SUPERMAGIC GRAPHS HAVING A SATURATED VERTEX ${ }^{1}$

Jaroslav Ivančo and Tatiana Polláková
Institute of Mathematics,
P.J. Šafárik University Jesenná 5, 04154 Košice, Slovakia
e-mail: jaroslav.ivanco@upjs.sk
tatiana.pollakova@student.upjs.sk

Abstract

A graph is called supermagic if it admits a labeling of the edges by pairwise different consecutive integers such that the sum of the labels of the edges incident with a vertex is independent of the particular vertex. In this paper we establish some conditions for graphs with a saturated vertex to be supermagic. Inter alia we show that complete multipartite graphs $K_{1, n, n}$ and $K_{1,2, \ldots, 2}$ are supermagic.

Keywords: supermagic graph, saturated vertex, vertex-magic total labeling.
2010 Mathematics Subject Classification: 05C78.

1. INTRODUCTION

We consider finite undirected graphs without loops, multiple edges and isolated vertices. If G is a graph, then $V(G)$ and $E(G)$ stand for the vertex set and the edge set of G, respectively. Cardinalities of these sets are called the order and the size of G.

Let a graph G and a mapping f from $E(G)$ into positive integers be given. The index-mapping of f is the mapping f^{*} from $V(G)$ into positive integers defined by

$$
f^{*}(v)=\sum_{e \in E(G)} \eta(v, e) f(e) \quad \text { for every } v \in V(G)
$$

[^0]where $\eta(v, e)$ is equal to 1 when e is an edge incident with a vertex v, and 0 otherwise. An injective mapping f from $E(G)$ to positive integers is called a magic labeling of G for an index λ if its index-mapping f^{*} satisfies
$$
f^{*}(v)=\lambda \quad \text { for all } v \in V(G)
$$

A magic labeling f of G is called a supermagic labeling of G if the set $\{f(e)$: $e \in E(G)\}$ consists of consecutive positive integers. We say that a graph G is supermagic (magic) whenever there exists a supermagic (magic) labeling of G.

The concept of magic graphs was introduced by Sedláček [9]. Supermagic graphs were introduced by Stewart [11]. There is by now a considerable number of papers published on magic and supermagic graphs; we single out $[7,10,6,4]$ as being more particularly relevant to the present paper, and refer the reader to [2] for comprehensive references.

Let $G \cup H$ denote the disjoint union of graphs G and H. The join $G \oplus H$ of the disjoint graphs G and H is the graph $G \cup H$ together with all edges joining vertices of $V(G)$ and vertices of $V(H)$. The vertex v of a graph H is called saturated vertex, if it is adjacent to every other vertex. The graph H with a saturated vertex v is isomorphic to $(H-v) \oplus K_{1}$. So the graph with a saturated vertex is also denoted by $G \oplus K_{1}$.

Magic graphs with a saturated vertex were characterized in [10]. In the paper there are also given some conditions for the existence of supermagic graphs $G \oplus K_{1}$. In [7] there are given other sufficient conditions for existence of such graphs. Similar problems are solved in [6].

In this paper we will deal with supermagic graphs $G \oplus K_{1}$ for regular graphs G.

2. Vertex-magic Total Labelings

The notion of a vertex-magic total labeling was introduced in [8]. A bijective mapping $g: V(G) \cup E(G) \rightarrow\{1,2, \ldots,|V(G)|+|E(G)|\}$ is called a vertex-magic total labeling of a graph G if there is a constant h such that

$$
g(v)+\sum_{e \in E(G)} \eta(v, e) g(e)=h \quad \text { for every } v \in V(G)
$$

that is, $g(v)+g^{*}(v)=h$ for every vertex v. The constant h is called the magic constant for g.

For regular graphs G, the supermagic graphs $G \oplus K_{1}$ can be characterized in the following way.

Theorem 1. Let G be a d-regular graph of order n. The graph $G \oplus K_{1}$ is supermagic if and only if G admits a vertex-magic total labeling with magic con-
stant h such that $(n-d-1)$ is a divisor of the non-negative integer $(n+1) h-$ $n \frac{d+2}{2}\left(n \frac{d+2}{2}+1\right)$.

Proof. Let v be a saturated vertex of $H=G \oplus K_{1}$.
Suppose that $f: E(H) \rightarrow\{a, a+1, \ldots, a+|E(H)|-1\}$ is a supermagic labeling of H for an index λ. As $|E(H)|=n(d+2) / 2$, the index λ satisfies

$$
\lambda=\frac{2}{|V(H)|} \sum_{e \in E(H)} f(e)=\frac{1}{n+1}\left(2 a+n \frac{d+2}{2}-1\right) n \frac{d+2}{2} .
$$

Consider the mapping g defined by

$$
g(x)= \begin{cases}1+f(x)-a & \text { for } x \in E(G) \\ 1+f(v x)-a & \text { for } x \in V(G)\end{cases}
$$

Evidently, g is a bijection from $V(G) \cup E(G)$ onto $\{1,2, \ldots,|V(G)|+|E(G)|\}$ and $g(w)+g^{*}(w)=\lambda-(a-1)(d+1)=h$ for any vertex $w \in V(G)$. Therefore g is a vertex-magic total labeling of G. Moreover, we have

$$
\begin{aligned}
(n+1) h-n \frac{d+2}{2}\left(n \frac{d+2}{2}+1\right) & =(n+1)\left(\frac{1}{n+1}\left(2 a+n \frac{d+2}{2}-1\right) n \frac{d+2}{2}-(a-1)(d+1)\right) \\
& -n \frac{d+2}{2}\left(n \frac{d+2}{2}+1\right) \\
& =a n(d+2)-n \frac{d+2}{2}-(a-1)(d+1)(n+1)-n \frac{d+2}{2} \\
& =(a-1) n(d+2)-(a-1)(d+1)(n+1) \\
& =(a-1)(n-d-1) \geq 0 .
\end{aligned}
$$

Thus, $(n-d-1)$ is a divisor of $(n+1) h-n \frac{d+2}{2}\left(n \frac{d+2}{2}+1\right)$.
Now, let us assume that g is a vertex-magic total labeling of G with magic constant h such that ($n-d-1$) is a divisor of the non-negative integer $(n+1) h-$ $n \frac{d+2}{2}\left(n \frac{d+2}{2}+1\right)$. Then there is a non-negative integer κ such that

$$
(n+1) h-n \frac{d+2}{2}\left(n \frac{d+2}{2}+1\right)=\kappa(n-d-1) .
$$

Consider the mapping f given by

$$
f(e)= \begin{cases}\kappa+g(e) & \text { for } e \in E(G) \\ \kappa+g(w) & \text { for } e=v w\end{cases}
$$

Clearly, f is a bijection from $E(H)$ onto $\{\kappa+1, \kappa+2, \ldots, \kappa+|V(G)|+|E(G)|\}$. Moreover, $f^{*}(v)=\kappa|V(G)|+\sum_{w \in V(G)} g(w)$ and $f^{*}(w)=h+\kappa(d+1)$ for any vertex $w \in V(G)$. In this case we obtain

$$
\begin{aligned}
\sum_{w \in V(G)} g(w)+|V(G)| h & =2 \sum_{x \in V(G) \cup E(G)} g(x) \\
& =(|V(G)|+|E(G)|)(|V(G)|+|E(G)|+1) \\
& =n \frac{d+2}{2}\left(n \frac{d+2}{2}+1\right) .
\end{aligned}
$$

This implies

$$
\begin{aligned}
\sum_{w \in V(G)} g(w) & =n \frac{d+2}{2}\left(n \frac{d+2}{2}+1\right)-n h \\
& =n \frac{d+2}{2}\left(n \frac{d+2}{2}+1\right)-(n+1) h+h \\
& =h-\kappa(n-d-1) .
\end{aligned}
$$

Hence

$$
f^{*}(v)=\kappa n+h-\kappa(n-d-1)=h+\kappa(d+1),
$$

which means that f is a supermagic labeling of H.
Using known results on vertex-magic total labelings of regular graphs of odd order the previous theorem implies the same assertions that was proved in [7] by other methods. Therefore, we apply Theorem 1 to regular graphs of even order and we have immediately

Corollary 2. Let G be a $2(k-1)$-regular graph of order $2 k$. The graph $G \oplus K_{1}$ is supermagic if and only if G admits a vertex-magic total labeling with magic constant h such that $(2 k+1) h \geq 2 k^{2}\left(2 k^{2}+1\right)$.

Corollary 3. Let G be a k-regular graph of order $2 k$. The graph $G \oplus K_{1}$ is supermagic if and only if G admits a vertex-magic total labeling with magic constant h such that the non-negative integer $(2 k+1) h-k(k+2)(k+1)^{2}$ is an integral multiple of $(k-1)$.

Note that for 2-regular graphs a vertex-magic total labeling corresponds to an edge-magic total labeling introduced by Kotzig and Rosa. Using this correspondence we can rewrite the following known result for cycles (see [12]).

Proposition 1. The cycle $C_{2 k}$ has a vertex-magic total labeling with magic constant $h=7 k+1$.

Now we are able to prove the following assertion.
Theorem 4. Let G be a d-regular graph of order $2 k$. If G contains a Hamilton cycle C such that $G-E(C)$ is supermagic then G admits a vertex-magic total labeling with magic constant $h=7 k+1+\frac{1}{2}(d-2)(k d+6 k+1)$.

Proof. Put $H=G-E(C)$. By the assumption there is a supermagic labeling $f: E(H) \rightarrow\{1,2, \ldots,|E(H)|\}$. Since $|E(H)|=k(d-2)$, the index of f satisfies

$$
\lambda=\frac{(|E(H)|+1)|E(H)|}{|V(G)|}=\frac{1}{2}(k(d-2)+1)(d-2) .
$$

Similarly, according to Proposition 1 there exists a vertex-magic total labeling $g: V(C) \cup E(C) \rightarrow\{1,2, \ldots, 4 k\}$ with magic constant $h=7 k+1$. Consider
the mapping φ defined by

$$
\varphi(x)= \begin{cases}g(x) & \text { for } x \in V(C) \cup E(C) \\ 4 k+f(x) & \text { for } x \in E(H)\end{cases}
$$

Clearly, φ is a bijection from $V(G) \cup E(G)$ onto $\{1,2, \ldots,|V(G)|+|E(G)|\}$. Accordingly

$$
\begin{aligned}
\varphi(w)+\varphi^{*}(w) & =h+\lambda+4 k(d-2) \\
& =7 k+1+\frac{1}{2}(k(d-2)+1)(d-2)+4 k(d-2) \\
& =7 k+1+\frac{1}{2}(d-2)(k d+6 k+1)
\end{aligned}
$$

for any vertex $w \in V(G)$. Therefore φ is a desired vertex-magic total labeling of G.

3. Complete Multipartite Graphs

A complete k-partite graph is a graph whose vertices can be partitioned into $k \geq 2$ disjoint classes V_{1}, \ldots, V_{k} such that two vertices are adjacent if and only if they belong to distinct classes. If $\left|V_{i}\right|=n_{i}$ for all $i=1, \ldots, k$, then the complete k-partite graph is denoted by $K_{n_{1}, \ldots, n_{k}}$. If $n_{i}=n$ for all $i=1, \ldots, k$, then the complete k-partite graph is regular of degree $(k-1) n$ and is denoted by $K_{k[n]}$. Similarly, if $n_{i}=n$ for all $i=1, \ldots, k$ and $n_{k+1}=p$ then the complete $(k+1)$ partite graph is denoted by $K_{p, k[n]}$.

In this section we characterize supermagic graphs $K_{1,2[n]}=K_{n, n} \oplus K_{1}$ and $K_{1, k[2]}=K_{k[2]} \oplus K_{1}$. Let us recall some notions and assertions, which we shall use in the next.

A k-factor (or only a factor) of a graph is defined to be its k-regular spanning subgraph.

Proposition 2 [3]. If G is a graph decomposable into pairwise edge-disjoint supermagic factors, then G is supermagic.

For any graph G we define a graph G^{\bowtie} by $V\left(G^{\bowtie}\right)=\bigcup_{v \in V(G)}\left\{v^{0}, v^{1}\right\}$ and $E\left(G^{\bowtie}\right)=\bigcup_{v u \in E(G)}\left\{v^{0} u^{1}, v^{1} u^{0}\right\} \cup \bigcup_{v \in V(G)}\left\{v^{0} v^{1}\right\}$. In [7] the following result is proved.

Proposition 3 [7]. Let G be a $2 r$-regular graph of odd order. If G is Hamiltonian, then G^{\bowtie} is a supermagic graph.

In [4] the following assertions are proved.
Proposition 4 [4]. Let G be a $4 k$-regular bipartite graph which can be decomposed into two edge-disjoint connected $2 k$-factors. Then G is a supermagic graph.

Proposition 5 [4]. Let G be a 6-regular bipartite graph of order $2 n$ which can be decomposed into three edge-disjoint 2-factors where the first is isomorphic to $2 C_{n}$ and the others are Hamilton cycles. Then G is a supermagic graph.

For $X, Y \subseteq V(G)$ the subgraph of a graph G induced by $\{u v \in E(G): u \in X, v \in$ $Y\}$ is denoted by $G(X, Y)$. The complement of a graph G is denoted by \bar{G}. In [5] the following result is proved.

Proposition 6 [5]. Let G be a d-regular bipartite graph of order $2 n$ with parts U_{1} and U_{2}. If $n \geq 5$ and d are odd and $\bar{G}\left(U_{1}, U_{2}\right)$ is a Hamiltonian graph, then the complement of G is a supermagic graph.

Let n, m and $a_{1}<\cdots<a_{m} \leq\lfloor n / 2\rfloor$ be positive integers. A graph with the vertex set $\left\{v_{0}, \ldots, v_{n-1}\right\}$ and the edge set $\left\{v_{i} v_{i+a_{j}}: 0 \leq i<n, 1 \leq j \leq m\right\}$, the indices being taken modulo n, is called a circulant graph and it is denoted by $C_{n}\left(a_{1}, \ldots, a_{m}\right)$. It is easy to see that the circulant graph $C_{n}\left(a_{1}, \ldots, a_{m}\right)$ is a regular graph of degree r, where $r=2 m-1$ when $a_{m}=n / 2$, and $r=2 m$ otherwise. In [1] the following result is proved.

Proposition 7 [1]. Any circulant graph of degree $8 k$ is supermagic.

Now we are able to prove the following assertions.

Theorem 5. Let C be a Hamilton cycle of the complete bipartite graph $K_{n, n}$, where $n \geq 5$. Then $K_{n, n}-E(C)$ is a supermagic graph.

Proof. Consider the following cases.
Case A. Let $n \equiv 1(\bmod 2)$. It is not difficult to check that the graph $\left(\bar{C}_{n}\right)^{\bowtie}$ is isomorphic to $K_{n, n}-E(C)$. The graph \bar{C}_{n} is Hamiltonian, $(n-3)$-regular and so, by Proposition $3, K_{n, n}-E(C)$ is a supermagic graph.

Case B. Let $n \equiv 0(\bmod 2)$. Put $k=\frac{n}{2}$. Suppose that $\left\{v_{0}, v_{1}, \ldots, v_{n-1}\right\}$ and $\left\{u_{0}, u_{1}, \ldots, u_{n-1}\right\}$ are parts of $K_{n, n}$. The subgraph $C^{j}, 0 \leq j \leq k-1$, induced by $\bigcup_{i=0}^{n-1}\left\{v_{i} u_{i+2 j}, u_{i+2 j} v_{i+1}\right\}$ (indices are taken modulo n) is a Hamilton cycle of $K_{n, n}$. Moreover, $C^{0}, C^{1}, \ldots, C^{k-1}$ form a decomposition of $K_{n, n}$ into pairwise edge-disjoint cycles.

If k is odd, then there is an integer $r \geq 1$ such that $k=2 r+1$. In this case the graph $K_{n, n}-E\left(C^{0}\right)$ is regular of degree $4 r$ and the sets $\bigcup_{j=1}^{r} E\left(C^{j}\right)$, $\bigcup_{j=r+1}^{2 r} E\left(C^{j}\right)$ form its decomposition into two edge-disjoint connected $2 r$-factors. Thus, according to Proposition $4, K_{n, n}-E\left(C^{0}\right)$ is a supermagic graph.

A supermagic labeling of $K_{8,8}-E\left(C^{3}\right)$ is described below by giving the labels
of edges in the following matrix.

	u_{0}	u_{1}	u_{2}	u_{3}	u_{4}	u_{5}	u_{6}	u_{7}
v_{0}	8	39	16	11	25	-	-	48
v_{1}	41	7	33	13	24	29	-	-
v_{2}	-	42	6	36	17	20	26	-
v_{3}	-	-	43	5	32	9	23	35
v_{4}	27	-	-	44	4	40	18	14
v_{5}	22	34	-	-	45	3	31	12
v_{6}	19	15	28	-	-	46	2	37
v_{7}	30	10	21	38	-	-	47	1

Let T_{1} and T_{2} be subgraphs of $K_{12,12}$ induced by $E\left(C^{0}\right) \cup E\left(C^{1}\right) \cup E\left(C^{2}\right)$ and $E\left(C^{3}\right) \cup E\left(C^{4}\right)$, respectively. A supermagic labeling of T_{1} is described below by giving the labels of edges in the following matrix.

	u_{0}	u_{1}	u_{2}	u_{3}	u_{4}	u_{5}	u_{6}	u_{7}	u_{8}	u_{9}	u_{10}	u_{11}
v_{0}	12	58	24	16	37	-	-	-	-	-	-	72
v_{1}	61	11	49	19	36	43	-	-	-	-	-	-
v_{2}	-	62	10	54	25	30	38	-	-	-	-	-
v_{3}	-	-	63	9	48	13	35	51	-	-	-	-
v_{4}	-	-	-	64	8	60	26	22	39	-	-	-
v_{5}	-	-	-	-	65	7	47	14	34	52	-	-
v_{6}	-	-	-	-	-	66	6	59	27	21	40	-
v_{7}	-	-	-	-	-	-	67	5	46	18	33	50
v_{8}	41	-	-	-	-	-	-	68	4	53	28	23
v_{9}	32	53	-	-	-	-	-	-	69	3	45	17
v_{10}	29	20	42	-	-	-	-	-	-	70	2	56
v_{11}	44	15	31	57	-	-	-	-	-	-	71	1

By Proposition $4, T_{2}$ is a supermagic graph because it is decomposable into two Hamilton cycles. Therefore, according to Proposition 2, the graph $K_{12,12}-E\left(C^{5}\right)$ is supermagic.

For even $k \geq 8$ there is an integer $r \geq 4$ such that $k=2 r$. Let H_{1} be a subgraph of $K_{n, n}$ induced by $\left\{v_{0} u_{k-1}, v_{k} u_{n-1}\right\} \cup\left(E\left(C^{0}\right)-\left\{u_{k-1} v_{k}, u_{n-1} v_{0}\right\}\right)$. It is easy to see that H_{1} is isomorphic to $2 C_{n}$. Similarly, the subgraph H_{2} induced by $\left(E\left(C^{0}\right) \cup E\left(C^{r}\right)\right)-E\left(H_{1}\right)$ is a 2 -factor of $K_{n, n}$. According to Proposition 5, the subgraph G_{1} of $K_{n, n}$ induced by $E\left(H_{1}\right) \cup E\left(C^{1}\right) \cup E\left(C^{r+1}\right)$ is supermagic. Similarly, the subgraph G_{2} induced by $\bigcup_{j=2}^{r-1} E\left(C^{j}\right) \cup \bigcup_{j=r+2}^{2 r-2} E\left(C^{j}\right) \cup E\left(H_{2}\right)$ is a $4(r-2)$-regular bipartite graph decomposable into two edge-disjoint connected $2(r-2)$-factors. By Proposition $4, G_{2}$ is a supermagic graph. As G_{1} and G_{2} are edge-disjoint factors of $K_{n, n}-E\left(C^{2 r-1}\right)$, according to Proposition 2, the graph $K_{n, n}-E\left(C^{2 r-1}\right)$ is supermagic.

Corollary 6. The complete tripartite graph $K_{1,2[n]}$ is supermagic if and only if $n \geq 2$.

Proof. According to Proposition 1, the graph $C_{4}=K_{2,2}$ has a vertex-total labeling with magic constant 15. Vertex-magic total labelings of $K_{3,3}$ and $K_{4,4}$ with magic constants 36 and 70 are described below by giving the labels of vertices and edges in the following matrices.

		u_{0}	u_{1}	u_{2}			u_{0}	u_{1}	u_{2}	u_{3}
		4	3	5			1	4	6	9
v_{0}	1	7	15	13	v_{0}	2	24	22	14	8
v_{1}	2	14	12	8	v_{1}	3	23	13	12	19
v_{2}	9	11	6	10	v_{2}	5	15	11	21	18
				v_{3}	10	7	20	17	16	

According to Theorems 4 and 5 the graph $K_{n, n}$, for $n \geq 5$, admits a vertex -magic total labeling with magic constant

$$
h=7 n+1+\frac{1}{2}(n-2)\left(n^{2}+6 n+1\right)=\frac{1}{2} n(n+1)(n+3)
$$

Therefore, for every $n \geq 2$, the graph $K_{n, n}$ has a vertex-magic total labeling with magic constant $h=\frac{1}{2} n(n+1)(n+3)$. Moreover,

$$
(2 n+1) h-n(n+2)(n+1)^{2}=\frac{n(n+1)}{2}(n-1)>0
$$

Thus, by Corollary $3, K_{n, n} \oplus K_{1}=K_{1,2[n]}$ is a supermagic graph.
The opposite implication is obvious.

Theorem 7. The complement of the circulant graph $C_{2 n}(1, n)$ is supermagic for any integer $n \geq 4$.

Proof. Clearly, the circulant graph $C_{2 n}(2,3, \ldots, n-1)$ is a complement of $C_{2 n}(1, n)$. Consider the following cases.

Case A. Let $n \equiv 1(\bmod 2)$. In this case $C_{2 n}(1, n)$ is a 3 -regular bipartite graph with parts $U_{1}=\left\{v_{0}, v_{2}, \ldots, v_{2 n-2}\right\}$ and $U_{2}=\left\{v_{1}, v_{3}, \ldots, v_{2 n-1}\right\}$. Moreover, $C_{2 n}(n-2)$ is a Hamilton cycle of $\overline{C_{2 n}(1, n)}\left(U_{1}, U_{2}\right)$. Therefore, by Proposition 6 , the complement of $C_{2 n}(1, n)$ is a supermagic graph.

Case B. Let $n \equiv 2(\bmod 4)$. Then there is an integer k such that $n=4 k+2$. In this case $C_{2 n}(2,3, \ldots, n-1)$ is a circulant graph of degree $2(n-2)=8 k$. According to Proposition 7, the complement of $C_{2 n}(1, n)$ is supermagic.

Case C. Let $n \equiv 0(\bmod 4)$. Then there is an integer k such that $n=4 k$. If $k=1$, then a supermagic labeling of $C_{8}(2,3)$ is described below by giving the
labels of edges in the following matrix.

	v_{0}	v_{1}	v_{2}	v_{3}	v_{4}	v_{5}	v_{6}	v_{7}
v_{0}	-	-	2	10	-	9	13	-
v_{1}	-	-	-	16	4	-	6	8
v_{2}	2	-	-	-	5	15	-	12
v_{3}	10	16	-	-	-	7	1	-
v_{4}	-	4	5	-	-	-	14	11
v_{5}	9	-	15	7	-	-	-	3
v_{6}	13	6	-	1	14	-	-	-
v_{7}	-	8	12	-	11	3	-	-

If $k \geq 2$, then the graph $C_{8 k}(2,3, \ldots, 4 k-1)$ is decomposable into factors $F_{1}=$ $C_{8 k}(2 k-1,4 k-1)$ and $F_{2}=C_{8 k}(2, \ldots, 2 k-2,2 k, \ldots, 4 k-2)$. The factor F_{1} is a 4-regular bipartite graph which can be decomposed into Hamilton cycles $C_{8 k}(2 k-1)$ and $C_{8 k}(4 k-1)$. According to Proposition 4, F_{1} is a supermagic graph. Similarly, F_{2} is a circulant graph of degree $8(k-1)$ and by Proposition 7 , it is also supermagic. Finally, by Proposition 2, the complement of $C_{8 k}(1,4 k)$ is a supermagic graph.

Corollary 8. The complete multipartite graph $K_{1, n[2]}$ is supermagic if and only if $n \geq 2$.

Proof. According to Corollary 6, the graph $K_{1,2[2]}$ is a supermagic graph.
A vertex-magic total labeling of $K_{3[2]}$ with magic constant 53 is described below by giving the labels of vertices and edges in the following matrix.

		v_{0}	v_{1}	v_{2}	v_{3}	v_{4}	v_{5}
		1	2	3	7	6	5
v_{0}	1	-	11	10	-	18	13
v_{1}	2	11	-	9	16	-	15
v_{2}	3	10	9	-	14	17	-
v_{3}	7	-	16	14	-	4	12
v_{4}	6	18	-	17	4	-	8
v_{5}	5	13	15	-	12	8	-

Since $K_{n[2]}=C_{2 n}(1,2, \ldots, n-1)$, the complement of $C_{2 n}(1, n)$ is isomorphic to $K_{n[2]}-E\left(C_{2 n}(1)\right)$. Thus, according to Theorems 4 and 7 , the graph $K_{n[2]}$, for $n \geq 4$, admits a vertex-magic total labeling with magic constant

$$
h=7 n+1+\frac{1}{2}(2 n-4)(n(2 n-2)+6 n+1)=2 n^{3}-1 .
$$

Therefore, for every $n \geq 3$, the graph $K_{n[2]}$ has a vertex-magic total labeling with magic constant $h=2 n^{3}-1$. Moreover, for $n \geq 3$, we have

$$
(2 n+1) h=4 n^{4}+2 n\left(n^{2}-1\right)-1>4 n^{4}+2 n^{2}=2 n^{2}\left(2 n^{2}+1\right)
$$

Thus, by Corollary $2, K_{n[2]} \oplus K_{1}=K_{1, n[2]}$ is a supermagic graph.
The opposite implication is obvious.

References

[1] L. Bezegová and J. Ivančo, On conservative and supermagic graphs, Discrete Math. 311 (2011) 2428-2436. doi:10.1016/j.disc.2011.07.014
[2] J.A. Gallian, A dynamic survey of graph labeling, Electron. J. Combin. 18 (2011) \#DS6.
[3] J. Ivančo, On supermagic regular graphs, Math. Bohem. 125 (2000) 99-114.
[4] J. Ivančo, Magic and supermagic dense bipartite graphs, Discuss. Math. Graph Theory 27 (2007) 583-591. doi:10.7151/dmgt. 1384
[5] J. Ivančo, A construction of supermagic graphs, AKCE Int. J. Graphs Comb. 6 (2009) 91-102.
[6] J. Ivančo and T. Polláková, On magic joins of graphs, Math. Bohem. (to appear).
[7] J. Ivančo and A. Semaničová, Some constructions of supermagic graphs using antimagic graphs, SUT J. Math. 42 (2006) 177-186.
[8] J.A. MacDougall, M. Miller, Slamin and W.D. Wallis, Vertex-magic total labelings of graphs, Util. Math. 61 (2002) 3-21.
[9] J. Sedláček, Problem 27. Theory of Graphs and Its Applications, Proc. Symp. Smolenice, Praha (1963) 163-164.
[10] A. Semaničová, Magic graphs having a saturated vertex, Tatra Mt. Math. Publ. 36 (2007) 121-128.
[11] B.M. Stewart, Magic graphs, Canad. J. Math. 18 (1966) 1031-1059. doi:10.4153/CJM-1966-104-7
[12] W.D. Wallis, Magic Graphs (Birkhäuser, Boston - Basel - Berlin, 2001). doi:10.1007/978-1-4612-0123-6

[^0]: ${ }^{1}$ The work was supported by the Slovak Research and Development Agency under the contract No. APVV-0023-10 and by the Slovak VEGA Grant 1/0652/12.

