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Abstract

LetG be a graph that is a subgraph of some n-dimensional hypercubeQn.
For sufficiently large n, Stout [20] proved that it is possible to pack vertex-
disjoint copies of G in Qn so that any proportion r < 1 of the vertices of Qn

are covered by the packing. We prove an analogous theorem for edge-disjoint
packings: For sufficiently large n, it is possible to pack edge-disjoint copies
of G in Qn so that any proportion r < 1 of the edges of Qn are covered by
the packing.
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1. Introduction

Hypercubes and their subgraphs have been studied for decades (see [12]), with
interest derived from both their pure mathematical structure and numerous appli-
cations, for example in coding theory (see [21]) and parallel computing (see [14]).
A graph is called cubical if it is a subgraph of a hypercube. Many researchers
have studied which graphs are cubical [5, 6, 7, 9, 10], as well as the complexity
of determining if a graph is cubical [4]. Others have relaxed the conditions for
embedding, and studied properties of relaxed embeddings of non-cubical graphs
in the hypercube [1, 15]. For a given cubical graph G, it is natural to ask how
efficiently G can pack or cover the hypercube (see [11, 12, 20]). Many people
have studied edge-decompositions of the hypercube into either fixed subgraphs
[3, 13, 20], or subgraphs that depend on the dimension of the cube [8, 17, 19, 22].
The same question has been asked for vertex-decompositions [20, 18].

In 1990, Stout proved Theorem 1 [20]: Given a cubical graph G, for suffi-
ciently large n it is possible to pack vertex-disjoint copies of G in Qn so that any
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proportion r < 1 of the vertices of Qn are covered by the packing. We prove
this in Section 3. Stout made an analogous conjecture for edge-disjoint packings:
Given a cubical graph G, for sufficiently large n it is possible to pack edge-disjoint
copies of G in Qn so that any proportion r < 1 of the edges of Qn are covered by
the packing. Stout proved this result for some graphs G, such as trees. We prove
the conjecture in general in Theorem 2. The proofs of both theorems are ele-
mentary and constructive. The last section contains some conclusions and open
problems.

2. Definitions and Notation

For a graph G, let V (G) denote the set of vertices in G, E(G) denote the set of
edges inG, and |V (G)| and |E(G)| denote the respective cardinalities of these sets.
A subgraph of a graph H isomorphic to another graph G is called an embedding

of G in H. A vertex-disjoint packing (resp. edge-disjoint packing) of G in H is
a set of embeddings of G in H such that no two share a vertex (resp. edge).
The cardinality of a packing P , denoted |P |, is the number of embeddings in the
packing. A vertex or edge of H is covered by a packing if it is contained in some
embedding in the packing. The vertex density (resp. edge density) of a packing
P of G in H is the proportion of the total number of vertices (resp. edges) of H
covered by P . When it is clear what type of density we are considering, we may
refer to either of these concepts just as density. We say the vertices (resp. edges)
of a graph are partitioned by a set of subgraphs if every vertex (resp. edge) of the
graph belongs to exactly one of the subgraphs. A vertex-disjoint packing (resp.
edge-disjoint packing) of G in H is perfect if all vertices (resp. edges) of H are
covered by the packing.

For n ∈ Z, n ≥ 1, the n-dimensional hypercube, denoted Qn, is the graph
with V (Qn) = {0, 1}n, and edges between vertices which differ in exactly one
coordinate. Suppose x = [x1x2 · · ·xn], y = [y1y2 · · · yn] ∈ V (Qn) and j is the only
coordinate such that xj 6= yj . Then the edge {x, y} ∈ E(Qn) can be represented
by the n-coordinate vector obtained by changing coordinate j of x (or y) to a
star. For example, in Q4, [010∗] represents the edge containing vertices [0100]
and [0101]. If d ≤ n, we represent the subgraph Qd of Qn by an n-coordinate
vector with stars in d coordinates. For instance [1 ∗ 00∗] represents the Q2 in Q5

with vertices {[10000], [11000], [10001], [11001]} and edges {[1 ∗ 000], [1000∗], [1 ∗
001], [1100∗]}. We call edges with a star in the same coordinate parallel, and the
class of edges with a star in coordinate i the ith parallel class.

For d ≤ n, consider an embedding of Qd in Qn represented by a vector
of length n with d stars. We say the vertex v ∈ V (Qn) corresponds to x =
[x1x2 · · ·xd] ∈ V (Qd) if the vector representing v in Qn is obtained by replacing
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the ith star with xi. For instance, the vertex [11000] in [1 ∗ 00∗] corresponds to
[10] ∈ V (Q2). We similarly define corresponding edges, subgraphs, and packings.
Given a packing P in Qd, we say that the corresponding packing in an embedding
of Qd in Qn is a copy of P .

Say P is a packing of the graph G in Qn. Given a permutation σ of {1, . . . , n},
define σ(P ) to be the packing obtained by applying σ to the coordinates of all
vertices and edges of P . For instance, if P is a packing of the edges [11∗], [0 ∗ 1],
and [∗00] in Q3, and σ = (123), then σ(P ) = {[∗11], [10∗], [0 ∗ 0]}.

3. Vertex-disjoint Packings

Suppose G is a subgraph of Qn for some n, and let Pv(G,n) denote the set of
vertex-disjoint packings of G in Qn. Define v(G,n) to be the maximum vertex
density of a vertex-disjoint packing of G in Qn. That is,

v(G,n) = max
P∈Pv(G,n)

|P ||V (G)|

|V (Qn)|
= max

P∈Pv(G,n)

|P ||V (G)|

2n
.

Define
v(G) = lim

n→∞
v(G,n).

For any n, the vertices of Qn+1 can be partitioned into two embeddings of Qn,
represented by the vectors [0∗∗ · · · ∗] and [1∗∗ · · · ∗]. Any vertex-disjoint packing
P of Qn can be copied into each of these two embeddings to get a vertex-disjoint
packing of Qn+1 with the same density as P . Thus v(G,n) is monotonic as n
increases. Since it is also bounded above by 1, the limit v(G) exists for all G.

There are many graphs G which are subgraphs of Qd for some d but for which
there is no n such that v(G,n) = 1. Indeed, since |V (Qn)| = 2n, any graph G
where |V (G)| is not a power of two will not have a perfect packing. Nonetheless,
there is a simple construction that shows that any graph G that is a subgraph of
the hypercube can be packed perfectly in an asymptotic sense. That is, if we set
n to be large enough, we may make v(G,n) as close to 1 as we like. This is the
content of Theorem 1. Stout [20] proved Theorem 1 but has not published the
result. For completeness, we include a proof here.

Theorem 1 (Stout). Let G be a nonempty graph which is a subgraph of Qn for

some n. Then v(G) = 1.

Proof. Given G, a subgraph of Qd, we construct a sequence of vertex-disjoint
packings Pi of G in Qid for i ≥ 1, i ∈ Z, whose densities converge to 1. Since
v(G,n) is monotonic, this suffices to prove the theorem.

Start with any vertex-disjoint packing P1 ofG inQd, and suppose this packing
has vertex density r > 0. If r = 1, we are done. Otherwise, assume we have a
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packing Pi of G in Qid and proceed inductively as follows. Partition the vertices of
Q(i+1)d into a set A of 2d vertex-disjoint copies of Qid, each of the form [∗∗· · ·∗Y ],
where there are id stars, and Y is a binary string of length d. By copying Pi into
each element of A, we obtain a vertex-disjoint packing P ′

i+1 of the same density
as Pi. The uncovered vertices of Q(i+1)d can be partitioned into a set B of vertex-
disjoint copies of Qd, each of the form [x1x2 · · ·xid∗∗ · · · ∗] where there are d stars
and [x1x2 · · ·xid] is a vertex of Qid not covered by Pi. By copying P1 into each
element of B, we obtain a vertex-disjoint packing P ′′

i+1 covering a proportion r of
the uncovered vertices. Let Pi+1 be the union of P ′

i+1 and P ′′
i+1. Then Pi+1 is a

vertex-disjoint packing of G in Q(i+1)d, and if we let ρ(P ) denote the density of
a packing P , then we obtain for i ≥ 1

ρ(Pi+1) = ρ(P ′
i+1) + ρ(P ′′

i+1) = ρ(Pi) + (1− ρ(Pi))r = r + ρ(Pi)(1− r).

By induction, the density of Pi is r+ (1− r)r+ (1− r)2r+ · · ·+ (1− r)i−1r, and
since

∑∞

i=1
(1− r)i−1r =

r

1− (1− r)
= 1,

we can find a packing Pi with density as close to 1 as we wish.

4. Edge-disjoint Packings

Let Pe(G,n) denote the set of edge-disjoint packings of G in Qn, and define
e(G,n) to be the maximum edge density of an edge-disjoint packing of G in Qn:

e(G,n) = max
P∈Pe(G,n)

|P ||E(G)|

|E(Qn)|
= max

P∈Pe(G,n)

|P ||E(G)|

n2n−1
.

Unlike v(G,n), e(G,n) is not monotonic. For instance, e(Q2, 2) = 1, but e(Q2, 3)
= 2/3. This is due to the fact that for n ≥ 2, the edges of Qn+1 cannot be
partitioned into edge-disjoint copies of Qn. However, the edges of Qmn can be
partitioned into edge-disjoint copies of Qm or Qn, and in particular Qni+1 can be
decomposed into edge-disjoint copies of Qni or Qn, and this fact will be helpful
in proving Theorem 2. Define

e(G) = lim
n→∞

e(G,n).

We will show that this limit exists in the proof of Theorem 2.

Theorem 2. Let G be a graph with at least one edge which is a subgraph of Qn

for some n. Then e(G) = 1.
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Proof. Given G, a subgraph of Qd0 , we first construct an edge-disjoint packing
P1 of G in Qd, where d = 2d0, with the property that P1 covers the same number
of edges in each parallel class. This step is not strictly necessary, but starting
with a packing with this property simplifies subsequent calculations.

Let P0 be any edge-disjoint packing of G in Qd0 with positive density, let
d = 2d0, and let σ be the cyclic permutation (12 · · · d0). Consider the set A of
embeddings of Qd0 in Qd of the form [∗∗· · ·∗Y ], where there are d0 stars, and Y is
a binary string of length d0. The embeddings in A partition the edges in parallel
classes 1 to d0 into 2d0 edge-disjoint copies of Qd0 . Since |A| = 2d0 ≥ d0, we can
copy the packings P0, σ(P0), σ

2(P0), . . . , σ
d0−1(P0) into d0 of the embeddings in

A, leaving the others empty. We do the same for the set B of embeddings of the
form [X ∗ ∗ · · · ∗], where there are d0 stars, and X is a binary string of length d0.
Call the resulting edge-disjoint packing P1. Since the image of a given edge of
P0 is in a different parallel class under each of the permutations σ, σ2, . . . , σd0−1,
and the identity permutation, P1 contains exactly one copy of each edge in P0

in each parallel class of Qd. Thus P1 covers the same number of edges in each
parallel class.

Next we construct a sequence of edge-disjoint packings Pi of G in Qdi for
i ≥ 1, i ∈ Z, whose edge densities converge to 1. Assume P1 has density r1 > 0,
and proceed inductively, as follows. Suppose we have a packing Pi of G in Qdi

with density ri that covers the same number of edges in each parallel class. For
k ∈ Z, 0 ≤ k ≤ d − 1, let Ak be the set of 2d

i(d−1) edge-disjoint embeddings of
Qdi in Qdi+1 corresponding to strings of the form [X ∗ ∗ · · · ∗ Y ] where there are
di stars, X is a binary string of length kdi, and Y is a binary string of length
(d − (k + 1))di. Let A =

⋃

Ak, and note that A partitions the edges of Qdi+1 .
Thus we can copy Pi into each cube in A to obtain an edge-disjoint packing P ′

i+1

of G in Qdi+1 with the same density as Pi. Next, we augment this packing. For
each integer j, 1 ≤ j ≤ di, let Bj be the set of 2d

i+1−d edge-disjoint embeddings
of Qd in Qdi+1 with stars in the (kdi + j)th positions, k ∈ Z, 0 ≤ k ≤ d− 1, and
all other coordinates fixed. Let B =

⋃

Bj , and note that B partitions the edges
of Qdi+1 . Let B′ ⊆ B be the set of elements of B that contain no edges of P ′

i+1.
Copy the packing P1 into each cube in B′ to obtain the edge-disjoint packing
P ′′
i+1. Let Pi+1 be the union of P ′

i+1 and P ′′
i+1.

The packings P ′
i+1 and P ′′

i+1 are each edge-disjoint, and P ′
i+1 does not cover

any edges in B′, so Pi+1 is an edge-disjoint packing of Qdi+1 . Since P1 and Pi

each cover the same number of edges in each parallel class, Pi+1 inherits this
property as well. To show this, let 0 ≤ k < d, 1 ≤ j ≤ d, and let S denote the
set of 2d

i+1−1 edges in the (kdi + j)th parallel class of Qdi+1 . Our aim is to show
that the number of edges in S covered by Pi+1 does not depend on k or j, i.e.
Pi+1 covers the same number of edges in each parallel class.

The parallel class S can be partitioned into 2d
i(d−1) subsets of size 2d

i−1, each
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of which is the jth parallel class of some Qdi in Ak. Since the packing Pi is copied
into each cube in Ak to form the packing P ′

i+1, and Pi covers the same proportion
ri of the edges in each parallel class of Qdi , P

′
i+1 will cover the proportion ri of

the edges in S.
The edges in S can also be partitioned into 2d

i+1−d subsets of size 2d−1, each
of which is the (k + 1)th parallel class of some Qd in Bj ⊆ B. An element of B
is in B′ if and only if for each k from 0 to d − 1, the coordinates from kdi + 1
to kdi + di correspond to an edge in Qdi not covered by Pi. Since Pi has density
ri in each parallel class, the proportion (1− ri)

d of the elements of Bj will be in

B′, and the edges in S contained in B′ can be partitioned into (1 − ri)
d2d

i+1−d

subsets of size 2d−1, each of which is the (k + 1)th parallel class of some Qd in
B′. Since the packing P1 is copied into each cube in B′ to form the packing P ′′

i+1,
and P1 covers the same proportion r1 of the edges in each parallel class of Qd,
P ′′
i+1 will cover the proportion (1− ri)

dr1 of the edges in S.
Since none of the calculations above depended on the particular choices of

k and j, Pi+1 covers the proportion ri + (1− ri)
dr1 of the edges in each parallel

class, and so it has density ri+1 = ri + (1− ri)
dr1 .

To see that the values of ri converge to 1, let si = 1 − ri to obtain the
recurrence si+1 = si− sdi r1 from ri+1 = ri+(1− ri)

dr1. Since s
d
i > 0 for all i, the

values of si decrease as i increases, and we aim to show that they converge to 0.
For the sake of contradiction, suppose there is some α > 0 such that si > α for all
i. If si > α, then si+1 < si−αdr1. So, if i >

s1−α
αdr1

then si+1 < s1−
s1−α
αdr1

αdr1 = α,
a contradiction. Thus ri converges to 1 as i goes to ∞, and for any G there is an
infinite sequence of packings whose densities converge to 1.

To complete the proof, we use the sequence of packings Pi on Qdi to define an
edge-disjoint packing P for any Qn, where the density of P is arbitrarily close to
1 for sufficiently large n. Fix n, and let k be the integer such that dk ≤ n < dk+1.
Let a0, a1, . . . , ak be the unique integers such that n = akd

k + ak−1d
k−1 + · · · +

a1d+ a0 and 0 ≤ ai < d for each i. For 0 ≤ i ≤ k, 0 ≤ j < ai, let Ci,j be the set
of embeddings of Qdi in Qn corresponding to strings of the form [X ∗ ∗ · · · ∗ Y ],
where there are di stars, X is a binary string of length a0 + a1d+ · · ·+ jdi, and
Y is a binary string of length (ai − (j + 1))di + ai+1d

i+1 + · · · + akd
k. For each

i, let Ci =
⋃

Ci,j , and let C =
⋃

Ci. The elements of C partition the edges of

Qn, and |Ci| = ai2
n−di . Thus we can get an edge-disjoint packing P of Qn by

copying Pi into each element of Ci. Since the number of edges in each packing
Pi is rid

i2d
i−1, the density of P is

1

|E(Qn)|

∑k

i=0
|Ci|rid

i2d
i−1 =

1

n2n−1

∑k

i=0
ai2

n−dirid
i2d

i−1 =
1

n

∑k

i=0
aid

iri.

Since a0 + a1d + · · · + akd
k = n, this density can be interpreted as a weighted

average of the ri’s. The ri’s converge monotonically to 1, and almost all of the
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weight is distributed to the highest values of i, so for large n this density gets
arbitrarily close to 1. More precisely, fix any small ǫ > 0. Since the values
of ri monotonically increase toward 1, we can choose n large enough so that

r⌊k/2⌋ > 1−ǫ/2 and d⌊k/2⌋+1

n < ǫ/2. We use the fact that a0+a1d+ · · ·+akd
k = n

and a0+a1d+ · · ·+a⌊k/2⌋d
⌊k/2⌋ ≤ d⌊k/2⌋+1 to bound the density of P from below

as follows:

1

n

∑k

i=0
aid

iri ≥
1

n

∑k

i=⌊k/2⌋+1
aid

iri ≥
1

n

(

n− d⌊k/2⌋+1
)

r⌊k/2⌋+1

≥

(

1−
d⌊k/2⌋+1

n

)

(1− ǫ/2) ≥ 1− ǫ.

5. Conclusions and Open Problems

Both constructions in this paper have the property that they begin with an
arbitrary nonempty packing and use it to generate a sequence of packings, each
in some sense an augmentation of the previous. But the vertex densities of the
vertex-disjoint packings in the proof of Theorem 1 converge to 1 much faster than
the edge densities of the edge-disjoint packings given in the proof of Theorem 2.
Are these rates of convergence optimal, or can one obtain faster convergence
by choosing an initial packing more deliberately or by using a more sensitive
induction? Is it possible to identify which graphs of a given size have packings
whose densities have the slowest convergence to one?

As mentioned in the introduction, it can be shown that some subgraphs
have perfect packings. In [23], Wilson gave necessary and sufficient conditions
for a subgraph of a sufficiently large complete graph to have a perfect edge-
disjoint packing. Is it possible to find such conditions for the hypercube, either
for vertex-disjoint packings or edge-disjoint packings? For instance, if G is cubical
and |V (G)| = 2k for some natural number k, does a perfect vertex packing always
exist in a sufficiently large hypercube?
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