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Abstract

The crossing number cr(G) of a graph G is the minimal number of cross-
ings over all drawings of G in the plane. According to their special structure,
the class of Cartesian products of two graphs is one of few graph classes for
which some exact values of crossing numbers were obtained. The crossing
numbers of Cartesian products of paths, cycles or stars with all graphs of
order at most four are known. Moreover, except of six graphs, the crossing
numbers of Cartesian products G�K1,n for all other connected graphs G

on five vertices are known. In this paper we are dealing with the Cartesian
products of stars with graphs on six vertices. We give the exact values of
crossing numbers for some of these graphs and we summarise all known re-
sults concerning crossing numbers of these graphs. Moreover, we give the
crossing number of G1�T for the special graph G1 on six vertices and for
any tree T with no vertex of degree two as well as the crossing number of
K1,n�T for any tree T with maximum degree five.
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1. Introduction

Let G be a graph, whose vertex set and edge set are denoted by V (G) and E(G),
respectively. A drawing of G is a representation of G in the plane such that its
vertices are represented by distinct points and its edges by simple continuous
arcs connecting the corresponding point pairs. For simplicity, we assume that in
a drawing (a) no edge passes through any vertex other than its end-points, (b) no
two edges touch each other (i.e., if two edges have a common interior point, then
at this point they properly cross each other), and (c) no three edges cross at the
same point. The crossing number cr(G) is the smallest number of edge crossings
in any drawing of G. It is easy to see that a drawing with minimum number of
crossings (an optimal drawing) is always a good drawing, meaning that no edge
crosses itself, no two edges cross more than once, and no two edges incident with
the same vertex cross.

The investigation on the crossing number of graphs is a classical and very
difficult problem. According to their special structure, the class of Cartesian
products of two graphs is one of few graph classes for which some exact values of
crossing numbers were obtained. The Cartesian product G�H of the graphs G

and H has vertex set V (G�H) = V (G)× V (H) and any two vertices (u, u′) and
(v, v′) are adjacent in G�H if and only if either u = v and u′ is adjacent with v′

in H, or u′ = v′ and u is adjacent with v in G. Let Cn be the cycle of length n,
Pn be the path of n vertices, and Sn be the star isomorphic to K1,n. Harary et al.
[7] conjectured that the crossing number of the Cartesian product Cm�Cn of two
cycles is (m − 2)n, for all m,n satisfying 3 ≤ m ≤ n. It was proved by Glebsky
and Salazar [6] that for any fixed m, the conjecture holds for all n ≥ m(m+ 1).
The conjecture has also been verified for m ≤ 7. Beineke and Ringeisen in [2]
started to study the crossing numbers of Cartesian products of cycles with all
graphs of order at most four. In [11], [13], and [14], the crossing numbers of
Cartesian products of cycles, paths and stars with all graphs of order four are
given. In the paper, we are dealing with crossing numbers of Cartesian products
of stars and small graphs. Some results concerning the crossing numbers of G�Sn

for graphs G on five vertices appear in [15] and [16]. The crossing numbers of
Cartesian products of stars with graphs of order five are collected in [18]. The
aim of the paper is to establish the crossing numbers of Cartesian products of
stars with several graphs of order six. We will use some results concerning the
crossing numbers of bipartite and multipartite complete graphs as well as the
crossing numbers of join products of special graphs.

The join product of two graphs G and H, denoted by G + H, is obtained
from vertex-disjoint copies of G and H by adding all edges between V (G) and
V (H). For |V (G)| = m and |V (H)| = n, the edge set of G +H is the union of
disjoint edge sets of the graphs G, H, and the complete bipartite graph Km,n.
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Kulli and Muddebihal [19] gave the characterization of all pairs of graphs which
join is planar graph. Using Kleitman’s result [12], the crossing numbers for join
of two paths, join of two cycles, and for join of path and cycle were studied in
[17].

Let D be a good drawing of the graph G. We denote the number of crossings
in D by crD(G). For a subgraph Hi of the graph G, let D(Hi) be the subdrawing
of D induced by Hi. For edge-disjoint subgraphs Hi and Hj of G, we denote
by crD(Hi, Hj) the number of crossings of edges in Hi and edges in Hj , and by
crD(Hi) the number of crossings among edges of Hi in D. It is easy to see that for
any three edge-disjoint subgraphs Hi, Hj , and Hk of the graph G the following
equations hold:

crD(Hi ∪Hj) = crD(Hi) + crD(Hj) + crD(Hi, Hj) ,

crD(Hi ∪Hj , Hk) = crD(Hi, Hk) + crD(Hj , Hk) .(1)

In the paper, some proofs are based on Kleitman’s result on crossing numbers of
complete bipartite graphs. More precisely, he proved that

cr(Km,n) =
⌊m

2

⌋⌊m− 1

2

⌋⌊n

2

⌋⌊n− 1

2

⌋

, if m ≤ 6 .(2)

Let Dn denote the discrete graph on n vertices and let G1 be the special graph
on six vertices which can be seen in Figure 1. In Section 2, we give the crossing
number of the join product of G1 with the graph Dn. Using this result and
properties of the Zip product operation, for any tree T with no vertex of degree
two we give the crossing number of G1�T in Section 3. In Section 4, all known
results concerning the crossing numbers of Cartesian products of stars with graphs
on six vertices are collected. Moreover, we establish the crossing numbers of
Gi�Sn for several other graphs Gi of order six. In the proofs of the paper,
we will often use the term “region” also in non-planar drawings. In this case,
crossings are considered to be vertices of the “map”.

a b

def

c

Figure 1. The graph G1 on six vertices.
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2. The Crossing Number of G1 +Dn

The graph G1 in Figure 1 consists of one 6-cycle abcdef , denoted by C6(G1) in
the paper, and of one edge be which, together with the edges of the 6-cycle, form
two 4-cycles. The graph G1 + Dn consists of one copy of the graph G1 and n

vertices t1, t2, . . . , tn, where every vertex ti, i = 1, 2, . . . , n, is adjacent to every
vertex of G1, see Figure 2. For i = 1, 2, . . . , n, let T i denote the subgraph induced
by six edges incident with the vertex ti and let F i = G1 ∪ T i. To simplify the
notation, let G1(n) denote the graph G1+Dn in this paper. In Figure 2, one can
easily see that

G1 +Dn = G1(n) = G1 ∪K6,n = G1 ∪
(

⋃n

i=1
T i

)

.(3)

Figure 2. The drawing of the graph G1 +Dn.

Lemma 1. cr(G1 +D2) = 2.

Proof. The graph G1 +D2 consists of the subgraph G1 and two subgraphs T 1

and T 2. As G1 +D2 contains K3,3 as a subgraph, cr(G1 +D2) ≥ 1. If there is
a drawing of G1 +D2 with only one crossing, then at least one of the subgraphs
T 1 and T 2 does not cross G1. Without loss of generality, assume that T 1 does
not cross G1. Then, in the view of the subdrawing of G1, all vertices of G1 are
placed on the boundary of one, say outside, region. The subgraph T 1 is placed
in this region and, as T 1 and G1 do not cross each other, the edge be of G1 does
not cross T 1, too. Hence, if the edges of C6(G1) do not cross each other, the
subdrawing of G1∪T 1 divides the plane such that at most four vertices of G1 are
on the boundary of every region as shown in Figure 3(a). If the edges of C6(G1)
cross each other, then they cross only once and no region of the subdrawing of
C6(G1) ∪ T 1 has more than four vertices of G1 on its boundary, see Figure 3(b).
This forces, that the subgraph T 2 crosses G1 ∪ T 1 at least twice in both cases.
Thus, cr(G1 + D2) ≥ 2. On the other hand, in Figure 2 it is easy to see that
cr(G1 +D2) ≤ 2. This completes the proof.
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(a) (b) (c)

a

Figure 3. The forced subdrawings of F i = G1 ∪ T i.

Theorem 2. cr(G1 +Dn) = 6⌊n2 ⌋⌊
n−1
2 ⌋+ 2⌊n2 ⌋ for n ≥ 1.

Proof. The drawing in Figure 2 shows that cr(G1 + Dn) ≤ 6⌊n2 ⌋⌊
n−1
2 ⌋ + 2⌊n2 ⌋

and that the theorem is true if the equality holds. We prove the reverse inequality
by induction on n. As the graph G1 + D1 is planar, the case n = 1 is trivial.
Lemma 1 implies that the result is true for the case n = 2.

Suppose now that for n ≥ 3

cr(G1(n− 2)) ≥ 6
⌊n− 2

2

⌋⌊n− 3

2

⌋

+ 2
⌊n− 2

2

⌋

(4)

and consider such a drawing D of G1(n) that

crD(G1(n)) < 6
⌊n

2

⌋⌊n− 1

2

⌋

+ 2
⌊n

2

⌋

.(5)

The drawing D has the following properties:

Property 1. crD(T
i, T j) 6= 0 for all i, j = 1, 2, . . . , n, i 6= j.

Assume that for some i 6= j, crD(T
i, T j) = 0. The subgraph G1 ∪ T i ∪ T j is

isomorphic to the graph G1 + D2. If the edges of G1 do not cross each other,
then, by Lemma 1, crD(G1, T

i ∪ T j) ≥ 2. If both T i and T j cross G1, then
crD(G1, T

i ∪ T j) ≥ 2 again. The last possibility is that one of T i and T j , say T i,
does not cross G1, and the edges of G1 cross each other. This forces that the edges
of C6(G1) cross each other, otherwise the edge be crosses T i, see Figure 3(a).
Hence, aside from the number of internal crossings in G1, the subdrawing of
C6(G1) ∪ T i divides the plane in such a way that there is no region with more
than four vertices of C6(G1) on its boundary. This implies that the edges of T j

joining tj with the vertices of G1 cross C6(G1) ∪ T i at least twice. As T j does
not cross T i, crD(G1, T

i ∪ T j) ≥ 2 again. Moreover, as cr(K6,3) = 6, in D, every
subgraph T k, k = 1, 2, . . . , n, k 6= i, j, crosses T i ∪ T j at least six times. Since
G1(n) = G1 +Dn = G1(n − 2) ∪ (T i ∪ T j) and G1(n − 2) = K6,n−2 ∪ G1, using
(1) and (4) we have
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crD(G1(n)) = crD(G1(n− 2)) + crD(T
i ∪ T j) + crD(K6,n−2, T

i ∪ T j)

+ crD(G1, T
i ∪ T j) ≥ 6

⌊

n−2
2

⌋⌊

n−3
2

⌋

+2
⌊

n−2
2

⌋

+0+6(n− 2)+2

= 6
⌊

n
2

⌋⌊

n−1
2

⌋

+ 2
⌊

n
2

⌋

.

This contradicts (5), and therefore crD(T
i, T j) 6= 0 for all i, j = 1, 2, . . . , n, i 6= j.

Property 2. The edges of G1 are crossed less than 2⌊n2 ⌋ in D.

Using (1) and (3) together with cr(K6,n) = 6⌊n2 ⌋⌊
n−1
2 ⌋ we have

crD(G1(n)) = crD(K6,n) + crD(G1) + crD(K6,n, G1)

≥ 6
⌊

n
2

⌋⌊

n−1
2

⌋

+ crD(G1) + crD (K6,n, G1) .

This, together with the assumption (5), implies that

crD(G1) + crD(K6,n, G1) < 2
⌊n

2

⌋

(6)

and hence, the edges of G1 are crossed less than 2⌊n2 ⌋ times in D.

The inequality (6) immediately implies the next property.

Property 3. In D, there is at least one subgraph T i which does not cross G1.

Assume, without loss of generality, that crD(G1, T
n) = 0. Then for the subgraph

Fn = G1 ∪ Tn of the graph G1(n) we have the next property.

Property 4. In D, there is at least one subgraph T i, i ∈ {1, 2, . . . , n − 1}, for
which crD(F

n, T i) ≤ 3 .

Otherwise, as G1(n) = K6,n−1 ∪ Fn and crD(F
n) = crD(G1 ∪ Tn) = 0, we have

crD(G1(n)) = crD(K6,n−1) + crD(F
n) + crD(K6,n−1, F

n)

≥ 6
⌊

n−1
2

⌋⌊

n−2
2

⌋

+ 0 + 4(n− 1) ≥ 6
⌊

n
2

⌋⌊

n−1
2

⌋

+ 2
⌊

n
2

⌋

,

which contradicts (5).

Consider now the subdrawing D∗ of D induced by Fn. As we assumed above,
no edge of Tn crosses G1. Our next analysis depends on whether or not the edges
of the 6-cycle C6(G1) cross each other in D∗. Assume first, that the edges of
C6(G1) do not cross each other. Since crD(G1, T

n) = 0, in D∗, all edges of Tn

are placed in one of two regions, say outside, in the view of the subdrawing of
C6(G1) and the edge be of G1, not belonging to C6(G1), is placed inside the
6-cycle C6(G1). The unique such drawing D∗ is shown in Figure 3(a). If, in D,
some vertex ti, i ∈ {1, 2, . . . , n− 1}, is placed inside C6(G1), then G1 is crossed
by at least two edges joining ti with the vertices of G1. Moreover, by Property 1,
T i crosses Tn and therefore, crD(F

n, T i) ≥ 3. Outside C6(G1) there are two
vertices on the boundary of every region. Hence, for all other vertices ti not
placed inside C6(G1), the edges of T i cross the edges of Fn at least five times.
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Let r be the number of vertices ti, i ∈ {1, 2, . . . , n − 1}, which are placed in D

inside the cycle C6(G1). Thus, the corresponding subgraphs T i cross the edges
of G1 ∪ Tn at least three times. The calculating of the necessary crossings in D

gives
crD(G1(n)) = crD(K6,n−1) + crD(F

n) + crD(K6,n−1, F
n)

≥ 6
⌊

n−1
2

⌋⌊

n−2
2

⌋

+ 0 + 3r + 5(n− r − 1)

= 6
⌊

n
2

⌋⌊

n−1
2

⌋

+ 2
⌊

n
2

⌋

+ (5n− 2r − 5− 6
⌊

n−1
2

⌋

− 2
⌊

n
2

⌋

).

This, together with the assumption (5), gives

2r > 5n− 5− 6
⌊

n−1
2

⌋

− 2
⌊

n
2

⌋

≥ 2
⌊

n
2

⌋

.

This contradicts Property 2, because every of r subgraphs T i crosses G1 at least
twice.

Let us turn to the case crD(C6(G1)) 6= 0. As crD(G1, T
n) = 0, the subdrawing

of C6(G1) induced byD∗ divides the plane in such a way that all vertices of C6(G1)
are placed on the boundary of one region, say outside. The whole subgraph Tn is
placed in this region and on the boundary of every subregion formed by the edges
of Tn and G1 there are two vertices of G1. The edges of C6(G1) cross each other
at least once and, by Property 1 and Property 4, on the boundary of at least
one region inside C6(G1) there are at least four vertices of G1. Because of good
drawing, this requirement forces that C6(G1) has only one internal crossing and
the unique subdrawing of C6(G1)∪Tn is shown in Figure 3(b). The edge be of G1

not belonging to C6(G1) must be adjacent to at least one vertex of C6(G1) on the
boundary of the region α. Assume first that both vertices of G1 incident with the
edge be are placed on the boundary of the region α. These vertices are in distance
three. As two edges incident with the same vertex do not cross each other in the
good drawing D∗ and the edge be does not cross Tn, the unique possibility for
placing the edge be is shown in Figure 3(c). It is easy to verify that, in this case,
every subgraph T i, i = 1, 2, . . . , n− 1, crosses the edges of Fn at least four times
in D. This contradicts Property 4. Hence, the edge be is adjacent to only one
vertex on the boundary of the region α in such a way that it splits the region α

into two subregions. So, in D∗, there is no region with at least four vertices on
its boundary. In this case, in D, every subgraph T i, i = 1, 2, . . . , n − 1, crosses
Fn at least four times. This contradiction with Property 4 completes the proof.

3. The Crossing Number of G1�T .

In this section, using Zip product operation introduced in [3], we establish the
crossing number of the Cartesian product of the graph G1 with any tree without
vertices of degree two. For better reading, we repeat the related terms and results
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introduced by Bokal in [3] and [4].
For i = 1, 2, let Hi be a graph and let vi ∈ V (Hi) be its vertex of degree d.

Let Ni = NHi
(vi) be the set of neighbouring vertices of vi and let σ : N1 → N2 be

a bijection. We call σ a zip function of the graphs H1 and H2 at vertices v1 and
v2. The zip product of the graphs H1 and H2 according to σ is defined to be the
graph H1 ⊙σ H2, obtained from the disjoint union of H1 − v1 and H2 − v2 after
adding the edges uσ(u), u ∈ N1. Let H1 v1⊙v2 H2 denote the set of all graphs
obtained as a zip product H1 ⊙σ H2 for some zip function σ : N1 → N2.

Let Di be a drawing of a graph Hi. The drawing imposes a cyclic ordering
of the edges incident with vi, which can be extended to its neighbourhood Ni.
Let the bijection πi : Ni → {1, . . . , d} be one of the corresponding labellings. We
define σ : N1 → N2, σ = π−1

2 π1, to be the zip function of the drawings D1 and
D2 at vertices v1 and v2. The zip product of D1 and D2 according to σ is the
drawing D1 ⊙σ D2, obtained from D1 by adding a mirrored copy of D2 that has
v2 on the infinite face disjointly into some face of D1 that contains the vertex v1,
removing the vertices v1 and v2 together with small disks around them from the
drawings, and then joining the edges according to the function σ. As σ respects
the ordering of the edges around v1 and v2, the edges between D1 and D2 may
be drawn without introducing any new crossings. Clearly D1 ⊙σ D2 is a drawing
of H1 ⊙σ H2, which implies the following lemma.

Lemma 3 [3]. For i = 1, 2, let Di be an optimal drawing of Hi, let vi ∈ V (Hi)
be a vertex of degree d, and let σ be a zip function of D1 and D2 according to v1
and v2. Then cr(H1 ⊙σ H2) ≤ cr(H1) + cr(H2).

Let G(i) = G+Di be the suspension of order i of a graph G. The vertices of Di

are called apices of G(i). For a multiset L ⊆ V (H2), we denote with H1�LH2 the
capped Cartesian product of graphs H1 and H2, that is, the graph obtained by
adding a distinct vertex v′ to H1�H2 for each copy of a vertex v ∈ L and joining
v′ to all the vertices of H1�{v}. We call each v′ a cap of v. Let χL(v) denote
the multiplicity of v in L and ℓ(v) := degH2

(v) + χL(v). An edge uv ∈ E(H2) is
unbalanced if ℓ(u) 6= ℓ(v). Let β(H2) be the number of unbalanced edges of H2.

A drawing D of G(i) is apex-homogeneous if there exists a permutation ρ of
the vertices of G such that the vertex rotation around every apex in D is ρ or ρ−1.
Two drawings D(i) of G(i) and D(j) of G(j) are pairwise apex-homogeneous, if they
are apex-homogeneous with respect to the same permutation ρ. A graph G has
all apex-homogeneous drawings if there exist drawings D(i) of G(i), i ≥ 1, such
that every two of them are pairwise apex-homogeneous. The next result given
by Bokal enables us to establish the crossing numbers of the Cartesian products
of our graph G1 with all trees which do not contain vertices of degree two.

Theorem 4 [4]. Let G be a graph of order n, let T be a tree, and let L ⊆ V (T )
be a multiset with either ℓ(v) ≥ 3 or, if G has a dominating vertex, ℓ(v) ≥ 2 for
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every v ∈ V (T ). Define

B =
∑

v∈V (T )
cr(G(ℓ(v))).

Then, B ≤ cr(G�LT ) ≤ B + β(T )
2

(

n
2

)

. Also, cr(G�LT ) = B whenever G has all

apex-homogeneous drawings.

Consider now a graph HG1
obtained by joining all vertices of G1 to six vertices

of a connected graph H such that every vertex of G1 be adjacent to exactly one
vertex of H. Let H∗

G1
be the graph obtained from HG1

by contracting the edges
of G1.

Lemma 5. cr(H∗
G1

) ≤ cr(HG1
).

Proof. Assume an optimal drawing of HG1
. We remark that the edges of G1

can cross each other in this drawing, as well as they can be crossed by some
other edges of HG1

. Let us denote by x1 and x2 the number of crossings on the
edges ab and bc of G1, respectively. Similarly, let x3 and x4 denote the number
of crossings on the edges ed and ef , see one of the possible cases in Figure 4(a).

Let us contract the graph G1 into the vertex b and connect this vertex with
six vertices of H in such a way that the segments along the edges ab and bc in G1

are used twice and the segments along the edges af , be, and cd only once. The
segments along the edges ef and ed are not used as shown in Figure 4(b). In the
worth case, at most x1 + x2 new crossings can appear only on the new edges in
the segments along the edges ab and bc. But x3+x4 crossings on the edges ed and
ef do not appear in the new drawing. Hence, if x1 + x2 ≤ x3 + x4, the resulting
drawing of H∗

G1
does not have more crossings than the original drawing of HG1

.
If the edges ed and ef cross some other edges of G1 in the original drawing, these
crossings do not appear in the drawing of H∗

G1
and the number of crossings is less

than in the drawing of HG1
. Moreover, possible crossings among the edges of G1

not appeared on the edges ed and ef cannot be crossings in a good drawing of
H∗

G1
. Thus, if x1 + x2 ≤ x3 + x4 our drawing after contracting the graph G1 into

vertex b does not have more crossings than the original drawing of HG1
. Due to

symmetry of the graph G1, the same holds if x3 + x4 ≤ x1 + x2.

Assume that the statement of Lemma 5 is not true. Then there is a good
drawing of the graph HG1

in which x1 + x2 > x3 + x4 and x3 + x4 > x1 + x2.
This contradiction completes the proof.

In the rest of the section, we give the crossing numbers of the Cartesian products
of the graph G1 with trees T not containing vertices of degree two. For the special
case T = Sn, the crossing number of the graph G1�Sn is obtained.
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x1 x1
x2 x2

x3 x4

(a) (b)

2 2b b

Figure 4. The contracting of G1.

Theorem 6. Let T be any tree of order n with no vertices of degree two and let

di be the number of vertices of degree i in T . Then

cr(T�G1) =
∑∆(T )

i=1
(di · cr(G1 +Di)) .

Proof. Let T ′ be the tree obtained from T by removing all vertices of degree
one in T . For a vertex v of T ′, let rv be the number of T -leaves adjacent to v in
T , and let L be the set of vertices in T ′, each with multiplicity rv. As T has no
vertices of degree two, ℓ(v) = dT ′(v) + r(v) = dT (v) ≥ 3 for all v ∈ V (T ′). The
drawing in Figure 2 shows that G1 has all apex-homogeneous drawings. Thus,

by Theorem 4, cr(G1�LT
′) =

∑∆(T )
i=1 (di · cr(G1 +Di)).

The graph G1�LT
′ is obtained from G1�T by contracting all the G1 edges

corresponding to G1�{u}, where u is a leaf of T . Then, the iterative applications
of Lemma 5 show that cr(G1�LT

′) ≤ cr(G1�T ). On the other hand, the graph
G1�T is obtained from G1�LT

′ by zipping a copy of G′ = G1 + {v} at each cap
of G1�LT

′. As G′ = G1 + {v} is planar, Lemma 3 implies that cr(G1�LT
′) ≥

cr(G1�T ), and the proof is done.

By Theorem 2, cr(G1 +Dn) = 6⌊n2 ⌋⌊
n−1
2 ⌋ + 2⌊n2 ⌋. As cr(G1 +D1) = 0, for the

special tree Sn we have the next result.

Figure 5. The drawing of G1�Sn with 6⌊n
2
⌋⌊n−1

2
⌋+ 2⌊n

2
⌋ crossings.
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Corollary 7. cr(G1�Sn) = 6⌊n2 ⌋⌊
n−1
2 ⌋+ 2⌊n2 ⌋ for n ≥ 1.

The drawing of the Cartesian product G1�Sn with 6⌊n2 ⌋⌊
n−1
2 ⌋ + 2⌊n2 ⌋ crossings

is shown in Figure 5. In the next section, we will use parts of similar drawings
for some special graphs Gi of order six.

4. The Crossing Number of Gi�Sn for Some Graphs of Order Six

There are 112 connected graphs of order six. In the rest of the paper, we collect
old and new results concerning the crossing numbers of Cartesian products of
eighteen graphs on six vertices with stars. In Section 3, the crossing number of
G1�Sn is established. In Figure 6, the other 16 graphs Gi, i = 2, 3, . . . , 17, on six
vertices are presented. The last graph, not presented in Figure 6, is the complete
tripartite graph K2,2,2.

2G 3G 4G 5G 6G 7G 8G 9G

10G 11G 12G 13G 15G
14G G16 G17

Figure 6. Sixteen graphs Gj on six vertices.

As corollary of Theorem 4, in [4] Bokal estimated the following results:

Corollary 8 [4]. Let T be a tree and n ≥ 1. Then, for dv = degT (v),

cr(Sn�T ) =
∑

v∈V (T ),dv≥2
cr(K1,dv ,n) .

Corollary 9 [4]. Let n ≥ 1 be any integer and T a subcubic tree with n2 vertices

of degree two and n3 vertices of degree three. Then,

cr(Sn�T ) =
⌊n

2

⌋(

(n2 + 2n3)
⌊n− 1

2

⌋

+ n3

)

.

In [10], Huang and Zhao proved that cr(K1,4,n) = 4⌊n2 ⌋⌊
n−1
2 ⌋ + 2⌊n2 ⌋. Mei and

Huang proved in [21] that the crossing number of the complete tripartite graph
K1,5,n is 6⌊n2 ⌋⌊

n−1
2 ⌋ + 4⌊n2 ⌋. This, together with Asano’s [1] result cr(K1,3,n) =

2⌊n2 ⌋⌊
n−1
2 ⌋ + ⌊n2 ⌋ and the known fact that cr(K1,2,n) = cr(K3,n) = ⌊n2 ⌋⌊

n−1
2 ⌋

enables us to state:
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Corollary 10. Let n ≥ 1 be any integer and T a tree with maximum degree five.

Let T have n2 vertices of degree two, n3 vertices of degree three, n4 vertices of

degree four, and n5 vertices of degree five. Then,

cr(Sn�T ) =
⌊n

2

⌋(

(n2 + 2n3 + 4n4 + 6n5)
⌊n− 1

2

⌋

+ n3 + 2n4 + 4n5

)

.

In [3], Bokal proved the conjecture given by Jendrol’ and Ščerbová [11] that
cr(Pm�Sn) = (m − 2)⌊n2 ⌋⌊

n−1
2 ⌋ for the path Pm of length m − 1. Hence,

cr(G2�Sn) = cr(P6�Sn) = 4⌊n2 ⌋⌊
n−1
2 ⌋. For the graphs G3, G4, and G5 in Fig-

ure 6, Corollary 9 implies that cr(G3�Sn) = cr(G5�Sn) = 4⌊n2 ⌋⌊
n−1
2 ⌋ + ⌊n2 ⌋

and cr(G4�Sn) = 4⌊n2 ⌋⌊
n−1
2 ⌋+ 2⌊n2 ⌋. Moreover, by Corollary 10, cr((G6�Sn) =

5⌊n2 ⌋⌊
n−1
2 ⌋+2⌊n2 ⌋. This results enables us to give the crossing numbers of Carte-

sian products of stars with the graphs G7, G8, G9, and G10. The graph G7 con-
tains G6 as a subgraph, so cr(G7�Sn) ≥ 5⌊n2 ⌋⌊

n−1
2 ⌋+2⌊n2 ⌋. On the other hand, in

Figure 7(a) there is a left-side drawing of the graph G7�Sn with ⌈n2 ⌉ non-central
copies of G7 and the right ⌊n2 ⌋ non-central copies of G7 are omitted (compare with
the drawing of the graph G1�Sn in Figure 5). The drawing in Figure 7(a) implies
that there is a drawing of the graph G7�Sn with 5⌊n2 ⌋⌊

n−1
2 ⌋+2⌊n2 ⌋ crossings and

therefore, cr(G7�Sn) = 5⌊n2 ⌋⌊
n−1
2 ⌋+ 2⌊n2 ⌋.

(a) (b)

(c)
(d)

Figure 7. The half-drawings of the graphs G7�Sn, G8�Sn, G10�Sn, and G17�Sn.
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The graph G8 contains G5 as a subgraph, so cr(G8�Sn) ≥ 4⌊n2 ⌋⌊
n−1
2 ⌋ + ⌊n2 ⌋.

Figure 7(b) shows that there is a drawing of the graph G8�Sn with 4⌊n2 ⌋⌊
n−1
2 ⌋+

⌊n2 ⌋ crossings. This states that cr(G8�Sn) = 4⌊n2 ⌋⌊
n−1
2 ⌋ + ⌊n2 ⌋. Both graphs

G9 and G10 contain G4. This implies that cr(G9�Sn) ≥ 4⌊n2 ⌋⌊
n−1
2 ⌋ + 2⌊n2 ⌋ and

cr(G10�Sn) ≥ 4⌊n2 ⌋⌊
n−1
2 ⌋ + 2⌊n2 ⌋. In the half-drawing of the graph G10�Sn in

Figure 7(c) we can see that the crossing number of the graph G10�Sn is at most
4⌊n2 ⌋⌊

n−1
2 ⌋+2⌊n2 ⌋. Using the fact that the graph G9�Sn is a subgraph of G10�Sn,

we have that cr(G9�Sn) = cr(G10�Sn) = 4⌊n2 ⌋⌊
n−1
2 ⌋+ 2⌊n2 ⌋.

In [21], Mei and Huang proved that cr(K1,5,n) = 6⌊n2 ⌋⌊
n−1
2 ⌋ + 4⌊n2 ⌋. Since

the graph S5�Sn = G11�Sn is a subdivision of the graph K1,5,n, cr(G11�Sn) =
6⌊n2 ⌋⌊

n−1
2 ⌋ + 4⌊n2 ⌋. All graphs Gi, i = 12, 13, . . . , 17, in Figure 6 contain the

graph G11 as a subgraph and therefore, cr(Gi�Sn) ≥ 6⌊n2 ⌋⌊
n−1
2 ⌋ + 4⌊n2 ⌋ for i =

12, 13, . . . , 17. The left-side drawing of the graph G17�Sn in Figure 7(d) implies
that there is a drawing of the graph G17�Sn with at most 6⌊n2 ⌋⌊

n−1
2 ⌋ + 4⌊n2 ⌋

crossings. Thus, we have the same lower and upper bound for the crossing number
of all six considered graphs, which implies that cr(Gi�Sn) = 6⌊n2 ⌋⌊

n−1
2 ⌋ + 4⌊n2 ⌋

for all i = 12, 13, . . . , 17.
In [9], Ho proved that the crossing number of the complete 4-partite graph

K2,2,2,n is 6⌊n2 ⌋⌊
n−1
2 ⌋+ 3n. Using this result, in [5] it is shown that the crossing

number of the Cartesian product K2,2,2�Sn is 6⌊n2 ⌋⌊
n−1
2 ⌋+ 6n.

5. Comments

Except the graph K5�Sn, the known results concerning crossing numbers of
Cartesian products of stars with graphs of order five are collected in [18]. The
crossing number of K5�Sn was presented in [20]. For six remaining graphs Gi on
five vertices, the problem of estimating cr(Gi�Sn) is still open, even though some
incorrect result were published. For example, in [8] the incorrect proof states that
for the tree T on five vertices with one vertex of degree two and one vertex of
degree three, the crossing number of T�Sn is 4⌊n2 ⌋⌊

n−1
2 ⌋+ ⌊n2 ⌋. This contradicts

Corollary 9.
We suppose that the application of Zip product operation can be used to

estimate the unknown values of the crossing number for Cartesian products of
some graphs on five vertices with trees, and also with stars. The same we expect
for lager graphs, namely for some of 94 remaining graphs of order six.
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