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1. Introduction

Given natural numbers p, q, n, the symbol Gp,q,n = (V,E) stands for the 3-
dimensional grid graph of size p× q × n (or (p, q, n)-grid graph) with vertex set

V = {(i, j, k) : 1 ≤ i ≤ p, 1 ≤ j ≤ q, 1 ≤ k ≤ n }

and edge set

E = {{(i, j, k), (i′, j′, k′)} : |i− i′|+ |j − j′|+ |k − k′| = 1}.

A subgraph of a grid G (with fixed p and q) induced by vertices with last com-
ponent k, denoted by Sk, is called a slice k of G.

Given a graph G and an ℓ ∈ N, a set I of vertices of G is called ℓ-independent
in G if any shortest path between two elements of I has length at least ℓ+ 1, or
equivalently, if on any path between two elements of I there are at least ℓ vertices
not belonging to I.

A maximal (with respect to set inclusion) ℓ-independent set B in G = Gp,q,n

is called an ℓ-basis of G. We let Bℓ
p,q,n denote the collection of all ℓ-bases in G

and bℓ(p, q, n) the total number of such sets. If ℓ = 1, we simply write Bp,q,n

and b(p, q, n), and if p = 1 or q = 1 we use the notation Gm,n, B
ℓ
m,n and bℓ(m,n)

where m = p·q. We consider also the 1-dimensional case in which we use notation
Bℓ

n and bℓ(n) since p = 1 = q and G = Pn, the n-vertex path.
In this paper we consider a few families of (p, q, n)-grid graphs such that p,

q are fixed and p ≤ q without loss of generality. We present recurrence formulas
and generating functions describing the sequence (bℓ(p, q, n))n∈N for the following
cases:

1. p = 1, q = 1 and any ℓ ∈ N,

2. p = 1, q = 2 and any ℓ ∈ N,

3. p = 1, q = 3 and ℓ = 2,

4. p = 2, q = 2 and any ℓ ∈ N,

5. p = 2, q = 3 and ℓ = 1.

Up to now there are only two publications [1, 2] on counting maximal independent
sets (for ℓ = 1 only) on the path Pn and in the 2-dimensional grid graphs Gm,n

withm ∈ {2, 3, 4, 5} [1]. As stated just above we present general results, that is for
any natural ℓ, on the numbers bℓ(m,n) with m = 1, 2 and bℓ(p, q, n) with p = q =
2. Results in the latter case are stated in three theorems (for ℓ = 1, 2 or ℓ ≥ 3).
Proofs are nontrivial and rather complicated but made checkable due to our effort.
So, it is very likely that any other general result can be overcomplicated. We will
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apply the transfer matrix method as in [1] (see Stanley [5] for a basic reference),
in particular in the cases 3, 4 and 5 listed above. All results presented in what
follows have been checked by direct computer calculations. Additional results of
the calculations, namely initial segments of sequences b(3, 3, n), b2(3, 3, n) and
b3(3, 3, n), are shown at the very end.

The following standard relation between a recurrence and the corresponding
OGF (ordinary generating function) will be applied in what follows (without dis-
playing details of calculations). The recurrence in question is linear homogeneous
of order r with constant coefficients cj with cr 6= 0 and c0 = 1,

a(n) + c1a(n− 1) + · · ·+ cra(n− r) = 0 for n ≥ r + 1.

The sequence a(n) is restricted to n ∈ N and in fact a(n) := 0 for n ≤ 0. The cor-
responding rational function A(x) = P (x)/Q(x) =

∑

n≥1 a
′(n)xn is the OGF of a

sequence a′(n). The two sequences coincide if coefficients of Q(x) agree with those
in the recurrence, Q(x) = 1+

∑r
j=1 cjx

j , and P (x) is an appropriate polynomial,
that is, P (x) = Q(x) ·A(x). Consequently, the initial terms a(1), a(2), . . . , a(r) of
the sequence determine the numerator of the OGF. Namely, if pj are coefficients
of P (x), P (x) =

∑r
j=0 pjx

j , then p0 = 0 and pm = a(m) +
∑m−1

j=1 cja(m − j)
recursively for m = 1, 2, . . . , r.

By the way, xr · Q(1/x) =
∑r

j=0 cjx
r−j is the characteristic polynomial of

the recurrence.

2. ℓ-independence on Paths

Recall that bℓ(n) stands for the number of maximal ℓ-independent vertex subsets
of the path Pn.

Theorem 2.1. Let a(n) be short for bℓ(n). Then

(2.1) a(n) =
∑ℓ+1

i=1
a(n− ℓ− i) for n ≥ 2ℓ+ 2,

with initial conditions

{
a(j) = j for j = 1, . . . , ℓ, ℓ+ 1,
a(ℓ+ 1 + k) = ℓ+ 1 + k(k − 1)/2 for k = 1, . . . , ℓ.

The corresponding OGF follows.

Bℓ(x) =

∑ℓ+1
j=1 jx

j + xℓ+1
∑ℓ

k=1(ℓ+ 1− k)xk

1−
∑2ℓ+1

k=ℓ+1 x
k

.
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Proof. Let a∗(n) count maximal ℓ-independent sets on the path Pn such that
the nth vertex is included in each set. Then clearly

a∗(j) = 1 for j = 1, . . . , ℓ, ℓ+ 1,(2.2)

a∗(ℓ+ 1 + k) = k for k = 1, . . . , ℓ,(2.3)

and the recurrence a∗(n) =
∑ℓ+1

i=1 a
∗(n− ℓ− i) holds for n ≥ 2ℓ+1 provided that

a∗(0) := 0. Consequently, on assuming a∗(k) := 0 for k ≤ 0, we extend validity
of the recurrence to any n ≥ ℓ+ 2,

(2.4) a∗(n) =
∑ℓ+1

i=1
a∗(n− ℓ− i) for n ≥ ℓ+ 2.

This agrees with (2.3) due to (2.2). Moreover, clearly

a(n) = a∗(n) + a∗(n− 1) + · · ·+ a∗(n− ℓ) (for any n > 0),(2.5)

=
∑ℓ+1

i=1
a∗(n− ℓ− i) +

∑ℓ+1

i=1
a∗(n− 1− ℓ− i) + · · ·

+
∑ℓ+1

i=1
a∗(n− 2ℓ− i)

for n ≥ 2ℓ + 2 due to (2.4), which on collecting ith term from each sum (i =
1, . . . , ℓ + 1) and due to (2.5) with n replaced by n − ℓ − i, gives the terms on
the right side of the recurrence (2.1) (for n ≥ 2ℓ+ 2). Initial values of a(j) with
j > 0 come via (2.5). Moreover, Bℓ(x) :=

∑

n≥1 a(n)x
n is the ordinary generating

function (see OGF above) obtained from the recurrence.

Remark 2.2. Recurrence (2.1) with ℓ = 1 for n ≥ 4, counting maximal inde-
pendent sets on the n-vertex path Pn, is presented by Füredi [2] (without any
proof). Essentially the same recurrence is independently presented in Euler [1,
Sect. 3]. The corresponding sequence starting with a(1) = 1 is A000931 (Padovan
sequence) with offset 7 in [4].

Remark 2.3. The above proof is an example of a positioning method in recursive
counting on paths [3].

3. Calculating bℓ(2, n)

Given a (2, n)-grid graph G and ℓ ∈ N we will now present a recurrence formula
for the calculation of bℓ(2, n) for any n ∈ N.

Theorem 3.1. For a given ℓ ∈ N and any n ≥ 2ℓ + 1 we have the recurrence

wherein a(k) := bℓ(2, k):

(3.1) a(n) = a(n− ℓ) + 2a(n− ℓ− 1) + · · ·+ 2a(n− 2ℓ+ 1) + a(n− 2ℓ),
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with initial values

a(k) = 2k and a(ℓ+ k) = 2ℓ+ 2k(k − 1),

for k = 1, . . . , ℓ. The corresponding OGF follows.

∑

n≥1
bℓ(2, n)xn =

∑ℓ
k=1 2kx

k +
∑ℓ−1

k=1(2ℓ− 2k)xℓ+k

1− xℓ − 2x(ℓ+1) − · · · − 2x(2ℓ−1) − x2ℓ
.

Proof. We first observe that, according to the structure of an ℓ-basis within
the last (ℓ + 1) columns of G, for n ≥ ℓ + 2 the collection Bℓ

2,n splits into ai(n)
many pairs of ℓ-bases of type i, i = 1, . . . , ℓ+ 1, as shown in Figure 1. Each pair
comprises a basis and its upside-down image.

· · · , · · · , · · · · · · , · · ·

type 1 type 2 type ℓ type ℓ+ 1

Figure 1. Bases representing each type.

Hence we have

a(n) = 2[a1(n) + a2(n) + · · ·+ aℓ(n) + aℓ+1(n)](3.2)

= a(n− 1) + a(n− 2) for ℓ = 1 (as in (3.1))(3.3)

since then 2a1(n) = a(n− 1) and 2aℓ+1(n) = a(n− 2) is easily seen, otherwise by
inspection for ℓ ≥ 2 and n ≥ 2ℓ+ 2:

a1(n) = aℓ(n− 1),(3.4)

ai(n) = a1(n− i+ 1) + aℓ+1(n− i+ 1) for i = 2, . . . , ℓ,(3.5)

aℓ+1(n) = 2[aℓ+1(n− ℓ− 1) + a1(n− ℓ− 1) + · · ·+ aℓ−1(n− ℓ− 1)]

+ aℓ(n− ℓ− 1)

= a(n− ℓ− 1)− aℓ(n− ℓ− 1) (by (3.2)),(3.6)

aℓ(n− i) = ai(n− ℓ) for i = 2, . . . , ℓ− 1 if ℓ ≥ 3.(3.7)

Hence by (3.2), for ℓ ≥ 2 we obtain

a(n) = 2[(a1(n− ℓ) + aℓ+1(n− ℓ)) (by (3.3) and (3.5) for i = ℓ)

+ (a1(n− 1) + aℓ+1(n− 1)) + · · · (by (3.5))

+ (a1(n− ℓ+ 1) + aℓ+1(n− ℓ+ 1))

+ (a(n− ℓ− 1)− aℓ(n− ℓ− 1))] (by (3.6)).
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For ℓ = 2, this has the form

a(n) =2[a1(n− 2) + a3(n− 2) + a1(n− 1)] (= a(n− 2) by (3.3) and (3.2))

+ 2[a(n− 4)− a2(n− 4) (by (3.6))

+ a(n− 3)− a2(n− 3)]

= a(n− 2) + 2a(n− 3) + a(n− 4) (as in (3.1))

because the remaining terms sum up to zero: a(n−4)−2[a2(n−3)+a2(n−4)] = 0
due to (3.2) and (3.5) with i = 2 and with n− 3 in place of n.

Otherwise ℓ ≥ 3 and then using (3.3) or (3.6) we get

a(n) =2[a1(n− ℓ) + aℓ+1(n− ℓ)

+(aℓ(n− 2) + a(n− ℓ− 2)− aℓ(n− ℓ− 2)) + · · ·

+(aℓ(n− ℓ+ 1) + a(n− 2ℓ+ 1)− aℓ(n− 2ℓ+ 1))

+(aℓ(n− ℓ) + a(n− 2ℓ)− aℓ(n− 2ℓ))

+a(n− ℓ− 1)− aℓ(n− ℓ− 1)].

We now use (3.2) in order to expand the difference a(n− 2ℓ)− 2aℓ(n− 2ℓ), also
we use (3.7), and get

a(n) = 2[a1(n− ℓ) + · · ·+ aℓ+1(n− ℓ)] (= a(n− ℓ) by (3.2))

+ 2[a(n− ℓ− 1) + · · ·+ a(n− 2ℓ+ 1)] + a(n− 2ℓ)

+ 2[(a1(n− 2ℓ) + aℓ+1(n− 2ℓ)) + a2(n− 2ℓ) + · · ·+ aℓ−1(n− 2ℓ)]

− 2[aℓ(n− ℓ− 1) + aℓ(n− ℓ− 2) + · · ·+ aℓ(n− 2ℓ+ 1)]

where ℓ− 1 pairs of summands, with both summands in the same position in the
last two lines, cancel pair by pair, the first pair due to (3.5) with i = ℓ, and all
next due to (3.7) with n replaced by n− ℓ. Thus the required recurrence

a(n) = a(n− ℓ) + 2[a(n− ℓ− 1) + · · ·+ a(n− 2ℓ+ 1)] + a(n− 2ℓ)

for n > 2ℓ is obtained. As to the initial values, we observe that for 1 ≤ n ≤ ℓ
there are only 1-element ℓ-bases in G, i.e.

a(n) = 2n for n = 1, . . . , ℓ,

and for n = (ℓ + k) with k ≤ ℓ there are 2(ℓ − k) ℓ-bases of cardinality 1, and
2(2i− 1) of cardinality 2 if we choose the first vertex in column (k − i+ 1) with
i ≤ k. Altogether, this gives

a(ℓ+ k) = 2 ·
∑k

i=1
(2i− 1) + 2(ℓ− k) = 2ℓ+ 2k(k − 1) for k = 1, . . . , ℓ.

Finally, the OGF can be found.
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Remark 3.2. The case ℓ = 1 of Theorem 3.1 is proved in [1]. The corresponding
sequence (b(2, n))n≥1 is the doubled Fibonacci sequence starting with b(2, 1) = 2
at n = 1.

4. Calculating b2(3, n)

In this section we will show that already for ℓ = 2 and m = 3, bℓ(m,n) is difficult
to calculate. To this end we adapt the transfer matrix method to our case by
using the following rules.

Rule 4.1. Partition of all 2-bases in a (3, n)-grid, with n ≥ 6, into 16 classes
first, together with a multi-transformation of each class with n = k to classes
with n = k + 1 where k ≥ 6.

Rule 4.2. Reducing the number of classes to 11. Therefore 11 × 11 transfer
matrix T is constructed such that each (i, j)-entry of T is a factor by which class
j with k slices contributes to the cardinality of class i with k+ 1 slices in a grid,
k ≥ 6.

Rule 4.3. Cardinalities b2(3, n) for n ≤ 6 are found by inspection. For n = 6
cardinalities of classes are also found.
We obtain B2

3,k+1 from B2
3,k by using the following result.

Observation 4.1. Recall that Sk stands for a slice of a grid. For each integer

k ≥ 2 and any B ∈ B2
3,k+1 there exists B′ ∈ B2

3,k such that

(∗)

{
B′ = B or else either B′ or B′ \ {v′} for some v′ ∈ B′ ∩ (Sk−1 ∪ Sk) is a

proper subset of B and B \B′ ⊂ Sk+1.

On the other hand, for each B′ ∈ B2
3,k, let β(B′) = {B ∈ B2

3,k| (∗)}. Thus a

multi-transformation B′ 7→ B ∈ β(B′) is obtained provided that B ranges over

β(B′).

In other words, the symmetric difference of B and B′ includes at most one element
of either set. Additionally, if v′ exists then it is in column k − 1 or k. Moreover,
if B \B′ is nonempty it comprises a vertex from column k + 1.

To make our approach as transparent as possible we partition B2
3,k into 16

classes each of which is represented in figures below by a left-hand grid graph over
3, 4 or 5 columns together with an associated 2-independent set of black vertices.
The interpretation is as follows: a 2-basis, say B′, in G3,n with n ≥ 6 belongs to
class i if vertices of B′ in the last 3, 4 or 5 columns coincide (up to upside-down
symmetry) with the black vertices in the figure for class i. At the same time
the multi-transformation B′ 7→ B is presented. Namely, in the same figures, for
each class i (at stage k), an arrow indicates into which classes of the next stage
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k+ 1, the class i is transformed by application of Observation 4.1, and by which
factor, 1

2 , 1, 2, or 0 (0 if the contribution is already covered by another class, in
general, a previous class), the cardinality changes. Just note that a factor of 1/2
applies when class 1 is transformed into class 8 since class 1 can be partitioned
into pairs of bases which, due to upside-down symmetry, differ in column k only,
and therefore both are transformed into the same basis of class 8, see t8,1 = 1/2
in the matrix T below the following figures.

Note that only classes 1 and 6 are nonempty on n ≥ 3 columns. Classes 3
and 5 on 4 columns each are still empty. Classes 12 and 15 on 5 columns are
empty. All classes are nonempty on n ≥ 6 columns. Class 8 on 5 columns and
class 10 on 6 columns both have cardinality 3.

Definition of classes and multi-transformations:

→

,
class 1 (13,1) (8,12)

→

, ,
class 2 (7,1) (8,1) (9,1)

→

,
class 3 (7,1) (9,1)

→

, ,
class 4 (14,1) (8,0) (9,0)

→

,
class 5 (12,1) (9,0)
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→

, ,
class 6 (2,1) (4,1) (9,0)

→

class 7 (1,2)

→

class 8 (10,1)

→

class 9 (11,1)

→

class 10 (1,2)

→

, ,
class 11 (6,1) (5,1)

(3,1)
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→

, ,
class 12 (6,1) (5,1)

(3,1)

→

, ,
class 13 (6,1) (5,1)

,
(3,1) (16,1)

→

, ,
class 14 (6,1) (5,1)

,
(3,1) (15,1)

→

class 15 (6,1)

→

class 16 (6,1)

Any two classes each of which contributes to the same classes with same factor
are called similar. In what follows we merge similar classes into a new class. Thus
we get new (primed) classes 7′ (of 7 and 10), 9′ (11 and 12) whence 5′ (of 5 and
9), 10′ (13 and 14) and 11′ (15 and 16).
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The transfer matrix T representing factors of contributions between (new) classes
is presented in Table 1, see Rule 4.2 for the definition of T .

T :

1 2 3 4 5′ 6 7′ 8 9′ 10′ 11′

1 2

2 1

3 1 1

4 1

5′ 1 1 1 1

6 1 1 1

7′ 1 1 1

8 1
2 1

9′ 1

10′ 1 1

11′ 1

Table 1. Transfer matrix T for b2(3, n).

Let Cn be a column vector of cardinalities of (new) classes in B2(3, n) for n ≥ 6.
The vector C6 is found by inspection. For n > 6, the vectors are obtained from
the formula C6+k = T k · C6 where k ∈ N (see Table 2).

Values of b2(3, n) for n < 6 are obtained by inspection, see Table 3.

However, for n ≥ 6, b2(3, n) is equal to the sum of components in Cn, see
Tables 2 and 3 for ten initial values. The following determinant det(I − xT ) =
1−x2−3x3−4x4−x5−x6+x7+2x8+x9+x10, which is a polynomial of degree
10, and ten initial values lead to the first generating function

g(x) =
3x+ 4x2 + 8x3 + 4x4 + x5 − 5x7 − 3x8 − 3x9 − x10

1− x2 − 3x3 − 4x4 − x5 − x6 + x7 + 2x8 + x9 + x10
.

This function can be simplified by a factor (x+1) so that we obtain the following
result.

Theorem 4.2. Let b2(3, n) be the number of maximal 2-independent sets in the

planar 3× n grid graph. Then

∑

n≥1
b2(3, n)xn =

3x+ x2 + 7x3 − 3x4 + 4x5 − 4x6 − x7 − 2x8 − x9

1− x− 3x3 − x4 − x6 + 2x7 + x9
,

providing the recurrence for a(n) = b2(3, n), a(n) = a(n− 1) + 3a(n− 3) + a(n−
4)+ a(n− 6)− 2a(n− 7)− a(n− 9) for n ≥ 10, with initial values as in Table 3.
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Classes
n

6 7 8 9 10

1 6 18 28 54 110

2 4 8 16 28 58

3 6 12 22 48 86

4 4 8 16 28 58

5′ 12 22 42 86 162

6 8 16 28 58 112

7′ 9 14 27 55 106

8 4 7 17 30 55

9′ 6 12 22 42 86

10′ 6 10 26 44 82

11′ 4 6 10 26 44

Σ 69 133 254 499 959

Table 2. Column vectors Cn.

n 1 2 3 4 5 6 7 8 9

b2(3, n) 3 4 11 17 36 69 133 254 499

Table 3. Beginning values of b2(3, n).

5. Calculating bℓ(2, 2, n)

Grid graphs are usually studied in 2 dimensions since the main field of applications
is statistical physics. Counting techniques, however, still work for 3 dimensions as
we are now going to show for the first example: (2,2,n)–grids. For any considered
case (ℓ = 1, 2 and ℓ ≥ 3) we use the transfer matrix method as outlined in section
4. Moreover, the multi-transformation B′ 7→ B ∈ β(B′) (Observation 4.1) from
an ℓ-basis B′ with n = k to ℓ-basis B with n = k + 1 may involve adjustment
within a part of B′ comprising last ℓ slices Sj , j = k, k − 1, . . . , k − ℓ+ 1. In the
following sections, classes of bases are defined up to isometry of the 3-dimensional
grid, respecting the numbering of slices.

5.1. Case ℓ = 1

We partition B2,2,k into 4 classes for k ≥ 3 according to the structure of the
bases within the last 2 slices. The following figures present definitions of classes,
each arrow indicates a multi-transformation, and in each integer pair (a, b), a is
the number of a class and b is a contribution factor. Those factors are the only
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nonzero items in the following transfer matrix T , where ta,j = b if class j → (a, b),
see Rule 4.2.

T =







1 1 0 1
0 0 1 0
2 2 1 0
1 0 0 0







.

Definition of classes and multi-transformations:

→ (1, 1), (3, 2), (4, 1)

class 1

→ (1, 1), (3, 2)

class 2

→ (2, 1), (3, 1)

class 3

→ (1, 1)

class 4

Since det(I−xT ) = 1−2x−2x2+x3+2x4 is of degree 4, we need four initial values
of the sequence

(
b1(2, 2, n)

)

n∈N
in order to find its generating function. Note that

the 4-cycle is a slice in our case and therefore b1(2, 2, 1) = 2 is easily seen. As in
section 4, Cn is a column vector of cardinalities of classes in B1(2, 2, n) for n ≥ 2.
The vector C2, found by inspection, is presented in Table 4. For n > 2, Cn is
obtainable from the formula C2+k = T kC2. Summing up components of Cn we
get b1(2, 2, n), see Table 4 for n = 3, 4. Hence we get the generating function

g(x) = 2x+2x2−4x4

1−2x−2x2+x3+2x4 ,

which simplifies by a factor 1−x. Consequently, the following result is obtained.

Theorem 5.1.1. Let b1(2, 2, n) be the count of maximal independent sets in the

3-dimensional (2, 2, n) grid graph. Then

∑

n≥1 b
1(2, 2, n)xn = 2x+4x2+4x3

1−x−3x2−2x3 .
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In the resulting recurrence

a(n) = a(n− 1) + 3a(n− 2) + 2a(n− 3) for n ≥ 4,

a(n) = b1(2, 2, n) if the initial values of a(n) are as follows:

a(1) = b1(2, 2, 1) = 2, a(2) = b1(2, 2, 2) = 6, a(3) = b1(2, 2, 3) = 16.

classes
n

2 3 4

1 2 2 8
2 0 4 8
3 4 8 20
4 0 2 2

Σ 6 16 38

Table 4. Column vectors Cn.

n 1 2 3 4 5 6 7 8 9 10

b1(2, 2, n) 2 6 16 38 98 244 614 1542 3872 9726

Table 5. Beginning values of b1(2, 2, n).

5.2. Case ℓ = 2

Definition of classes and multi-transformations:

→ (3a1, 1), (4, 1)

class 1a

→ (3a2, 1), (4, 1)

class 1b

→ (3b1, 1)

class 2a

→ (3b2, 1)

class 2b
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→ (1a, 1), (2a, 2), (5, 1)

class 3a1

→ (1a, 1), (2a, 2), (3c2, 1), (5, 1)

class 3a2

→ (1a, 1), (2a, 2), (5, 1)

class 3b1

→ (1a, 1), (2a, 2), (3c2, 1), (5, 1)

class 3b2

→ (1a, 1), (2a, 2), (5, 1)

class 3c1






→ (5, 1)

class 3c2

→ (3c1, 1)

class 4

→ (1b, 1), (2b, 2)

class 5

Merging similar classes and renaming gives the following new classes: 3a (from
3a1, 3b1, 3c1), 3b (3a2, 3b2) and 3c (3c2). Hence the transfer matrix T (of size
9×9) is obtained. Initial values of b2(2, 2, n) for n = 1, . . . , 4 as well as an initial
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vector C5 of the class cardinalities are obtained by inspection, see Tables 7 and
8.

T :

1a 1b 2a 2b 3a 3b 3c 4 5

1a 1 1

1b 1

2a 2 2

2b 2

3a 1 1 1

3b 1 1

3c 1

4 1 1

5 1 1 1

Table 6. Transfer matrix T for b2(2, 2, n).

Classes
n

5 6 7

1a 12 16 52
1b 4 12 16
2a 24 32 104
2b 8 24 32
3a 4 40 64
3b 12 12 36
3c 0 12 12
4 4 16 28
5 12 16 64

Σ 80 180 408

Table 7. Column vectors Cn.

Calculation gives det(I−xT ) = 1−3x2−4x3−4x4+9x6+3x7. This polynomial
implies the required recurrence (of order 7) and is the denominator of the required
OGF. Hence, using initial values as in Table 8 leads to the following.

Theorem 5.2.1. Let b2(2, 2, n) count the maximal 2-independent sets in the

(2, 2, n) grid. Then
∑

n≥1 b
2(2, 2, n)xn = 4x+4x2+8x3+4x4−12x5−12x6−4x7

1−3x2−4x3−4x4+9x6+3x7
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is the OGF, and the recurrence

a(n) = 3a(n− 2) + 4a(n− 3) + 4a(n− 4)− 9a(n− 6)− 3a(n− 7)

is satisfied by a(n) = b2(2, 2, n) for n ≥ 8 provided that initial values of a(n)
coincide with those in Table 8 for n = 1, . . . , 7.

n 1 2 3 4 5 6 7 8 9 10

b2(2, 2, n) 4 4 20 32 80 180 408 940 2072 4824

Table 8. Beginning values of b2(2, 2, n).

5.3. Case ℓ ≥ 3

We partition Bℓ
2,2,k into the following 4ℓ− 5 classes. Note that each number at a

vertex in the following figures is the number of a slice including the vertex.

For ℓ = 3, the partition is given by classes 1 to 6 and class 7 = 3ℓ − 2 =
4ℓ − 5. The corresponding multi-transformations are as in Table 9(a). Merging
and renaming gives the following new classes: 4′ (from 5 and 6), whence 3′ (3
and 4) and 5′ from 7. This produces 5× 5 transfer matrix T (see Table 9(b)).

Class 1 → (2,1), (3,2), (7,1)
Class 2 → (4,1), (5,0), (7,1)

{
Class 3 → (4,0), (5,1), (7,1)
Class 4 → (6,1), (7,1)

{Class 5 → (6,0), (7,1)
Class 6 → (7,1)
Class 7 → (1,1)

1 2 3′ 4′ 5′

1 1
2 1
3′ 2 1
4′ 1
5′ 1 1 1 1

(a) Multi-transformations (b) Transfer matrix T

Table 9. Case ℓ = 3.

For ℓ = 4 the multi-transformations are in Table 10(a). Merging and renaming
gives us: class 5′ from 7, 8, 9 (= 3ℓ − 3); class 4′ from 5 and 6; and finally 3′

from 3 and 4. Additionally 6′ is from 10 and 7′ from 11. This leads to the matrix
presented in Table 10(b).

The general case is along the same lines. We first determine multi-trans-
formations. Our crucial assumption is that the class 3 contributes 1 to class 5
and class 2 contributes 0 therein, cf. Table 9(a). Consequently, we merge similar
classes, starting as before with three classes 3ℓ− 5, 3ℓ− 4 and 3ℓ− 3.
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Class 1 → (2,1), (3,2), (10,1)
Class 2 → (4,1), (7,1), (10,1)

{Class 3 → (5,1), (10,1)
Class 4 → (6,1), (10,1)

{
Class 5 → (8,1), (10,1)
Class 6 → (9,1), (10,1)

{
Class 7 → (10,1)
Class 8 → (10,1)
Class 9 → (10,1)
Class 10 → (11,1)
Class 11 → (1,1)

1 2 3′ 4′ 5′ 6′ 7′

1 1
2 1
3′ 2 1
4′ 1
5′ 1 1
6′ 1 1 1 1 1
7′ 1

(a) Multi-transformations (b) Transfer matrix T

Table 10. Case ℓ = 4.

k−ℓ+1 k

class 1

k−ℓ k

class 2

k−ℓ k

class 3

k−ℓ−1 k

class 4

k−ℓ−1 k

class 5

k−ℓ−2 k

class 6

k−ℓ−1 k

class 7

k−ℓ−2 k

class 8

k−ℓ−3 k

class 9

.

.

.

.

.

.

.

.

.

k−2ℓ+3 k

class 3ℓ− 5

k−2ℓ+2 k

class 3ℓ− 4

k−2ℓ+1 k

class 3ℓ− 3

k−1 k

class 3ℓ− 2

k−2 k

class 3ℓ− 1

· · ·
k−ℓ+2 k

class 4ℓ− 5



Counting Maximal Distance-independent ... 549

The resulting transfer matrix is of size (2ℓ − 1) × (2ℓ − 1) and is presented in
Table 11.

T =





































0 · · · 0 0 · · · 0 1

1 0 · · · 0 0 · · · 0

2 1 0 · · · 0 0 · · · 0

0 0 1 0 · · · 0 ...
...

0 1 0 1 0 · · · 0

0 0 0 0 1 0 · · · 0 0 · · · 0
...

. . .
. . .

. . .
...

...
...

0 0 · · · 0 1 0 0 · · · 0

1 1 · · · 1 1 1 0 · · · 0

0 · · · 0 1 0 · · · 0

0 · · · 0 0 1 0 · · · 0
...

...
...

. . .
. . .

. . .
...

0 · · · 0 0 · · · 0 1 0











































ℓ− 3

Table 11. Transfer matrix of size (2ℓ− 1)× (2ℓ− 1) for ℓ ≥ 3.

We are going to prove the following formula (and its generalization):

(ℓ = 3) det(I − xT ) = 1− x2 − 3x3 − 3x4 − x5.(5.3.1)

Note that the following recurrence is implied for ℓ = 3:

(5.3.2) a(n) = a(n− 2) + 3a(n− 3) + 3a(n− 4) + a(n− 5).

In order to evaluate det(I − xT ) we consider submatrices B1, . . . , Bℓ−1 of size
from (2ℓ − 4) × (2ℓ − 4) to (ℓ − 2) × (ℓ − 2), respectively. All of them reside in
the lower right corner of the matrix obtained from I − xT by deleting the last
column, see Table 12.

We first show the following result.

Lemma 5.3.1. For any ℓ ≥ 3,

det(I − xT ) = 1− (x3 + 2x2) det(B1) + x2 det(B2)− xℓ−1.(5.3.3)
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I − xT =













1 0 0 0 0 0 −x
−x 1 0 0 0 0 0
−2x −x 1 0 0 0 0
0 0 −x 1 0 0 0
0 −x 0 −x 1 0 0
−x −x −x −x −x 1 0
0 0 0 0 0 −x 1












}
ℓ− 3(= 1)

︸ ︷︷ ︸

B1

Table 12. The matrix I − xT for ℓ = 4 (and submatrices B1, B2, B3).

Proof. Throughout the proof each variant of “expanding a determinant” means
that the determinant is to be expanded according to the elements of the first
row. Note that expanding our determinant gives det(I − xT ) = 1 − xM where
M stands for a respective minor, M = M1,2ℓ−1. We now move the factor −x to
the first column of M and expand the resulting determinant. We now continue
moving each numerical factor at a minor to the first column, we next sum up the
two available determinants (since they differ in the first column only), and what
results is expanded. This gives an auxiliary equality

−xM = −(x3 + 2x2) det(B1)−D

where D is a determinant of order 2ℓ − 4. On expanding D we (split the first
column of the resulting determinant and) split the determinant itself into two
summands, and get −D = x2 det(B2) + (−1)1+ℓ−2(−x2)(−x)ℓ−3, which ends the
proof of (5.3.3).

Remark 5.1. The case ℓ = 3 is included in the general formula due to the
following trivial calculation:

−D = det(
[
−x3 − x2

]
) = x2 det([−x])− x2,

since then B2 = [−x].

It is easily seen, cf. Table 12, that

det(Bℓ−1) = (−x)ℓ−2

and for j = 1, . . . , ℓ− 2,

det(Bj) = −x det(Bj+1) + (−1)ℓ−1−j(−x)ℓ−2.
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Therefore after substituting we obtain

det(Bℓ−2) = (−x)ℓ−1 + (−1)(−x)ℓ−2

det(Bℓ−3) = (−x)ℓ + (−1)(−x)ℓ−1 + (−1)2(−x)ℓ−2

det(Bℓ−4) = (−x)ℓ+1 + (−1)(−x)ℓ + (−1)2(−x)ℓ−1 + (−1)3(−x)ℓ−2

...

det(B2) = (−x)2ℓ−5 + (−1)(−x)2ℓ−6 + (−1)2(−x)2ℓ−7 + · · ·

+ (−1)ℓ−3(−x)ℓ−2

det(B1) = (−x)2ℓ−4 + (−1)(−x)2ℓ−5 + (−1)2(−x)2ℓ−6 + · · ·

+ (−1)ℓ−2(−x)ℓ−2

and equation (5.3.3) becomes

det(I − xT ) = 1 + (−x)2ℓ−1 + (−1)(−x)2ℓ−2 + (−1)2(−x)2ℓ−3 + · · ·

+ (−1)ℓ−2(−x)ℓ+1 + (−2)(−x)2ℓ−2 + (−2)(−1)(−x)2ℓ−3

+ (−2)(−1)2(−x)2ℓ−4 + · · ·+ (−2)(−1)ℓ−2(−x)ℓ + (−x)2ℓ−3

+ (−1)(−x)2ℓ−4 + (−1)2(−x)2ℓ−5 + · · ·+ (−1)ℓ−3(−x)ℓ

+ (−1)ℓ(−x)ℓ−1

= 1− xℓ−1 − 3xℓ − 4xℓ+1 − · · · − 4x2ℓ−5 − 4x2ℓ−4 − 4x2ℓ−3

− 3x2ℓ−2 − x2ℓ−1 (irreducible for ℓ = 3, 4, 5),

providing the recurrence

a(n) = a(n− ℓ+ 1) + 3a(n− ℓ) + 4a(n− ℓ− 1) + · · ·

+ 4a(n− 2ℓ+ 3) + 3a(n− 2ℓ+ 2) + a(n− 2ℓ+ 1)
(5.3.4)

for n ≥ 2ℓ and ℓ ≥ 3.
Note that formula (5.3.4), when carefully reduced, really gives (5.3.2) found

for ℓ = 3.
We still have to determine the initial values in order to have a(n) = bℓ(2, 2, n)

for ℓ ≥ 3. To this end, we observe that for n = ℓ+k with 1 ≤ k ≤ ℓ−1, the family
Bℓ

2,2,ℓ+k contains four types of bases, depicted in Figure 2. For n = 1, . . . , ℓ − 1
all bases are of type 4, and we obtain a(n) = 4n. For n = ℓ, there are four bases
of type 1 and 4(ℓ− 2) bases of type 4 leading to a(n) = 4(n− 1). To determine
a(n) for n = ℓ+ k, we first let k run from 1 to ℓ− 2. We find a total number of
4[(k+1)+k+ · · ·+1]+8[k+(k−1)+ · · ·+1]+4[(k−1)+(k−2)+ · · ·+1]+4[(ℓ+
k)((ℓ+k)− (ℓ−1))] bases of the four types, yielding a(ℓ+k) = 4(ℓ+2k2+k−1)
for k = 1, 2, . . . , ℓ− 2.
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(ℓ− 1) ≤ (j − i) ≤ 2ℓ− 2 ℓ ≤ (j − i) ≤ 2ℓ− 2
(k = ℓ− 1 ⇒ (i, j) 6= (1, ℓ))

type 1 type 2

(ℓ+ 1) ≤ (j − i) < 2ℓ− 2 max{(i− 1), (ℓ+ k − i)} ≤ (ℓ− 2)
type 3 type 4

Figure 2. Types of bases of Bℓ
2,2,ℓ+k, 1 ≤ k ≤ ℓ− 1.

Finally, if k = ℓ− 1, Bℓ
2,2,2ℓ−1 does not contain a basis of type 1 for (i, j) = (1, ℓ)

nor a basis of type 3 for (j−i) = 2ℓ−2, and there is no basis of type 4. Subtracting
4 from the above value for k = ℓ− 1, gives

a(2ℓ− 1) = 4(2ℓ2 − 2ℓ− 1).

By evaluating (1 − xℓ−1 − 3xℓ − 4xℓ+1 − · · · − 4x2ℓ−3 − 3x2ℓ−2 − x2ℓ−1)g(x) we
obtain the associated generating function g(x) as a rational function.

Our results on (2, 2, n)-grids can be summarized as follows.

Theorem 5.3.1. Given ℓ ≥ 3 and any n ≥ 2ℓ, on defining a(n) = bℓ(2, 2, n), we
have the recurrence

a(n) = a(n− ℓ+ 1) + 3a(n− ℓ) + 4a(n− ℓ− 1) + · · ·

+ 4a(n− 2ℓ+ 3) + 3a(n− 2ℓ+ 2) + a(n− 2ℓ+ 1),

with initial values

• a(k) = 4k for k = 1, . . . , ℓ− 1,

• a(ℓ+ k) = 4(ℓ+ 2k2 + k − 1) for k = 0, . . . , ℓ− 2,

• a(2ℓ− 1) = 4(2ℓ2 − 2ℓ− 1),

and the generating function

∑

n≥1

a(n)xn =

∑ℓ−1
k=1 4kx

k +
∑ℓ−3

k=0 4(ℓ− k − 2)xℓ+k

1− xℓ−1 − 3xℓ − 4xℓ+1 − · · · − 4x2ℓ−3 − 3x2ℓ−2 − x2ℓ−1
.
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6. The Case p = 2, q = 3, ℓ = 1

In this case we partition B2,3,k into classes according to the structure of the bases
within the last 2 slices. Note that any slice Sk of G2,3,k contains altogether 17
distinct independent sets. We get 13 classes up to isometry.

Definition of classes and multi-transformations:

→ (2,1)

class 1

→ (1,1), (2,1), (3,1), (4,2), (6,2)

class 2

→ (11,1), (12,1)

class 3

→ (5,2), (8,1), (13,1)

class 4

→ (3,1), (4,1), (7,1), (10,1)

class 5

→ (4,1), (10,1)

class 6

→ (5,2), (13,1)

class 7
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→ (2,1), (4,1), (6,1), (12,1)

class 8

→ (2,1), (3,1), (4,2), (12,1)

class 9

→ (2,1), (3,1), (4,2), (6,1), (12,1)

class 10

→ (2,1), (3,1), (4,2), (6,2), (12,1)

class 11

→ (3,1), (7,2), (9,1)

class 12

→ (5,2), (13,1)

class 13

On merging classes 7 and 13 into a new class 7′ we get a transfer matrix T, see
Table 13.

Calculating determinant of I − xT gives us

det(I − xT ) =(1− 2x− 9x2 + 2x3 + 17x4 + 4x5 − 8x6

+ 3x7 − x8 + 3x9 + 2x10 − 4x11).
(6.1)

Initial values of (b(2, 3, n))n≥1 are obtained from direct calculation and from
initial cardinalities of the classes, which are presented in Table 14. So, we get

(b(2, 3, n))n≥1 =(4, 16, 66, 244, 968, 3726, 14520, 56352,

218978, 850620, 3304624, . . . )
(6.2)

Thus we have arrived at the following result.
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T :

1 2 3 4 5 6 7′ 8 9 10 11 12

1 1

2 1 1 1 1 1 1

3 1 1 1 1 1 1

4 2 1 1 1 2 2 2

5 2 2

6 2 1 1 2

7′ 1 1 1 2

8 1

9 1

10 1 1

11 1

12 1 1 1 1 1 1

Table 13. Transfer matrix for b(2, 3, n).

Theorem 6.1. Let b(2, 3, n) count the maximal independent sets in the (2, 3, n)
grid. Then

∑

n≥1
b(2, 3, n)xn =

4x+ 8x2 − 2x3 − 24x4 − 14x5 + 14x6 − 2x7 + 10x8 − 6x9 − 8x10

1− 2x− 9x2 + 2x3 + 17x4 + 4x5 − 8x6 + 3x7 − x8 + 3x9 + 2x10 − 4x11

is the OGF, providing the recurrence for a(n) = b(2, 3, n)

a(n) = 2a(n− 1) + 9a(n− 2)− 2a(n− 3)− 17a(n− 4)

− 4a(n− 5) + 8a(n− 6)− 3a(n− 7) + a(n− 8)

− 3a(n− 9)− 2a(n− 10) + 4a(n− 11)

(6.3)

for n > 11, with initial values a(1), . . . , a(11) given in (6.2).

7. Computer Aided Verification and Future Work

In this paper we have shown how to adapt the transfer matrix method to count
maximal ℓ-independent sets in several classes of grid graphs. A sophisticated par-
tition of these sets into classes for a fixed size of the graph and a detailed analysis
of the resulting transfer matrix have been at the basis of our approach. In addi-
tion, we have tried to push the values p, q and ℓ as high as possible. Finally, all
results presented in the previous sections have been checked by computer calcula-
tions. To get maximal certainty two different algorithms have been implemented.
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classes
n

3 4 5 6 7 8 9 10 11

1 2 2 16 54 218 852 3298 12850 49880
2 2 16 54 218 852 3298 12850 49880 193838
3 8 26 110 404 1606 6174 24080 93394 363046
4 8 40 156 600 2352 9100 35416 137504 534292
5 12 44 164 652 2492 9748 37740 146812 569988
6 4 16 72 260 1048 4024 15700 60920 236776
7′ 14 42 170 646 2522 9770 37990 147490 573130
8 4 8 40 156 600 2352 9100 35416 137504
9 2 4 22 78 312 1202 4686 18172 70662
10 4 16 60 236 912 3540 13772 53440 207732
11 2 8 26 110 404 1606 6174 24080 93394
12 4 22 78 312 1202 4686 18172 70662 274382
∑

66 244 968 3726 14520 56352 218978 850620 3304624

Table 14. Class cardinalities for b(2, 3, n).

The first is based on classical technique of searching a domain for possible values
and filtering out elements fulfilling a number of prescribed criteria. This kind of
algorithms are generally of exponential time complexity since the search space is
a set of subsets. In our case it turned out to be very time-consuming, in spite
of the use of sophisticated reduction techniques, and therefore only small size
instances could be handled efficiently. The second algorithm uses transfer matri-
ces that are generated completely automatically but in a different manner than
described above and in [1]. The upcoming matrices were of huge size but we still
could use them to compute the numbers bℓ(p, q, n) in a direct way. Our second
algorithm has also been used to calculate additional results. Some of them, for
cases b(3, 3, n), b2(3, 3, n), b3(3, 3, n) and n = 1, . . . , 12, are presented in Table
15. It is an open problem to fully describe the sequences (bℓ(3, 3, n))n≥1 for any
ℓ > 0.

The results presented in this paper can be generalized. Since any grid graph can
be defined as a Cartesian product of graphs, a large family of graphs interesting
for generalization is at hand. Another subject for future work could be the
study of the asymptotic behaviour of the number a(n) in terms of n and distance
parameter ℓ when a(n) is completely determined as in Theorems 2.1, 3.1 or 5.3.1.
In the case when ℓ is fixed, we have omitted asymptotic estimates of the form
a(n) = Θ(λn) where λ is the dominant characteristic root of the corresponding
recurrence and its reciprocal 1/λ is the dominant pole of the OGF, λ > 1.
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n ℓ = 1 ℓ = 2 ℓ = 3

1 10 11 7
2 66 46 26
3 496 182 57
4 3556 1026 190
5 26948 4836 646
6 199898 23922 1914
7 1491120 118674 5960
8 11087686 584516 18824
9 82651544 2889306 58248
10 615619076 14266546 181196
11 4584511168 70455052 565328
12 34147089394 347980122 1759720

Table 15. Values of bℓ(3, 3, n) obtained with computer.
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