 5 admits a homomor-
phism to the Tromp graph T16 [9]. Then, using Lemma 6 and Corollary 8, we get
the upper bound.

To prove the lower bound, we first show that it is impossible to have a 2-
dipath 5-L(2, 1)-labeling f of the graph ~F , depicted in Figure 3, with {f(x), f(y)}
= {3, 5}.

Notice that, if f(x) = 3 and f(y) = 5 then f(a1) ∈ {0, 1} and f(b1) ∈
{0, 1, 2}. This implies f(u) = 4. Similarly, we have f(v) = 4 which is not
possible as u, v are adjacent. The case f(x) = 5 and f(y) = 3 is similar.

The oriented planar graph ~E, depicted in Figure 4, has girth 5. Moreover,
the vertices {x1, x2, x3, x4, x5, x6} will get pairwise different labels for any 2-
dipath L(2, 1)-labeling since they are pairwise connected by a 2-dipath. Con-
sider a 2-dipath 5-L(2, 1)-labeling g of ~E such that g(x6) = 0. Then we have
{g(x1), g(x2), g(x3), g(x4), g(x5)} = {1, 2, 3, 4, 5}. Hence there exists an arc ~wz ∈
A(~G[{x1, x2, x3, x4, x5}]) such that {f(w), f(z)} = {3, 5}.

Now on each of the five vertices x ∈ {x1, x2, x3, x4, x5} of ~E, we glue a copy
of ~E by identifying x with the vertex x6 of the copy. Call this graph ~G.

Note that ~G is a planar graph with girth 5 such that, for any 2-dipath 5-
L(2, 1)-labeling ℓ of ~G, there is ~wz ∈ A(~G) with {ℓ(w), ℓ(z)} = {3, 5}. We can
then construct a new graph ~H by identifying each arc ~ab of ~G with the arc ~xy
of ~F . Clearly, ~H is also a planar graph with girth 5 which does not have any
2-dipath 5-L(2, 1)-labeling. Hence we get the lower bound which completes the
proof.

(c), (d) It is easy to observe that the directed path of length 5 has 2-dipath
L(2, 1)-span 4. Now, given any girth g, there is an oriented planar graph with
girth g containing the directed path of length 5 as a subgraph. Also, one can
check that the Tromp graph T8 is 3-nice, and that the graph ~B (Figure 1) is 4-
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x1 x2

x6

x4

x5 x3

Figure 4. ~E is an oriented planar graph with girth 5.

nice (we have verified both using computer). Then, using Theorem 10, Lemma 6,
Lemma 1 and Corollary 8, we have the results.

4. Partial k-trees

A k-tree is a graph obtained from the complete graph Kk on k vertices by adding
zero or more vertices, one by one, in such a way that each newly added vertex
has exactly k neighbors that form a clique. A subgraph of a k-tree is a partial
k-tree We denote the family of partial k-trees by Tk. Partial k-trees have been
extensively studied in the last past years, since they often lead to polynomial
algorithms for problems which are known to be NP-complete in the general case
[14]. The notion of a 1-tree obviously corresponds to the usual notion of a tree.
The family of outerplanar graphs is strictly contained in the family of partial
2-trees. It is easy to see that every partial 2-tree is a planar graph. The following
Lemmas will be useful for proving Theorem 4.

To prove the following lemma we use the same technique as the one used to
prove that every oriented outerplanar graph has oriented chromatic number at
most 7 in [12].

Lemma 11. Every oriented partial 2-tree ~D admits a homomorphism to the
Tromp graph T8.

Proof. It is possible to check that for every u, v ∈ V (T8) and every α, β ∈ {+,−},
there exists wαβ ∈ Nα(u) ∩Nβ(v).

Let ~G be a minimal (with respect to the number of vertices) counterexample
to the lemma. Without loss of generality, we may assume that ~G is a 2-tree.
Since ~G is a 2-tree, ~G must have a vertex x of degree 2. Let N(x) = {x1, x2}.
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Now, by removing the vertex x from ~G and adding an arc between x1 and x2 (if
there was not already one), we get a 2-tree that admits a homomorphism to T8

(because of the minimality of ~G). Using the property of T8 stated in the begining
of the proof, clearly this homomorphism can be extended to a homomorphism of
~G to T8, a contradiction.

x y

Figure 5. The oriented 2-tree D1.

Lemma 12. There exists an oriented 2-tree D13 for which ~λ2,1(D13) ≥ 10.

Proof. First, we will describe a family of oriented 2-trees by induction. We start
with the oriented 2-tree D1 (Figure 5). By induction, we construct a graph Di+1

by gluing D1 on each arc of Di by identifying that arc with the arc ~xy of D1.
Note that every so obtained graph Di is a 2-tree.

Assume that f is a 9-L(2, 1)-labeling of D13.

Step 0: Notice that in each copy of D1, all the vertices should get different
labels and for any vertex v ∈ N(x)∩N(y) we have, |f(t)− f(v)| ≥ 2 for t = x, y.

Step 1: If we restrict f to D1 then there is a vertex v1 ∈ N(x) ∩ N(y)
such that f(v1) /∈ {0, 9}. Similarly, if we restrict f to D2, we can find a vertex
v2 ∈ N(x) ∩N(v1) such that f(v2) /∈ {0, 9}.

Step 2: Now, if we restrict f to D3, we can find a v3 ∈ N(v1) ∩N(v2) such
that f(v3) /∈ {0, 9}. So we have {f(v1), f(v2), f(v3)} ⊆ {1, 2, 3, 4, 5, 6, 7, 8} with
no two of {f(v1), f(v2), f(v3)} being consecutive numbers, since {v1, v2, v3} are
pairwise adjacent vertices. Hence there exists i, j ∈ {1, 2, 3} such that {f(vi) −
1, f(vi), f(vi) + 1} ∩ {f(vj)− 1, f(vj), f(vj) + 1} = ∅ and f(vi) < f(vj).

Step 3: In D4 there exists vαβ ∈ Nα(vi) ∩ Nβ(vj) for all α, β ∈ {+,−}.
Notice that the vertices {v++, v+−, v−+, v−−} will be labeled by the four remain-
ing labels different from the labels {f(vi) − 1, f(vi), f(vi) + 1, f(vj) − 1, f(vj),
f(vj) + 1}.

Step 4: Now we want to show that there is a vertex in D5 that receives label
1 or 8. If f(t) ∈ {1, 8} for some t ∈ {vi, vj , v++, v+−, v−+, v−−}, we are done.

If not, then we can conclude that f(vi) = 2, f(vj) = 7 since any other
possible choice of labels (other than 1 or 8) for vi, vj will force at least one of
the labels among {f(v++), f(v+−), f(v−+), f(v−−)} to be equal to 1 or 8. This
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will imply {f(v++), f(v+−), f(v−+), f(v−−)} = {0, 4, 5, 9}. Choose v4 from the
set {v++, v+−, v−+, v−−} such that f(v4) = 5. Then in D5, there is a vertex
v5 ∈ N(vi) ∩N(v4) with f(v5) = 8.

Hence in D5, there exists a vertex v6 with f(v6) ∈ {1, 8}.
Step 5: Now we want to show that there is a vertex in D7 that receives label

1. If f(v6) = 1, we are done.

If not, then f(v6) = 8. This implies that, in D6, there exists t ∈ N(v6)
such that f(t) ∈ {1, 4, 5}, since we need to use at least five distinct labels from
{0, 1, 2, 3, 4, 5, 6} to label all vertices of N(v6). If f(t) = 1, we are done. Other-
wise, in D7, we can find some s ∈ N(v6) ∩N(t) such that f(s) = 1.

Hence in D7 we can find a vertex a with f(a) = 1.

Step 6: Now we want to show that in D9 there is a vertex b ∈ N(a) with
f(b) = 8.

Now, in D8, there are at least five vertices in N(a) which receive pairwise
different labels. Therefore, for some t ∈ N(a), we will have f(t) ∈ {8, 4, 5}. If
f(t) = 8, we are done. Otherwise, in D9, we can find s ∈ N(a) ∩ N(t) with
f(s) = 8.

Hence, in D9, there is a pair of adjacent vertices a and b with f(a) = 1 and
f(b) = 8.

Step 7: Therefore, in D10, there will be a copy of D1 with vertices {a, b}
corresponding to the vertices {x, y} of D1 (as in Figure 5).

Step 8: Now notice that, in D12, there are ui ∈ N(a) such that f(ui) = i

for all i ∈ {3, 4, . . . , 9}. Hence, in D13, there are uαβi ∈ Nα(a) ∩ Nβ(ui) for all
α, β ∈ {+,−}.

Step 9: Note that it is not possible to have p ∈ N+(a) and q ∈ N−(a)
with f(p) = f(q). Hence the function Fa(i) = α if t ∈ Nα(a) and f(t) = i for
i ∈ {3, 4, . . . , 9} and α ∈ {+,−}, is well defined. Intuitively, the function Fa is
a function indicating whether a label is used for an in-neighbor of a or for an
out-neighbor of a.

Step 10: Note that for each i ∈ {3, 4, . . . , 9}, Fa(f(u
++

i )) = Fa(f(u
+−

i )) = +
and Fa(f(u

−+

i )) = Fa(f(u
−−

i )) = −.

Also, notice that {f(uαβi ) | α, β ∈ {+,−}} = {3, 4, . . . , 9} \ {i− 1, i, i+1} for
each i ∈ {4, 5, 6, 7, 8}.

We will use the two above observations repeatedly in the following.

Step 11: Let {γ, γ} = {+,−}. Without loss of generality, assume that
Fa(3) = γ.

Claim. Fa(6) = γ.

Proof. If possible, let Fa(6) = γ. Now {f(uαβ
8

) | α, β ∈ {+,−}} = {3, 4, 5, 6}.
So two of Fa(3), Fa(4), Fa(5), Fa(6) will be + and the other two will be −. But
we already have Fa(3) = γ and Fa(6) = γ. Hence, {Fa(4), Fa(5)} = {γ, γ}.
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Similarly, we have {f(uαβ
7

) | α, β ∈ {+,−}} = {3, 4, 5, 9}. This will force Fa(9) =

γ. After that we have {f(uαβ
4

) | α, β ∈ {+,−}} = {6, 7, 8, 9} which forces

Fa(7) = Fa(8) = γ. Now we also have {f(uαβ
5

) | α, β ∈ {+,−}} = {3, 7, 8, 9}.
But Fa(3) = Fa(7) = Fa(8) = γ, a contradiction. Hence, Fa(6) = γ.

Step 12: Now {f(uαβ
8

) | α, β ∈ {+,−}} = {3, 4, 5, 6} implies Fa(4) =

Fa(5) = γ. Similarly, {f(uαβ
7

) | α, β ∈ {+,−}} = {3, 4, 5, 9} implies Fa(9) = γ.

Lastly {f(uαβ
4

) | α, β ∈ {+,−}} = {6, 7, 8, 9} implies Fa(7) = Fa(8) = γ.
Hence, we got the full description of Fa (depending on the value of γ).
Step 13: Similarly, we can define a function Fb (one can imitate the previous

steps, or just use symmetry). As f(a) = 1, f(b) = 8 and Fa(8) = γ, we have
Fb(1) = γ. Now, by symmetry we get Fb(1) = Fb(2) = Fb(4) = Fb(5) = γ and
Fb(0) = Fb(3) = Fb(6) = γ.

Step 14: Therefore, Fa(l) 6= Fb(l) for all such l on which both the functions
are defined. But we have Fa(f(u

++
8

)) = Fb(f(u
++
8

)) = +. This is a contradiction.
Hence, we are done.

We are now able to prove Theorem 4.

Proof of Theorem 4. (a) The proof follows by Lemmas 6, 11, 12 and Corol-
lary 8.

(b), (c) From [11] we know that any partial 3-tree admits a homomorphism to
the tromp graph T16 and that any partial k-tree admits a homomorphism to the
Zielonka graph Zk+1. Hence the proof follows using Lemma 6 and Corollaries 8
and 9.

5. Outerplanar Graphs

A graph G is outerplanar if the graph formed from G by adding a new vertex,
with edges connecting it to all the other vertices is a planar graph. We denote
the family of outerplanar graphs by O. Now we prove Theorem 3.

Proof of Theorem 3. Every outerplanar graph is also a partial 2-tree. So, the
upper bound follows from Theorem 4.

To prove the lower bound, we will construct an oriented outerplanar graph
~O∗ with ~λ2,1( ~O∗) ≥ 9. This will complete the proof.

First, we show that the outerplanar graph ~O (Figure 6) has no 2-dipath
8-L(2, 1)-labeling if v gets label 1.

Let f be a 2-dipath 8-L(2, 1)-labeling of ~O such that f(v) = 1. This implies
f(t) /∈ {0, 1, 2} for t ∈ {x1, x2, . . . , x8, y1, . . . , y8} and f(xi) 6= f(yj) for any
i, j = 1, 2, . . . , 8.
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v

x1 x2

x3 x4 x5 x6 y8 x7
y1y2

y3y4y5y6x8y7

a8a7a6a5a4a3a2a1 b1 b2 b3 b4 b5 b6 b7 b8

Figure 6. The oriented outerplanar graph ~O.

Clearly, we need at least 3 distinct labels for each of the sets {xi | i = 1, . . . , 8}
and {yi | i = 1, . . . , 8}. Also, if we use exactly 3 labels for either of these sets,
then those 3 labels should have pairwise difference at least 2.

To satisfy the above conditions, by symmetry, we may assume without loss of
generality that we use labels {3, 5, 7} for {x1, . . . , x8} and {4, 6, 8} for {y1, . . . , y8}.

Now, with these assumptions, the following conditions are forced:

(a) f(bi) /∈ {f(x1)− 1, f(x1), f(x1) + 1} for i = 1, 2, . . . , 8.

(b) f(bi) 6= f(bj) for i ∈ {1, 2, 3, 4} and j ∈ {5, 6, 7, 8}.
(c) f(bi) /∈ {1, f(x2), f(y1)} for i = 1, 2, 3, 4.

(d) f(xi) = f(xi+3) for all i = 1, 2, 3.

(e) we need at least 3 distinct labels for either of the sets {b1, . . . , b4} and
{b5, . . . , b8} for i = 1, . . . , 8. Also, if we use exactly 3 labels for either of these
sets, then those 3 labels should have mutual difference at least 2.

We have three cases to consider.

Case 1. If f(x1) = 7, then f(y1) = 4 and f(x2) = 3 or 5. Then, {f(b1), f(b2),
f(b3), f(b4)} = {0, 2, 5} (by (a), (c), (e)). This implies {f(b5), f(b6), f(b7), f(b8)}
= {1, 3, 4} (by (a), (b)) which contradicts (e).

Case 2. If f(x1) = 5, then f(y1) = 8 and f(x2) = 3 or 7. Then, {f(b1), f(b2),
f(b3), f(b4)} = {0, 2, 7} (by (a), (c), (e)). Hence f(x2) = 3. This implies f(x3) =
7. Therefore, f(x6) = 7 (by (d)).

Now, the only possibility is to have f(y8) = 4 which will force f(x7) = 7 since
f(x7) ∈ {3, 5, 7}. But x6 and x7 cannot have same labels since they are connected
by a 2-dipath through y8. This is a contradiction.

Case 3. If f(x1) = 3, then f(y1) = 6 or 8 and f(x2) = 5 or 7. Then,
{f(b1), f(b2), f(b3), f(b4)} = {0, 5, 8} (by (a), (c), (e)). This implies {f(b5), f(b6),
f(b7), f(b8)} = {1, 6, 7} (by (a), (b)) which contradicts (e).
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Figure 7. The oriented cactus ~H.

Hence, we do not have a 8-L(2, 1)-labeling f of ~O such that f(v) = 1. By
symmetry, we can say that we do not have a 8-L(2, 1)-labeling f of ~O such that
f(v) = 7.

Now define S = V ( ~O) \ {x2, x7, x8, y2, y7, y8} and let ~G = ~O[S].

Notice that if we try to 2-dipath 8-L(2, 1)-label ~G, then we need to use 3
different labels for the vertices v, x1 and y1. One of these three vertices should
have a label l /∈ {0, 8}. To label the neighbors of that vertex, we clearly need at
least 6 labels other than l − 1, l and l + 1. So, we have to use all the remaining
6 labels and whatever the value of l may be, we necessarily use label 1 or 7 to
2-dipath 8-L(2, 1)-label ~G.

Now, we construct a new graph ~O∗ by gluing a copy of ~O on each vertex of
~G by identifying that vertex of ~G with the vertex v of ~O.

Note that ~O∗ is an outerplanar graph that cannot be 2-dipath 8-L(2, 1)-
labelled, which proves the theorem.

6. Cacti

A cactus is a connected graph in which any two cycles can have at most one
vertex in common. We denote the family of cacti by C. Now we prove Theorem
5. The following lemmas will be useful for proving Theorem 5.

Lemma 13. There exists an oriented cactus ~C with ~λ2,1(C) ≥ 7.

Proof. Let ~H be the oriented cactus depicted in Figure 7. We first show that
there is no 6-L(2, 1)-labeling f of ~H with f(x) = 2. Assume to the contrary that
such a labeling f exists.
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The assumption implies that f(t) /∈ {1, 2, 3} for t ∈ {z1, z2, z3, z4, y1, y2, y3, y4}.
Also we have, f(zi) 6= f(yj) for i, j = 1, 2, 3, 4 and for t ∈ {y, z}, |f(t1)−f(t2) |≥ 2
and f(t3) 6= f(t4) .

This will force either {f(z3), f(z4)} = {0, 5} or {f(y3), f(y4)} = {0, 5} (as
{f(z3), f(z4)} = {0, 6} will force f(y3), f(y4) ∈ {4, 5}, which is not possible).
But these two cases are symmetric. So, without loss of generality, we can assume
{f(z3), f(z4)} = {0, 5}.
Again, by symmetry, we can assume f(z3) = 0 and f(z4) = 5. This will force
f(v) = 3. Then, f(t) /∈ {2, 3, 4} for t ∈ {v+

1
, v+

2
, v+

4
, v+

5
, v−

1
, v−

2
, v−

4
, v−

5
}.

Similarly as before, we have f(v+i ) 6= f(v−j ) for i, j = 1, 2, 4, 5 and for t ∈

{v+, v−}, |f(t4) − f(t5)| ≥ 2 and f(t1) 6= f(t2). Moreover, f(v+i ) 6= f(z3) = 0
and f(v−i ) 6= f(z4) = 5 for i = 1, 2, 4, 5. This forces {f(v+

1
), f(v+

2
)} = {5, 1}.

Then no label is available for v+
3
, a contradiction. Hence, we do not have a

6-L(2, 1)-labeling f of ~H such that f(x) = 2.
Let ~G be a graph obtained by gluing a copy of the induced subgraph ~H[x, y1,

y2, z1, z2] on each vertex of the directed 5-cycle ~C5 by identifying each vertex of
~C5 with the vertex x of ~H[x, y1, y2, z1, z2]. Clearly, ~G is a cactus.

Now, if we 2-dipath 6-L(2, 1)-label ~G, we need to use at least 5 labels for the
~C5 inside it. If 2 is not among those 5 labels, then at least one of {4, 5} is among
those 5 labels. Now, the ~H[x, y1, y2, z1, z2] glued with the vertex that got label 4
(or 5) clearly must use label 2. Hence, for any 2-dipath 6-L(2, 1)-labeling of the
cactus ~G, we need to use 2 as one of the labels.

Now, we construct a new graph ~C by gluing a copy of ~H on each vertex of ~G
by identifying that vertex of ~G with the vertex x of ~H. Note that ~C is a cactus
that cannot be 2-dipath 6-L(2, 1)-labelled. This completes the proof.

Let ~B be the oriented graph depicted in Figure 1. Then we have:

Lemma 14. Let ~O be an oriented cycle. Given any x ∈ V ( ~O) and y ∈ V ( ~B),
there exists a homomorphism h : ~O −→ ~B such that h(x) = y.

Proof. We know that ~B is 4-nice. Hence it is enough to show that for any
oriented 3-cycle ~T and given any x ∈ V (~T ) and y ∈ V ( ~B), there exists a homo-
morphism h : ~O −→ ~B such that h(x) = y. In other words, we need to show that
for each y ∈ V ( ~B), the 3-cycles in Figure 8 are subgraphs of ~B, which can easily
be checked.

Lemma 15. Every oriented catus ~C admits a homomorphism to ~B.

Proof. Let ~G be a minimal counterexample to Lemma 15.
If there is a degree one vertex v in ~G such that v ∈ N+(u) (or v ∈ N−(u))

for some u ∈ V (~G), then ~G[V (~G) \ {v}] is also a cactus. As ~G is a minimal
counterexample, there is a homomorphism f from ~G[V (~G\{v}] to ~B. Now, since
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y y y y

Figure 8. Four different oriented 3-cycles with respect to the vertex y.

all the vertices of ~B have at least one in-neighbor and one out-neighbor, we can
extend the homomorphism f to a homomorphism of ~G to ~B by mapping v to any
vertex x ∈ N+(f(u)) (or x ∈ N−(f(u))). This is a contradiction. Hence there
cannot be a degree one vertex in ~G.

No vertex of degree one in ~G implies at least one cycle ~C ⊆ ~G such that
exactly one vertex z of the cycle ~C has degree greater than 2 (since, by Lemma 14,
~G cannot be a cycle).

Now, ~G[V (~G) \ {V (~C) \ {z}}] is a cactus and, since ~G is a minimal coun-
terexample, there is a homomorphism f from ~G[V (~G) \ {V (~C) \ {z}}] to ~B. By
Lemma 14, we can extend f to a homomorphism of ~G to ~B, a contradiction. This
completes the proof.

We are now able to prove Theorem 5.

Proof of Theorem 5. The proof follows from Lemmas 13, 15, 6 and the fact
that λo

2,1(
~B) = 7 (from Figure 1).

7. Conclusion

In this paper we studied 2-dipath and oriented L(2, 1)-span of some planar fami-
lies of graphs. For the family P of planar graphs we have 17 ≤ ~χ(P) ≤ 80 where
the lower bound is due to Marshall [8] and the upper bound is due to Raspaud
and Sopena [10]. In this paper we proved 18 ≤ ~λ2,1(P) ≤ λo

2,1(P) ≤ 83. We
proved the upper bound using Raspaud and Sopena’s result [10]. But for the
lower bound, our proof is independent from Marshall’s one [8]. Indeed, using
Marshall’s result one can only prove 17 ≤ λo

2,1(P).

For the family O of outerplanar graphs we have 9 ≤ ~λ2,1(O) ≤ λo
2,1(O) ≤

10. Now, according to this paper, improvements of the form ~λ2,1(O) = 10 (or

λo
2,1(O) = 10) in the above result will imply 20 ≤ ~λ2,1(P) (or 20 ≤ λo

2,1(P)).

We know that there exists an oriented graph on |~χ(P)| vertices to which ev-
ery oriented planar graph admits a homomorphism [13]. This paper tells us that
18 labels (1, 2, . . . , 17) are not enough to 2-dipath L(2, 1)-label such a graph. We
hope one might be able to use this (and other things, especially the configura-
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tions used in Marshall’s paper [8]) to improve the lower bound for the oriented
chromatic number ~χ(P) of the family of planar graphs.
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