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Abstract

A graph is called perfect matching compact (briefly, PM -compact), if
its perfect matching graph is complete. Matching-covered PM -compact
bipartite graphs have been characterized. In this paper, we show that any
PM -compact bipartite graph G with δ(G) ≥ 2 has an ear decomposition
such that each graph in the decomposition sequence is also PM -compact,
which implies that G is matching-covered.
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1. Introduction

In this paper, graphs under consideration are loopless, undirected, finite and
connected. Let G be a graph with vertex set V (G) and edge set E(G). A subset
M of E(G) is called a perfect matching of G if no two edges in M are adjacent and
M covers all vertices of G. The perfect matching graph of G, denoted by PM(G),
is the graph in which each perfect matching of G is a vertex and two vertices M1

and M2 are adjacent in PM(G) if and only if the symmetric difference of M1 and
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M2 is an alternating cycle. The perfect matching polytope of G is the convex hull
of the incidence vectors of all perfect matchings of G. Chvátal [4] shows that two
vertices of the perfect matching polytope are adjacent if and only if the symmetric
difference of the two perfect matchings is a cycle. This implies that PM(G) is the
1-skeleton graph of the perfect matching polytope of G. Naddef and Pulleyblank
[5] show that if PM(G) is bipartite then PM(G) is a hypercube and otherwise
PM(G) is Hamilton-connected. Bian and Zhang [1] give a sharp upper bound of
the number of edges for the graphs whose perfect matching graphs are bipartite.
Padberg and Rao [6] show that, for n ≥ 4, the diameter of PM(K2n) is 2 and,
for n ∈ {2, 3}, the diameter of PM(K2n) is 1.

Let G be a graph which has perfect matchings. If PM(G) is a complete
graph, i.e., the diameter of the 1-skeleton graph of the perfect matching polytope
of G is 1, we call G perfect matching compact, or PM -compact for short. Clearly,
K4 and K6 are PM -compact. Let v be a vertex of degree 2 of G which has
two distinct neighbors. The bicontraction of v is the graph obtained from G by
contracting both edges incident with v. The retract of G is the graph obtained
from G by successively bicontracting vertices of degree 2 until either there are no
vertices of degree 2 or at most two vertices remain. A graph with two vertices
and at least two parallel edges is denoted by K∗

2
. A graph is matching-covered

if every edge of it appears in a perfect matching. Let δ(G) denote the minimum
degree of G. For bipartite graphs, the following result is obtained in [7].

Theorem 1. (i) Let G be a matching-covered bipartite graph. Then G is PM -

compact if and only if the retract of G is K3,3 or K∗

2
.

(ii) The graph K3,3 is the only simple matching-covered PM -compact bipartite

graph G with δ(G) ≥ 3.

Let H be a subgraph of a graph G. An ear of G with respect to H is a path of
odd length in G which has both ends, but no edges or interior vertices, in H. We
call an ear trivial if it is an edge. An ear decomposition of a bipartite graph G
is a sequence of subgraphs (G0, G1, . . . , Gr), where G0 = K2, Gr = G, and for
1 ≤ i ≤ r, Gi is the union of Gi−1 and an ear Pi of Gi with respect to Gi−1.
Clearly, G1 is an even cycle and G = K2 + P1 + · · · + Pr. In [3] Theorem 4.1.1
and Theorem 4.1.6 imply the following.

Theorem 2. A bipartite graph G is matching-covered if and only if G has an ear

decomposition.

This theorem implies that for an ear decomposition of a matching-covered bipar-
tite graph, each member of the sequence is matching-covered. If G is a matching-
covered graph, then G is 2-connected, and so has minimum degree at least 2. In
this paper, we show that a PM -compact bipartite graph G with δ(G) ≥ 2 has an
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ear decomposition such that each member of the decomposition sequence is PM -
compact, which implies that G is matching-covered. Thus the characterization
of PM -compact bipartite graphs is complete. (Note that each pendant edge (of
which one end has degree 1) of a graph is contained in all perfect matchings. Us-
ing the obtained results, it is easy to characterize PM -compact bipartite graphs
with minimum degree one.)

2. Main Result

A vertex v of a graph G is said to be pendant if its degree is 1 in G. A bipartite
graph G with bipartition (X,Y ) is denoted by G[X,Y ]. The following lemma is
an immediate consequence of Exercise 16.1.13 in [2].

Lemma 3. Let G[X,Y ] be a bipartite graph. Then G has a unique perfect match-

ing if and only if

(i) each of X and Y contains a pendant vertex, and

(ii) when the pendant vertices and their neighbors are deleted, the resulting graph

(if nonempty) has a unique perfect matching.

Lemma 4. Let G be a PM -compact graph and H a subgraph of G which has a

perfect matching. If either (i) H is a spanning subgraph of G or (ii) G − V (H)
has a perfect matching, then H is PM -compact.

Proof. If (i) holds, the assertion follows directly from the definition of PM -
compact graphs.

If (ii) holds, let M be a perfect matching of G − V (H). Suppose that M ′

1

and M ′

2
are two distinct perfect matchings of H. Then M1 = M ′

1
∪ M and

M2 = M ′

2
∪M are two perfect matchings of G. Since G is PM -compact, M1△M2

is an alternating cycle of G. So M ′

1
△M ′

2
= M1△M2 is an alternating cycle of H,

and hence H is PM -compact.

Theorem 5. Let G be a PM -compact bipartite graph with δ(G) ≥ 2. Then

G has an ear decomposition (G0, G1, . . . , Gr) such that each Gi, 1 ≤ i ≤ r, is

PM -compact.

Proof. Suppose that H is a subgraph of G such that G − V (H) has a unique
perfect matching M∗. If a nontrivial ear P of G with respect to H is an M∗-
alternating path, then we call P a normal ear.

Claim. The graph G has a normal ear with respect to H.

Proof. To show this, write G∗ = G−V (H). Let P ∗ be a longest M∗-alternating
path in G∗. Let x and y be the two ends of P ∗. We assert that both x and y
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are covered by M∗ ∩E(P ∗) and each have a unique neighbor in G∗, that is, their
other neighbors are all in H. We show this by way of contradiction. If x is not
covered by M∗ ∩ E(P ∗), let y′ be the vertex matched to x under M∗ (clearly,
y′ ∈ V (G∗)); otherwise, let y′ be an arbitrary neighbor of x in G∗−E(P ∗). When
y′ /∈ V (P ∗), P ∗ + xy′ is an M∗-alternating path which is longer than P ∗. But
this contradicts the choice of P ∗. When y′ ∈ V (P ∗), let C∗ be the union of the
edge xy′ and the segment of P ∗ from x to y′. Since G is bipartite, C∗ is an even
cycle which is an M∗-alternating cycle. Hence M∗ △ E(C∗) is another perfect
matching of G∗, which contradicts the uniqueness of M∗. Therefore x is covered
by M∗ ∩ E(P ∗) and has only one neighbor in G∗ (namely, a member of V (P ∗)).
By symmetry, y also has these properties. The assertion follows.

Since δ(G) ≥ 2, by the above assertion, x and y have neighbors in H. Let
x1, y1 ∈ V (H) be two neighbors of y and x, respectively. The above assertion
also implies that the length of P ∗ is odd. Since G is bipartite, we have x1 6= y1.
Write P = P ∗+xy1+ yx1. By the above assertion again, P is an M∗-alternating
path with odd length. So P is a normal ear of G with respect to H. The claim
follows.

We now proceed inductively to get an ear decomposition of G. For an even cycle
C of G, if G− V (C) has a perfect matching, we call C a PM -alternating cycle.

Recall δ(G) ≥ 2. By Lemma 3, G has at least two perfect matchings. Since
each cycle in the symmetric difference of any two perfect matchings of G is a PM -
alternating cycle of G, G has PM -alternating cycles. Let C be a PM -alternating
cycle of G, and set H1 = C. If G−V (H1) has two perfect matchings M ′

1
and M ′

2
,

let E1 and E2 be the two disjoint perfect matchings in H1. Then M1 = M ′

1
∪E1

and M2 = M ′

2
∪ E2 are two perfect matchings of G. Since M1 △M2 contains at

least two alternating cycles, namely, C and an alternating cycle in M ′

1
△M ′

2
, M1

and M2 are not adjacent in PM(G). This contradicts the assumption that G is
PM -compact. So either G − V (H1) has a unique perfect matching, say M ′, or
G− V (H1) is null.

For the former case, by the above claim, G has a normal ear P2 with respect
to H1. Set H2 = H1 + P2. If H2 is not spanning, then M ′ \ E(P2) is the unique
perfect matching of G − V (H2). So we can proceed to find a normal ear P3 of
G with respect to H2. Continue in this way until Hk = Hk−1 + Pk, k ≥ 1, is a
spanning subgraph of G. Write E′ = E(G) \ E(Hk). Then each edge in E′ is
a trivial ear of G with respect to Hk. Write r = k + |E′|. Then we get an ear
decomposition (H1, H2, . . . , Hk, . . . , Hr) of G, where Hi = Hi−1+Pi such that Pi

is a normal ear of Hi with respect to Hi−1 for each 2 ≤ i ≤ k and a trivial ear
(an edge in E′) of Hi with respect to Hi−1 for each k + 1 ≤ i ≤ r.

For the latter case, H1 is a spanning subgraph of G. Then each edge in
E′ = E(G) \ E(H1) is a trivial ear of G with respect to C. Since G = H1 + E′,
we are done.
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Let (G0, G1, . . . , Gr) be an arbitrary ear decomposition of G. Recall that G0

is K2 and G1 is an even cycle. To complete the proof, we show that for each
1 ≤ i ≤ r − 1, Gi is PM -compact. Note that G − V (Gi) either is null or has
a perfect matching (which is unique). Thus either Gi is a spanning subgraph
of G or G − V (Gi) has a unique perfect matching. Since Gi also has a perfect
matching, by Lemma 4, Gi is PM -compact.

Note that in the proof of Theorem 5, we show a stronger assertion that for
each ear decomposition of a PM -compact bipartite graph G with δ(G) ≥ 2, each
member in the decomposition sequence is PM -compact.

By Theorem 2 and Theorem 5, we get the following.

Corollary 6. Any PM -compact bipartite graph G with δ(G) ≥ 2 is matching-

covered.
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