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Jaroslav Ivančo and Tatiana Polláková
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Abstract

A graph is called supermagic if it admits a labeling of the edges by
pairwise different consecutive integers such that the sum of the labels of the
edges incident with a vertex is independent of the particular vertex. In this
paper we establish some conditions for graphs with a saturated vertex to
be supermagic. Inter alia we show that complete multipartite graphs K1,n,n

and K1,2,...,2 are supermagic.
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1. Introduction

We consider finite undirected graphs without loops, multiple edges and isolated
vertices. If G is a graph, then V (G) and E(G) stand for the vertex set and the
edge set of G, respectively. Cardinalities of these sets are called the order and
the size of G.

Let a graph G and a mapping f from E(G) into positive integers be given.
The index-mapping of f is the mapping f∗ from V (G) into positive integers
defined by

f∗(v) =
∑

e∈E(G) η(v, e)f(e) for every v ∈ V (G),
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where η(v, e) is equal to 1 when e is an edge incident with a vertex v, and 0
otherwise. An injective mapping f from E(G) to positive integers is called a
magic labeling of G for an index λ if its index-mapping f∗ satisfies

f∗(v) = λ for all v ∈ V (G).

A magic labeling f of G is called a supermagic labeling of G if the set {f(e) :
e ∈ E(G)} consists of consecutive positive integers. We say that a graph G is
supermagic (magic) whenever there exists a supermagic (magic) labeling of G.

The concept of magic graphs was introduced by Sedláček [9]. Supermagic
graphs were introduced by Stewart [11]. There is by now a considerable number
of papers published on magic and supermagic graphs; we single out [7, 10, 6, 4]
as being more particularly relevant to the present paper, and refer the reader to
[2] for comprehensive references.

Let G ∪ H denote the disjoint union of graphs G and H. The join G ⊕ H
of the disjoint graphs G and H is the graph G ∪ H together with all edges
joining vertices of V (G) and vertices of V (H). The vertex v of a graph H is
called saturated vertex, if it is adjacent to every other vertex. The graph H with
a saturated vertex v is isomorphic to (H−v)⊕K1. So the graph with a saturated
vertex is also denoted by G⊕K1.

Magic graphs with a saturated vertex were characterized in [10]. In the
paper there are also given some conditions for the existence of supermagic graphs
G ⊕ K1. In [7] there are given other sufficient conditions for existence of such
graphs. Similar problems are solved in [6].

In this paper we will deal with supermagic graphs G⊕K1 for regular graphs
G.

2. Vertex-magic Total Labelings

The notion of a vertex-magic total labeling was introduced in [8]. A bijective
mapping g : V (G) ∪E(G) → {1, 2, . . . , |V (G)|+ |E(G)|} is called a vertex-magic

total labeling of a graph G if there is a constant h such that

g(v) +
∑

e∈E(G)
η(v, e)g(e) = h for every v ∈ V (G),

that is, g(v) + g∗(v) = h for every vertex v. The constant h is called the magic

constant for g.

For regular graphs G, the supermagic graphs G⊕K1 can be characterized in
the following way.

Theorem 1. Let G be a d-regular graph of order n. The graph G ⊕ K1 is

supermagic if and only if G admits a vertex-magic total labeling with magic con-
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stant h such that (n− d− 1) is a divisor of the non-negative integer (n+ 1)h−
nd+2

2

(

nd+2
2 + 1

)

.

Proof. Let v be a saturated vertex of H = G⊕K1.
Suppose that f : E(H) → {a, a + 1, . . . , a + |E(H)| − 1} is a supermagic

labeling of H for an index λ. As |E(H)| = n(d+ 2)/2, the index λ satisfies

λ =
2

|V (H)|

∑

e∈E(H)
f(e) =

1

n+ 1

(

2a+ n
d+ 2

2
− 1

)

n
d+ 2

2
.

Consider the mapping g defined by

g(x) =

{

1 + f(x)− a for x ∈ E(G),

1 + f(vx)− a for x ∈ V (G).

Evidently, g is a bijection from V (G)∪E(G) onto {1, 2, . . . , |V (G)|+ |E(G)|} and
g(w) + g∗(w) = λ− (a− 1)(d + 1) = h for any vertex w ∈ V (G). Therefore g is
a vertex-magic total labeling of G. Moreover, we have

(n+1)h−nd+2
2

(

nd+2
2 +1

)

= (n+1)
(

1
n+1

(

2a+ nd+2
2 −1

)

nd+2
2 −(a−1)(d+1)

)

−nd+2
2

(

nd+2
2 + 1

)

= an(d+ 2)− nd+2
2 − (a− 1)(d+ 1)(n+ 1)− nd+2

2

= (a− 1)n(d+ 2)− (a− 1)(d+ 1)(n+ 1)

= (a− 1)(n− d− 1) ≥ 0.

Thus, (n− d− 1) is a divisor of (n+ 1)h− nd+2
2

(

nd+2
2 + 1

)

.
Now, let us assume that g is a vertex-magic total labeling of G with magic

constant h such that (n−d−1) is a divisor of the non-negative integer (n+1)h−
nd+2

2

(

nd+2
2 + 1

)

. Then there is a non-negative integer κ such that

(n+ 1)h− n
d+ 2

2

(

n
d+ 2

2
+ 1

)

= κ(n− d− 1).

Consider the mapping f given by

f(e) =

{

κ+ g(e) for e ∈ E(G),

κ+ g(w) for e = vw.

Clearly, f is a bijection from E(H) onto {κ+ 1, κ+ 2, . . . , κ+ |V (G)|+ |E(G)|}.
Moreover, f∗(v) = κ|V (G)| +

∑

w∈V (G) g(w) and f∗(w) = h + κ(d + 1) for any
vertex w ∈ V (G). In this case we obtain

∑

w∈V (G) g(w) + |V (G)|h = 2
∑

x∈V (G)∪E(G) g(x)

= (|V (G)|+ |E(G)|)(|V (G)|+ |E(G)|+ 1)

= nd+2
2

(

nd+2
2 + 1

)

.
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This implies
∑

w∈V (G) g(w) = nd+2
2

(

nd+2
2 + 1

)

− nh

= nd+2
2

(

nd+2
2 + 1

)

− (n+ 1)h+ h

= h− κ(n− d− 1).

Hence
f∗(v) = κn+ h− κ(n− d− 1) = h+ κ(d+ 1),

which means that f is a supermagic labeling of H.

Using known results on vertex-magic total labelings of regular graphs of odd order
the previous theorem implies the same assertions that was proved in [7] by other
methods. Therefore, we apply Theorem 1 to regular graphs of even order and we
have immediately

Corollary 2. Let G be a 2(k − 1)-regular graph of order 2k. The graph G⊕K1

is supermagic if and only if G admits a vertex-magic total labeling with magic

constant h such that (2k + 1)h ≥ 2k2(2k2 + 1).

Corollary 3. Let G be a k-regular graph of order 2k. The graph G⊕K1 is super-

magic if and only if G admits a vertex-magic total labeling with magic constant

h such that the non-negative integer (2k + 1)h − k(k + 2)(k + 1)2 is an integral

multiple of (k − 1).

Note that for 2-regular graphs a vertex-magic total labeling corresponds to an
edge-magic total labeling introduced by Kotzig and Rosa. Using this correspon-
dence we can rewrite the following known result for cycles (see [12]).

Proposition 1. The cycle C2k has a vertex-magic total labeling with magic con-

stant h = 7k + 1.

Now we are able to prove the following assertion.

Theorem 4. Let G be a d-regular graph of order 2k. If G contains a Hamilton

cycle C such that G − E(C) is supermagic then G admits a vertex-magic total

labeling with magic constant h = 7k + 1 + 1
2(d− 2)(kd+ 6k + 1).

Proof. Put H = G − E(C). By the assumption there is a supermagic labeling
f : E(H) → {1, 2, . . . , |E(H)|}. Since |E(H)| = k(d− 2), the index of f satisfies

λ =
(|E(H)|+ 1)|E(H)|

|V (G)|
=

1

2

(

k(d− 2) + 1
)

(d− 2).

Similarly, according to Proposition 1 there exists a vertex-magic total labeling
g : V (C) ∪ E(C) → {1, 2, . . . , 4k} with magic constant h = 7k + 1. Consider
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the mapping ϕ defined by

ϕ(x) =

{

g(x) for x ∈ V (C) ∪ E(C),

4k + f(x) for x ∈ E(H).

Clearly, ϕ is a bijection from V (G) ∪ E(G) onto {1, 2, . . . , |V (G)| + |E(G)|}.
Accordingly

ϕ(w) + ϕ∗(w) = h+ λ+ 4k(d− 2)
= 7k + 1 + 1

2

(

k(d− 2) + 1
)

(d− 2) + 4k(d− 2)

= 7k + 1 + 1
2(d− 2)(kd+ 6k + 1)

for any vertex w ∈ V (G). Therefore ϕ is a desired vertex-magic total labeling of
G.

3. Complete Multipartite Graphs

A complete k-partite graph is a graph whose vertices can be partitioned into k ≥ 2
disjoint classes V1, . . . , Vk such that two vertices are adjacent if and only if they
belong to distinct classes. If |Vi| = ni for all i = 1, . . . , k, then the complete
k-partite graph is denoted by Kn1,...,nk

. If ni = n for all i = 1, . . . , k, then the
complete k-partite graph is regular of degree (k − 1)n and is denoted by Kk[n].
Similarly, if ni = n for all i = 1, . . . , k and nk+1 = p then the complete (k + 1)-
partite graph is denoted by Kp,k[n].

In this section we characterize supermagic graphs K1,2[n] = Kn,n ⊕ K1 and
K1,k[2] = Kk[2] ⊕ K1. Let us recall some notions and assertions, which we shall
use in the next.

A k-factor (or only a factor) of a graph is defined to be its k-regular spanning
subgraph.

Proposition 2 [3]. If G is a graph decomposable into pairwise edge-disjoint su-

permagic factors, then G is supermagic.

For any graph G we define a graph G⊲⊳ by V (G⊲⊳) =
⋃

v∈V (G){v
0, v1} and

E(G⊲⊳) =
⋃

vu∈E(G){v
0u1, v1u0} ∪

⋃

v∈V (G){v
0v1}. In [7] the following result

is proved.

Proposition 3 [7]. Let G be a 2r-regular graph of odd order. If G is Hamiltonian,

then G⊲⊳ is a supermagic graph.

In [4] the following assertions are proved.

Proposition 4 [4]. Let G be a 4k-regular bipartite graph which can be decomposed

into two edge-disjoint connected 2k-factors. Then G is a supermagic graph.
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Proposition 5 [4]. Let G be a 6-regular bipartite graph of order 2n which can

be decomposed into three edge-disjoint 2-factors where the first is isomorphic to

2Cn and the others are Hamilton cycles. Then G is a supermagic graph.

For X,Y ⊆ V (G) the subgraph of a graph G induced by {uv ∈ E(G) : u ∈ X, v ∈
Y } is denoted by G(X,Y ). The complement of a graph G is denoted by G. In
[5] the following result is proved.

Proposition 6 [5]. Let G be a d-regular bipartite graph of order 2n with parts

U1 and U2. If n ≥ 5 and d are odd and G(U1, U2) is a Hamiltonian graph, then

the complement of G is a supermagic graph.

Let n, m and a1 < · · · < am ≤ ⌊n/2⌋ be positive integers. A graph with the
vertex set {v0, . . . , vn−1} and the edge set {vivi+aj : 0 ≤ i < n, 1 ≤ j ≤ m},
the indices being taken modulo n, is called a circulant graph and it is denoted
by Cn(a1, . . . , am). It is easy to see that the circulant graph Cn(a1, . . . , am) is
a regular graph of degree r, where r = 2m − 1 when am = n/2, and r = 2m
otherwise. In [1] the following result is proved.

Proposition 7 [1]. Any circulant graph of degree 8k is supermagic.

Now we are able to prove the following assertions.

Theorem 5. Let C be a Hamilton cycle of the complete bipartite graph Kn,n,

where n ≥ 5. Then Kn,n − E(C) is a supermagic graph.

Proof. Consider the following cases.

Case A. Let n ≡ 1(mod 2). It is not difficult to check that the graph (Cn)
⊲⊳

is isomorphic to Kn,n−E(C). The graph Cn is Hamiltonian, (n− 3)-regular and
so, by Proposition 3, Kn,n − E(C) is a supermagic graph.

Case B. Let n ≡ 0(mod 2). Put k = n
2 . Suppose that {v0, v1, . . . , vn−1} and

{u0, u1, . . . , un−1} are parts of Kn,n. The subgraph Cj , 0 ≤ j ≤ k − 1, induced
by

⋃n−1
i=0 {viui+2j , ui+2jvi+1} (indices are taken modulo n) is a Hamilton cycle of

Kn,n. Moreover, C0, C1, . . . , Ck−1 form a decomposition of Kn,n into pairwise
edge-disjoint cycles.

If k is odd, then there is an integer r ≥ 1 such that k = 2r + 1. In this
case the graph Kn,n − E(C0) is regular of degree 4r and the sets

⋃r
j=1E(Cj),

⋃2r
j=r+1E(Cj) form its decomposition into two edge-disjoint connected 2r-factors.

Thus, according to Proposition 4, Kn,n − E(C0) is a supermagic graph.

A supermagic labeling of K8,8−E(C3) is described below by giving the labels
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of edges in the following matrix.

u0 u1 u2 u3 u4 u5 u6 u7

v0 8 39 16 11 25 − − 48
v1 41 7 33 13 24 29 − −

v2 − 42 6 36 17 20 26 −

v3 − − 43 5 32 9 23 35
v4 27 − − 44 4 40 18 14
v5 22 34 − − 45 3 31 12
v6 19 15 28 − − 46 2 37
v7 30 10 21 38 − − 47 1

Let T1 and T2 be subgraphs of K12,12 induced by E(C0) ∪ E(C1) ∪ E(C2) and
E(C3) ∪ E(C4), respectively. A supermagic labeling of T1 is described below by
giving the labels of edges in the following matrix.

u0 u1 u2 u3 u4 u5 u6 u7 u8 u9 u10 u11

v0 12 58 24 16 37 − − − − − − 72
v1 61 11 49 19 36 43 − − − − − −

v2 − 62 10 54 25 30 38 − − − − −

v3 − − 63 9 48 13 35 51 − − − −

v4 − − − 64 8 60 26 22 39 − − −

v5 − − − − 65 7 47 14 34 52 − −

v6 − − − − − 66 6 59 27 21 40 −

v7 − − − − − − 67 5 46 18 33 50
v8 41 − − − − − − 68 4 53 28 23
v9 32 53 − − − − − − 69 3 45 17
v10 29 20 42 − − − − − − 70 2 56
v11 44 15 31 57 − − − − − − 71 1

By Proposition 4, T2 is a supermagic graph because it is decomposable into two
Hamilton cycles. Therefore, according to Proposition 2, the graph K12,12−E(C5)
is supermagic.

For even k ≥ 8 there is an integer r ≥ 4 such that k = 2r. Let H1 be
a subgraph of Kn,n induced by {v0uk−1, vkun−1} ∪

(

E(C0)− {uk−1vk, un−1v0}
)

.
It is easy to see that H1 is isomorphic to 2Cn. Similarly, the subgraph H2 induced
by

(

E(C0) ∪ E(Cr)
)

− E(H1) is a 2-factor of Kn,n. According to Proposition 5,
the subgraph G1 of Kn,n induced by E(H1) ∪ E(C1) ∪ E(Cr+1) is supermagic.
Similarly, the subgraph G2 induced by

⋃r−1
j=2 E(Cj) ∪

⋃2r−2
j=r+2E(Cj) ∪ E(H2) is

a 4(r− 2)-regular bipartite graph decomposable into two edge-disjoint connected
2(r− 2)-factors. By Proposition 4, G2 is a supermagic graph. As G1 and G2 are
edge-disjoint factors of Kn,n − E(C2r−1), according to Proposition 2, the graph
Kn,n − E(C2r−1) is supermagic.

Corollary 6. The complete tripartite graph K1,2[n] is supermagic if and only if

n ≥ 2.
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Proof. According to Proposition 1, the graph C4 = K2,2 has a vertex-total
labeling with magic constant 15. Vertex-magic total labelings of K3,3 and K4,4

with magic constants 36 and 70 are described below by giving the labels of vertices
and edges in the following matrices.

u0 u1 u2

4 3 5
v0 1 7 15 13
v1 2 14 12 8
v2 9 11 6 10

u0 u1 u2 u3

1 4 6 9
v0 2 24 22 14 8
v1 3 23 13 12 19
v2 5 15 11 21 18
v3 10 7 20 17 16

According to Theorems 4 and 5 the graph Kn,n, for n ≥ 5, admits a vertex -magic
total labeling with magic constant

h = 7n+ 1 +
1

2
(n− 2)(n2 + 6n+ 1) =

1

2
n(n+ 1)(n+ 3).

Therefore, for every n ≥ 2, the graph Kn,n has a vertex-magic total labeling with
magic constant h = 1

2n(n+ 1)(n+ 3). Moreover,

(2n+ 1)h− n(n+ 2)(n+ 1)2 =
n(n+ 1)

2
(n− 1) > 0.

Thus, by Corollary 3, Kn,n ⊕K1 = K1,2[n] is a supermagic graph.

The opposite implication is obvious.

Theorem 7. The complement of the circulant graph C2n(1, n) is supermagic for

any integer n ≥ 4.

Proof. Clearly, the circulant graph C2n(2, 3, . . . , n− 1) is a complement of
C2n(1, n). Consider the following cases.

Case A. Let n ≡ 1(mod 2). In this case C2n(1, n) is a 3-regular bipartite
graph with parts U1 = {v0, v2, . . . , v2n−2} and U2 = {v1, v3, . . . , v2n−1}. More-
over, C2n(n− 2) is a Hamilton cycle of C2n(1, n)(U1, U2). Therefore, by Proposi-
tion 6, the complement of C2n(1, n) is a supermagic graph.

Case B. Let n ≡ 2(mod 4). Then there is an integer k such that n = 4k+2.
In this case C2n(2, 3, . . . , n − 1) is a circulant graph of degree 2(n − 2) = 8k.
According to Proposition 7, the complement of C2n(1, n) is supermagic.

Case C. Let n ≡ 0(mod 4). Then there is an integer k such that n = 4k.
If k = 1, then a supermagic labeling of C8(2, 3) is described below by giving the
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labels of edges in the following matrix.

v0 v1 v2 v3 v4 v5 v6 v7

v0 − − 2 10 − 9 13 −

v1 − − − 16 4 − 6 8
v2 2 − − − 5 15 − 12
v3 10 16 − − − 7 1 −

v4 − 4 5 − − − 14 11
v5 9 − 15 7 − − − 3
v6 13 6 − 1 14 − − −

v7 − 8 12 − 11 3 − −

If k ≥ 2, then the graph C8k(2, 3, . . . , 4k − 1) is decomposable into factors F1 =
C8k(2k − 1, 4k − 1) and F2 = C8k(2, . . . , 2k − 2, 2k, . . . , 4k − 2). The factor F1

is a 4-regular bipartite graph which can be decomposed into Hamilton cycles
C8k(2k − 1) and C8k(4k − 1). According to Proposition 4, F1 is a supermagic
graph. Similarly, F2 is a circulant graph of degree 8(k− 1) and by Proposition 7,
it is also supermagic. Finally, by Proposition 2, the complement of C8k(1, 4k) is
a supermagic graph.

Corollary 8. The complete multipartite graph K1,n[2] is supermagic if and only

if n ≥ 2.

Proof. According to Corollary 6, the graph K1,2[2] is a supermagic graph.
A vertex-magic total labeling of K3[2] with magic constant 53 is described

below by giving the labels of vertices and edges in the following matrix.

v0 v1 v2 v3 v4 v5

1 2 3 7 6 5
v0 1 − 11 10 − 18 13
v1 2 11 − 9 16 − 15
v2 3 10 9 − 14 17 −

v3 7 − 16 14 − 4 12
v4 6 18 − 17 4 − 8
v5 5 13 15 − 12 8 −

Since Kn[2] = C2n(1, 2, . . . , n − 1), the complement of C2n(1, n) is isomorphic to
Kn[2] − E(C2n(1)). Thus, according to Theorems 4 and 7, the graph Kn[2], for
n ≥ 4, admits a vertex-magic total labeling with magic constant

h = 7n+ 1 +
1

2
(2n− 4)

(

n(2n− 2) + 6n+ 1
)

= 2n3 − 1.

Therefore, for every n ≥ 3, the graph Kn[2] has a vertex-magic total labeling with
magic constant h = 2n3 − 1. Moreover, for n ≥ 3, we have

(2n+ 1)h = 4n4 + 2n(n2 − 1)− 1 > 4n4 + 2n2 = 2n2(2n2 + 1).

Thus, by Corollary 2, Kn[2] ⊕K1 = K1,n[2] is a supermagic graph.
The opposite implication is obvious.
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