ON THE CROSSING NUMBERS OF CARTESIAN PRODUCTS OF STARS AND GRAPHS OF ORDER SIX

Marián Klešč ${ }^{1,2}$ and Štefan Schrötter ${ }^{1}$
Faculty of Electrical Engineering and Informatics
Technical University of Košice
Letná 9, 04200 Košice, Slovak Republic
e-mail: marian.klesc@tuke.sk
stefan.schrotter@tuke.sk

Abstract

The crossing number $\operatorname{cr}(G)$ of a graph G is the minimal number of crossings over all drawings of G in the plane. According to their special structure, the class of Cartesian products of two graphs is one of few graph classes for which some exact values of crossing numbers were obtained. The crossing numbers of Cartesian products of paths, cycles or stars with all graphs of order at most four are known. Moreover, except of six graphs, the crossing numbers of Cartesian products $G \square K_{1, n}$ for all other connected graphs G on five vertices are known. In this paper we are dealing with the Cartesian products of stars with graphs on six vertices. We give the exact values of crossing numbers for some of these graphs and we summarise all known results concerning crossing numbers of these graphs. Moreover, we give the crossing number of $G_{1} \square T$ for the special graph G_{1} on six vertices and for any tree T with no vertex of degree two as well as the crossing number of $K_{1, n} \square T$ for any tree T with maximum degree five.

Keywords: graph, drawing, crossing number, Cartesian product, join product, star.
2010 Mathematics Subject Classification: 05C10, 05C38.

[^0]
1. Introduction

Let G be a graph, whose vertex set and edge set are denoted by $V(G)$ and $E(G)$, respectively. A drawing of G is a representation of G in the plane such that its vertices are represented by distinct points and its edges by simple continuous arcs connecting the corresponding point pairs. For simplicity, we assume that in a drawing (a) no edge passes through any vertex other than its end-points, (b) no two edges touch each other (i.e., if two edges have a common interior point, then at this point they properly cross each other), and (c) no three edges cross at the same point. The crossing number $\operatorname{cr}(G)$ is the smallest number of edge crossings in any drawing of G. It is easy to see that a drawing with minimum number of crossings (an optimal drawing) is always a good drawing, meaning that no edge crosses itself, no two edges cross more than once, and no two edges incident with the same vertex cross.

The investigation on the crossing number of graphs is a classical and very difficult problem. According to their special structure, the class of Cartesian products of two graphs is one of few graph classes for which some exact values of crossing numbers were obtained. The Cartesian product $G \square H$ of the graphs G and H has vertex set $V(G \square H)=V(G) \times V(H)$ and any two vertices (u, u^{\prime}) and $\left(v, v^{\prime}\right)$ are adjacent in $G \square H$ if and only if either $u=v$ and u^{\prime} is adjacent with v^{\prime} in H, or $u^{\prime}=v^{\prime}$ and u is adjacent with v in G. Let C_{n} be the cycle of length n, P_{n} be the path of n vertices, and S_{n} be the star isomorphic to $K_{1, n}$. Harary et al. [7] conjectured that the crossing number of the Cartesian product $C_{m} \square C_{n}$ of two cycles is $(m-2) n$, for all m, n satisfying $3 \leq m \leq n$. It was proved by Glebsky and Salazar [6] that for any fixed m, the conjecture holds for all $n \geq m(m+1)$. The conjecture has also been verified for $m \leq 7$. Beineke and Ringeisen in [2] started to study the crossing numbers of Cartesian products of cycles with all graphs of order at most four. In [11], [13], and [14], the crossing numbers of Cartesian products of cycles, paths and stars with all graphs of order four are given. In the paper, we are dealing with crossing numbers of Cartesian products of stars and small graphs. Some results concerning the crossing numbers of $G \square S_{n}$ for graphs G on five vertices appear in [15] and [16]. The crossing numbers of Cartesian products of stars with graphs of order five are collected in [18]. The aim of the paper is to establish the crossing numbers of Cartesian products of stars with several graphs of order six. We will use some results concerning the crossing numbers of bipartite and multipartite complete graphs as well as the crossing numbers of join products of special graphs.

The join product of two graphs G and H, denoted by $G+H$, is obtained from vertex-disjoint copies of G and H by adding all edges between $V(G)$ and $V(H)$. For $|V(G)|=m$ and $|V(H)|=n$, the edge set of $G+H$ is the union of disjoint edge sets of the graphs G, H, and the complete bipartite graph $K_{m, n}$.

Kulli and Muddebihal [19] gave the characterization of all pairs of graphs which join is planar graph. Using Kleitman's result [12], the crossing numbers for join of two paths, join of two cycles, and for join of path and cycle were studied in [17].

Let D be a good drawing of the graph G. We denote the number of crossings in D by $\operatorname{cr}_{D}(G)$. For a subgraph H_{i} of the graph G, let $D\left(H_{i}\right)$ be the subdrawing of D induced by H_{i}. For edge-disjoint subgraphs H_{i} and H_{j} of G, we denote by $\operatorname{cr}_{D}\left(H_{i}, H_{j}\right)$ the number of crossings of edges in H_{i} and edges in H_{j}, and by $\operatorname{cr}_{D}\left(H_{i}\right)$ the number of crossings among edges of H_{i} in D. It is easy to see that for any three edge-disjoint subgraphs H_{i}, H_{j}, and H_{k} of the graph G the following equations hold:

$$
\operatorname{cr}_{D}\left(H_{i} \cup H_{j}\right)=\operatorname{cr}_{D}\left(H_{i}\right)+\operatorname{cr}_{D}\left(H_{j}\right)+\operatorname{cr}_{D}\left(H_{i}, H_{j}\right),
$$

$$
\begin{equation*}
\operatorname{cr}_{D}\left(H_{i} \cup H_{j}, H_{k}\right)=\operatorname{cr}_{D}\left(H_{i}, H_{k}\right)+\operatorname{cr}_{D}\left(H_{j}, H_{k}\right) \tag{1}
\end{equation*}
$$

In the paper, some proofs are based on Kleitman's result on crossing numbers of complete bipartite graphs. More precisely, he proved that

$$
\begin{equation*}
\operatorname{cr}\left(K_{m, n}\right)=\left\lfloor\frac{m}{2}\right\rfloor\left\lfloor\frac{m-1}{2}\right\rfloor\left\lfloor\frac{n}{2}\right\rfloor\left\lfloor\frac{n-1}{2}\right\rfloor, \quad \text { if } \quad m \leq 6 . \tag{2}
\end{equation*}
$$

Let D_{n} denote the discrete graph on n vertices and let G_{1} be the special graph on six vertices which can be seen in Figure 1. In Section 2, we give the crossing number of the join product of G_{1} with the graph D_{n}. Using this result and properties of the Zip product operation, for any tree T with no vertex of degree two we give the crossing number of $G_{1} \square T$ in Section 3. In Section 4, all known results concerning the crossing numbers of Cartesian products of stars with graphs on six vertices are collected. Moreover, we establish the crossing numbers of $G_{i} \square S_{n}$ for several other graphs G_{i} of order six. In the proofs of the paper, we will often use the term "region" also in non-planar drawings. In this case, crossings are considered to be vertices of the "map".

Figure 1. The graph G_{1} on six vertices.

2. The Crossing Number of $G_{1}+D_{n}$

The graph G_{1} in Figure 1 consists of one 6 -cycle abcdef, denoted by $C_{6}\left(G_{1}\right)$ in the paper, and of one edge be which, together with the edges of the 6 -cycle, form two 4 -cycles. The graph $G_{1}+D_{n}$ consists of one copy of the graph G_{1} and n vertices $t_{1}, t_{2}, \ldots, t_{n}$, where every vertex $t_{i}, i=1,2, \ldots, n$, is adjacent to every vertex of G_{1}, see Figure 2. For $i=1,2, \ldots, n$, let T^{i} denote the subgraph induced by six edges incident with the vertex t_{i} and let $F^{i}=G_{1} \cup T^{i}$. To simplify the notation, let $G_{1}(n)$ denote the graph $G_{1}+D_{n}$ in this paper. In Figure 2, one can easily see that

$$
\begin{equation*}
G_{1}+D_{n}=G_{1}(n)=G_{1} \cup K_{6, n}=G_{1} \cup\left(\bigcup_{i=1}^{n} T^{i}\right) \tag{3}
\end{equation*}
$$

Figure 2. The drawing of the graph $G_{1}+D_{n}$.
Lemma 1. $\operatorname{cr}\left(G_{1}+D_{2}\right)=2$.
Proof. The graph $G_{1}+D_{2}$ consists of the subgraph G_{1} and two subgraphs T^{1} and T^{2}. As $G_{1}+D_{2}$ contains $K_{3,3}$ as a subgraph, $\operatorname{cr}\left(G_{1}+D_{2}\right) \geq 1$. If there is a drawing of $G_{1}+D_{2}$ with only one crossing, then at least one of the subgraphs T^{1} and T^{2} does not cross G_{1}. Without loss of generality, assume that T^{1} does not cross G_{1}. Then, in the view of the subdrawing of G_{1}, all vertices of G_{1} are placed on the boundary of one, say outside, region. The subgraph T^{1} is placed in this region and, as T^{1} and G_{1} do not cross each other, the edge be of G_{1} does not cross T^{1}, too. Hence, if the edges of $C_{6}\left(G_{1}\right)$ do not cross each other, the subdrawing of $G_{1} \cup T^{1}$ divides the plane such that at most four vertices of G_{1} are on the boundary of every region as shown in Figure 3(a). If the edges of $C_{6}\left(G_{1}\right)$ cross each other, then they cross only once and no region of the subdrawing of $C_{6}\left(G_{1}\right) \cup T^{1}$ has more than four vertices of G_{1} on its boundary, see Figure 3(b). This forces, that the subgraph T^{2} crosses $G_{1} \cup T^{1}$ at least twice in both cases. Thus, $\operatorname{cr}\left(G_{1}+D_{2}\right) \geq 2$. On the other hand, in Figure 2 it is easy to see that $\operatorname{cr}\left(G_{1}+D_{2}\right) \leq 2$. This completes the proof.

Figure 3. The forced subdrawings of $F^{i}=G_{1} \cup T^{i}$.

Theorem 2. $\operatorname{cr}\left(G_{1}+D_{n}\right)=6\left\lfloor\frac{n}{2}\right\rfloor\left\lfloor\frac{n-1}{2}\right\rfloor+2\left\lfloor\frac{n}{2}\right\rfloor$ for $n \geq 1$.
Proof. The drawing in Figure 2 shows that $\operatorname{cr}\left(G_{1}+D_{n}\right) \leq 6\left\lfloor\frac{n}{2}\right\rfloor\left\lfloor\frac{n-1}{2}\right\rfloor+2\left\lfloor\frac{n}{2}\right\rfloor$ and that the theorem is true if the equality holds. We prove the reverse inequality by induction on n. As the graph $G_{1}+D_{1}$ is planar, the case $n=1$ is trivial. Lemma 1 implies that the result is true for the case $n=2$.

Suppose now that for $n \geq 3$

$$
\begin{equation*}
\operatorname{cr}\left(G_{1}(n-2)\right) \geq 6\left\lfloor\frac{n-2}{2}\right\rfloor\left\lfloor\frac{n-3}{2}\right\rfloor+2\left\lfloor\frac{n-2}{2}\right\rfloor \tag{4}
\end{equation*}
$$

and consider such a drawing D of $G_{1}(n)$ that

$$
\begin{equation*}
\operatorname{cr}_{D}\left(G_{1}(n)\right)<6\left\lfloor\frac{n}{2}\right\rfloor\left\lfloor\frac{n-1}{2}\right\rfloor+2\left\lfloor\frac{n}{2}\right\rfloor . \tag{5}
\end{equation*}
$$

The drawing D has the following properties:
Property 1. $\operatorname{cr}_{D}\left(T^{i}, T^{j}\right) \neq 0$ for all $i, j=1,2, \ldots, n, i \neq j$.
Assume that for some $i \neq j, \operatorname{cr}_{D}\left(T^{i}, T^{j}\right)=0$. The subgraph $G_{1} \cup T^{i} \cup T^{j}$ is isomorphic to the graph $G_{1}+D_{2}$. If the edges of G_{1} do not cross each other, then, by Lemma $1, \operatorname{cr}_{D}\left(G_{1}, T^{i} \cup T^{j}\right) \geq 2$. If both T^{i} and T^{j} cross G_{1}, then $\operatorname{cr}_{D}\left(G_{1}, T^{i} \cup T^{j}\right) \geq 2$ again. The last possibility is that one of T^{i} and T^{j}, say T^{i}, does not cross G_{1}, and the edges of G_{1} cross each other. This forces that the edges of $C_{6}\left(G_{1}\right)$ cross each other, otherwise the edge be crosses T^{i}, see Figure 3(a). Hence, aside from the number of internal crossings in G_{1}, the subdrawing of $C_{6}\left(G_{1}\right) \cup T^{i}$ divides the plane in such a way that there is no region with more than four vertices of $C_{6}\left(G_{1}\right)$ on its boundary. This implies that the edges of T^{j} joining t_{j} with the vertices of G_{1} cross $C_{6}\left(G_{1}\right) \cup T^{i}$ at least twice. As T^{j} does not cross $T^{i}, \operatorname{cr}_{D}\left(G_{1}, T^{i} \cup T^{j}\right) \geq 2$ again. Moreover, as $\operatorname{cr}\left(K_{6,3}\right)=6$, in D, every subgraph $T^{k}, k=1,2, \ldots, n, k \neq i, j$, crosses $T^{i} \cup T^{j}$ at least six times. Since $G_{1}(n)=G_{1}+D_{n}=G_{1}(n-2) \cup\left(T^{i} \cup T^{j}\right)$ and $G_{1}(n-2)=K_{6, n-2} \cup G_{1}$, using (1) and (4) we have

$$
\begin{aligned}
\operatorname{cr}_{D}\left(G_{1}(n)\right) & =\operatorname{cr}_{D}\left(G_{1}(n-2)\right)+\operatorname{cr}_{D}\left(T^{i} \cup T^{j}\right)+\operatorname{cr}_{D}\left(K_{6, n-2}, T^{i} \cup T^{j}\right) \\
& +\operatorname{cr}_{D}\left(G_{1}, T^{i} \cup T^{j}\right) \geq 6\left\lfloor\frac{n-2}{2}\right\rfloor\left\lfloor\frac{n-3}{2}\right\rfloor+2\left\lfloor\frac{n-2}{2}\right\rfloor+0+6(n-2)+2 \\
& =6\left\lfloor\frac{n}{2}\right\rfloor\left\lfloor\frac{n-1}{2}\right\rfloor+2\left\lfloor\frac{n}{2}\right\rfloor .
\end{aligned}
$$

This contradicts (5), and therefore $\operatorname{cr}_{D}\left(T^{i}, T^{j}\right) \neq 0$ for all $i, j=1,2, \ldots, n, i \neq j$.
Property 2. The edges of G_{1} are crossed less than $2\left\lfloor\frac{n}{2}\right\rfloor$ in D.
Using (1) and (3) together with $\operatorname{cr}\left(K_{6, n}\right)=6\left\lfloor\frac{n}{2}\right\rfloor\left\lfloor\frac{n-1}{2}\right\rfloor$ we have

$$
\begin{aligned}
\operatorname{cr}_{D}\left(G_{1}(n)\right) & =\operatorname{cr}_{D}\left(K_{6, n}\right)+\operatorname{cr}_{D}\left(G_{1}\right)+\operatorname{cr}_{D}\left(K_{6, n}, G_{1}\right) \\
& \geq 6\left\lfloor\frac{n}{2}\right\rfloor\left\lfloor\frac{n-1}{2}\right\rfloor+\operatorname{cr}_{D}\left(G_{1}\right)+\operatorname{cr}_{D}\left(K_{6, n}, G_{1}\right)
\end{aligned}
$$

This, together with the assumption (5), implies that

$$
\begin{equation*}
\operatorname{cr}_{D}\left(G_{1}\right)+\operatorname{cr}_{D}\left(K_{6, n}, G_{1}\right)<2\left\lfloor\frac{n}{2}\right\rfloor \tag{6}
\end{equation*}
$$

and hence, the edges of G_{1} are crossed less than $2\left\lfloor\frac{n}{2}\right\rfloor$ times in D.
The inequality (6) immediately implies the next property.
Property 3. In D, there is at least one subgraph T^{i} which does not cross G_{1}.
Assume, without loss of generality, that $\operatorname{cr}_{D}\left(G_{1}, T^{n}\right)=0$. Then for the subgraph $F^{n}=G_{1} \cup T^{n}$ of the graph $G_{1}(n)$ we have the next property.

Property 4. In D, there is at least one subgraph $T^{i}, i \in\{1,2, \ldots, n-1\}$, for which $\operatorname{cr}_{D}\left(F^{n}, T^{i}\right) \leq 3$.

Otherwise, as $G_{1}(n)=K_{6, n-1} \cup F^{n}$ and $\operatorname{cr}_{D}\left(F^{n}\right)=\operatorname{cr}_{D}\left(G_{1} \cup T^{n}\right)=0$, we have

$$
\begin{aligned}
\operatorname{cr}_{D}\left(G_{1}(n)\right) & =\operatorname{cr}_{D}\left(K_{6, n-1}\right)+\operatorname{cr}_{D}\left(F^{n}\right)+\operatorname{cr}_{D}\left(K_{6, n-1}, F^{n}\right) \\
& \geq 6\left\lfloor\frac{n-1}{2}\right\rfloor\left\lfloor\frac{n-2}{2}\right\rfloor+0+4(n-1) \geq 6\left\lfloor\frac{n}{2}\right\rfloor\left\lfloor\frac{n-1}{2}\right\rfloor+2\left\lfloor\frac{n}{2}\right\rfloor
\end{aligned}
$$

which contradicts (5).
Consider now the subdrawing D^{*} of D induced by F^{n}. As we assumed above, no edge of T^{n} crosses G_{1}. Our next analysis depends on whether or not the edges of the 6 -cycle $C_{6}\left(G_{1}\right)$ cross each other in D^{*}. Assume first, that the edges of $C_{6}\left(G_{1}\right)$ do not cross each other. Since $\operatorname{cr}_{D}\left(G_{1}, T^{n}\right)=0$, in D^{*}, all edges of T^{n} are placed in one of two regions, say outside, in the view of the subdrawing of $C_{6}\left(G_{1}\right)$ and the edge be of G_{1}, not belonging to $C_{6}\left(G_{1}\right)$, is placed inside the 6 -cycle $C_{6}\left(G_{1}\right)$. The unique such drawing D^{*} is shown in Figure 3(a). If, in D, some vertex $t_{i}, i \in\{1,2, \ldots, n-1\}$, is placed inside $C_{6}\left(G_{1}\right)$, then G_{1} is crossed by at least two edges joining t_{i} with the vertices of G_{1}. Moreover, by Property 1, T^{i} crosses T^{n} and therefore, $\operatorname{cr}_{D}\left(F^{n}, T^{i}\right) \geq 3$. Outside $C_{6}\left(G_{1}\right)$ there are two vertices on the boundary of every region. Hence, for all other vertices t_{i} not placed inside $C_{6}\left(G_{1}\right)$, the edges of T^{i} cross the edges of F^{n} at least five times.

Let r be the number of vertices $t_{i}, i \in\{1,2, \ldots, n-1\}$, which are placed in D inside the cycle $C_{6}\left(G_{1}\right)$. Thus, the corresponding subgraphs T^{i} cross the edges of $G_{1} \cup T^{n}$ at least three times. The calculating of the necessary crossings in D gives

$$
\begin{aligned}
\operatorname{cr}_{D}\left(G_{1}(n)\right) & =\operatorname{cr}_{D}\left(K_{6, n-1}\right)+\operatorname{cr}_{D}\left(F^{n}\right)+\operatorname{cr}_{D}\left(K_{6, n-1}, F^{n}\right) \\
& \geq 6\left\lfloor\frac{n-1}{2}\right\rfloor\left\lfloor\frac{n-2}{2}\right\rfloor+0+3 r+5(n-r-1) \\
& =6\left\lfloor\frac{n}{2}\right\rfloor\left\lfloor\frac{n-1}{2}\right\rfloor+2\left\lfloor\frac{n}{2}\right\rfloor+\left(5 n-2 r-5-6\left\lfloor\frac{n-1}{2}\right\rfloor-2\left\lfloor\frac{n}{2}\right\rfloor\right) .
\end{aligned}
$$

This, together with the assumption (5), gives

$$
2 r>5 n-5-6\left\lfloor\frac{n-1}{2}\right\rfloor-2\left\lfloor\frac{n}{2}\right\rfloor \geq 2\left\lfloor\frac{n}{2}\right\rfloor .
$$

This contradicts Property 2, because every of r subgraphs T^{i} crosses G_{1} at least twice.

Let us turn to the case $\operatorname{cr}_{D}\left(C_{6}\left(G_{1}\right)\right) \neq 0$. As cr $_{D}\left(G_{1}, T^{n}\right)=0$, the subdrawing of $C_{6}\left(G_{1}\right)$ induced by D^{*} divides the plane in such a way that all vertices of $C_{6}\left(G_{1}\right)$ are placed on the boundary of one region, say outside. The whole subgraph T^{n} is placed in this region and on the boundary of every subregion formed by the edges of T^{n} and G_{1} there are two vertices of G_{1}. The edges of $C_{6}\left(G_{1}\right)$ cross each other at least once and, by Property 1 and Property 4 , on the boundary of at least one region inside $C_{6}\left(G_{1}\right)$ there are at least four vertices of G_{1}. Because of good drawing, this requirement forces that $C_{6}\left(G_{1}\right)$ has only one internal crossing and the unique subdrawing of $C_{6}\left(G_{1}\right) \cup T^{n}$ is shown in Figure 3(b). The edge be of G_{1} not belonging to $C_{6}\left(G_{1}\right)$ must be adjacent to at least one vertex of $C_{6}\left(G_{1}\right)$ on the boundary of the region α. Assume first that both vertices of G_{1} incident with the edge be are placed on the boundary of the region α. These vertices are in distance three. As two edges incident with the same vertex do not cross each other in the good drawing D^{*} and the edge be does not cross T^{n}, the unique possibility for placing the edge be is shown in Figure 3(c). It is easy to verify that, in this case, every subgraph $T^{i}, i=1,2, \ldots, n-1$, crosses the edges of F^{n} at least four times in D. This contradicts Property 4. Hence, the edge be is adjacent to only one vertex on the boundary of the region α in such a way that it splits the region α into two subregions. So, in D^{*}, there is no region with at least four vertices on its boundary. In this case, in D, every subgraph $T^{i}, i=1,2, \ldots, n-1$, crosses F^{n} at least four times. This contradiction with Property 4 completes the proof.

3. The Crossing Number of $G_{1} \square T$.

In this section, using Zip product operation introduced in [3], we establish the crossing number of the Cartesian product of the graph G_{1} with any tree without vertices of degree two. For better reading, we repeat the related terms and results
introduced by Bokal in [3] and [4].
For $i=1,2$, let H_{i} be a graph and let $v_{i} \in V\left(H_{i}\right)$ be its vertex of degree d. Let $N_{i}=N_{H_{i}}\left(v_{i}\right)$ be the set of neighbouring vertices of v_{i} and let $\sigma: N_{1} \rightarrow N_{2}$ be a bijection. We call σ a zip function of the graphs H_{1} and H_{2} at vertices v_{1} and v_{2}. The zip product of the graphs H_{1} and H_{2} according to σ is defined to be the graph $H_{1} \odot_{\sigma} H_{2}$, obtained from the disjoint union of $H_{1}-v_{1}$ and $H_{2}-v_{2}$ after adding the edges $u \sigma(u), u \in N_{1}$. Let $H_{1 v_{1}} \odot_{v_{2}} H_{2}$ denote the set of all graphs obtained as a zip product $H_{1} \odot_{\sigma} H_{2}$ for some zip function $\sigma: N_{1} \rightarrow N_{2}$.

Let D_{i} be a drawing of a graph H_{i}. The drawing imposes a cyclic ordering of the edges incident with v_{i}, which can be extended to its neighbourhood N_{i}. Let the bijection $\pi_{i}: N_{i} \rightarrow\{1, \ldots, d\}$ be one of the corresponding labellings. We define $\sigma: N_{1} \rightarrow N_{2}, \sigma=\pi_{2}^{-1} \pi_{1}$, to be the zip function of the drawings D_{1} and D_{2} at vertices v_{1} and v_{2}. The zip product of D_{1} and D_{2} according to σ is the drawing $D_{1} \odot_{\sigma} D_{2}$, obtained from D_{1} by adding a mirrored copy of D_{2} that has v_{2} on the infinite face disjointly into some face of D_{1} that contains the vertex v_{1}, removing the vertices v_{1} and v_{2} together with small disks around them from the drawings, and then joining the edges according to the function σ. As σ respects the ordering of the edges around v_{1} and v_{2}, the edges between D_{1} and D_{2} may be drawn without introducing any new crossings. Clearly $D_{1} \odot_{\sigma} D_{2}$ is a drawing of $H_{1} \odot_{\sigma} H_{2}$, which implies the following lemma.

Lemma 3 [3]. For $i=1,2$, let D_{i} be an optimal drawing of H_{i}, let $v_{i} \in V\left(H_{i}\right)$ be a vertex of degree d, and let σ be a zip function of D_{1} and D_{2} according to v_{1} and v_{2}. Then $\operatorname{cr}\left(H_{1} \odot_{\sigma} H_{2}\right) \leq \operatorname{cr}\left(H_{1}\right)+\operatorname{cr}\left(H_{2}\right)$.
Let $G^{(i)}=G+D_{i}$ be the suspension of order i of a graph G. The vertices of D_{i} are called apices of $G^{(i)}$. For a multiset $L \subseteq V\left(H_{2}\right)$, we denote with $H_{1} \square_{L} H_{2}$ the capped Cartesian product of graphs H_{1} and H_{2}, that is, the graph obtained by adding a distinct vertex v^{\prime} to $H_{1} \square H_{2}$ for each copy of a vertex $v \in L$ and joining v^{\prime} to all the vertices of $H_{1} \square\{v\}$. We call each v^{\prime} a cap of v. Let $\chi_{L}(v)$ denote the multiplicity of v in L and $\ell(v):=\operatorname{deg}_{H_{2}}(v)+\chi_{L}(v)$. An edge $u v \in E\left(H_{2}\right)$ is unbalanced if $\ell(u) \neq \ell(v)$. Let $\beta\left(H_{2}\right)$ be the number of unbalanced edges of H_{2}.

A drawing D of $G^{(i)}$ is apex-homogeneous if there exists a permutation ρ of the vertices of G such that the vertex rotation around every apex in D is ρ or ρ^{-1}. Two drawings $D^{(i)}$ of $G^{(i)}$ and $D^{(j)}$ of $G^{(j)}$ are pairwise apex-homogeneous, if they are apex-homogeneous with respect to the same permutation ρ. A graph G has all apex-homogeneous drawings if there exist drawings $D^{(i)}$ of $G^{(i)}, i \geq 1$, such that every two of them are pairwise apex-homogeneous. The next result given by Bokal enables us to establish the crossing numbers of the Cartesian products of our graph G_{1} with all trees which do not contain vertices of degree two.

Theorem 4 [4]. Let G be a graph of order n, let T be a tree, and let $L \subseteq V(T)$ be a multiset with either $\ell(v) \geq 3$ or, if G has a dominating vertex, $\ell(v) \geq 2$ for
every $v \in V(T)$. Define

$$
B=\sum_{v \in V(T)} \operatorname{cr}\left(G^{(\ell(v))}\right)
$$

Then, $B \leq \operatorname{cr}\left(G \square_{L} T\right) \leq B+\frac{\beta(T)}{2}\binom{n}{2}$. Also, $\operatorname{cr}\left(G \square_{L} T\right)=B$ whenever G has all apex-homogeneous drawings.

Consider now a graph $H_{G_{1}}$ obtained by joining all vertices of G_{1} to six vertices of a connected graph H such that every vertex of G_{1} be adjacent to exactly one vertex of H. Let $H_{G_{1}}^{*}$ be the graph obtained from $H_{G_{1}}$ by contracting the edges of G_{1}.

Lemma 5. $\operatorname{cr}\left(H_{G_{1}}^{*}\right) \leq \operatorname{cr}\left(H_{G_{1}}\right)$.
Proof. Assume an optimal drawing of $H_{G_{1}}$. We remark that the edges of G_{1} can cross each other in this drawing, as well as they can be crossed by some other edges of $H_{G_{1}}$. Let us denote by x_{1} and x_{2} the number of crossings on the edges $a b$ and $b c$ of G_{1}, respectively. Similarly, let x_{3} and x_{4} denote the number of crossings on the edges $e d$ and $e f$, see one of the possible cases in Figure 4(a).

Let us contract the graph G_{1} into the vertex b and connect this vertex with six vertices of H in such a way that the segments along the edges $a b$ and $b c$ in G_{1} are used twice and the segments along the edges $a f, b e$, and $c d$ only once. The segments along the edges ef and ed are not used as shown in Figure 4(b). In the worth case, at most $x_{1}+x_{2}$ new crossings can appear only on the new edges in the segments along the edges $a b$ and $b c$. But $x_{3}+x_{4}$ crossings on the edges $e d$ and ef do not appear in the new drawing. Hence, if $x_{1}+x_{2} \leq x_{3}+x_{4}$, the resulting drawing of $H_{G_{1}}^{*}$ does not have more crossings than the original drawing of $H_{G_{1}}$. If the edges ed and ef cross some other edges of G_{1} in the original drawing, these crossings do not appear in the drawing of $H_{G_{1}}^{*}$ and the number of crossings is less than in the drawing of $H_{G_{1}}$. Moreover, possible crossings among the edges of G_{1} not appeared on the edges ed and ef cannot be crossings in a good drawing of $H_{G_{1}}^{*}$. Thus, if $x_{1}+x_{2} \leq x_{3}+x_{4}$ our drawing after contracting the graph G_{1} into vertex b does not have more crossings than the original drawing of $H_{G_{1}}$. Due to symmetry of the graph G_{1}, the same holds if $x_{3}+x_{4} \leq x_{1}+x_{2}$.

Assume that the statement of Lemma 5 is not true. Then there is a good drawing of the graph $H_{G_{1}}$ in which $x_{1}+x_{2}>x_{3}+x_{4}$ and $x_{3}+x_{4}>x_{1}+x_{2}$. This contradiction completes the proof.

In the rest of the section, we give the crossing numbers of the Cartesian products of the graph G_{1} with trees T not containing vertices of degree two. For the special case $T=S_{n}$, the crossing number of the graph $G_{1} \square S_{n}$ is obtained.

Figure 4. The contracting of G_{1}.

Theorem 6. Let T be any tree of order n with no vertices of degree two and let d_{i} be the number of vertices of degree i in T. Then

$$
\operatorname{cr}\left(T \square G_{1}\right)=\sum_{i=1}^{\Delta(T)}\left(d_{i} \cdot \operatorname{cr}\left(G_{1}+D_{i}\right)\right)
$$

Proof. Let T^{\prime} be the tree obtained from T by removing all vertices of degree one in T. For a vertex v of T^{\prime}, let r_{v} be the number of T-leaves adjacent to v in T, and let L be the set of vertices in T^{\prime}, each with multiplicity r_{v}. As T has no vertices of degree two, $\ell(v)=d_{T^{\prime}}(v)+r(v)=d_{T}(v) \geq 3$ for all $v \in V\left(T^{\prime}\right)$. The drawing in Figure 2 shows that G_{1} has all apex-homogeneous drawings. Thus, by Theorem $4, \operatorname{cr}\left(G_{1} \square_{L} T^{\prime}\right)=\sum_{i=1}^{\Delta(T)}\left(d_{i} \cdot \operatorname{cr}\left(G_{1}+D_{i}\right)\right)$.

The graph $G_{1} \square_{L} T^{\prime}$ is obtained from $G_{1} \square T$ by contracting all the G_{1} edges corresponding to $G_{1} \square\{u\}$, where u is a leaf of T. Then, the iterative applications of Lemma 5 show that $\operatorname{cr}\left(G_{1} \square_{L} T^{\prime}\right) \leq \operatorname{cr}\left(G_{1} \square T\right)$. On the other hand, the graph $G_{1} \square T$ is obtained from $G_{1} \square_{L} T^{\prime}$ by zipping a copy of $G^{\prime}=G_{1}+\{v\}$ at each cap of $G_{1} \square_{L} T^{\prime}$. As $G^{\prime}=G_{1}+\{v\}$ is planar, Lemma 3 implies that $\operatorname{cr}\left(G_{1} \square_{L} T^{\prime}\right) \geq$ $\operatorname{cr}\left(G_{1} \square T\right)$, and the proof is done.

By Theorem 2, $\operatorname{cr}\left(G_{1}+D_{n}\right)=6\left\lfloor\frac{n}{2}\right\rfloor\left\lfloor\frac{n-1}{2}\right\rfloor+2\left\lfloor\frac{n}{2}\right\rfloor$. As $\operatorname{cr}\left(G_{1}+D_{1}\right)=0$, for the special tree S_{n} we have the next result.

Figure 5. The drawing of $G_{1} \square S_{n}$ with $6\left\lfloor\frac{n}{2}\right\rfloor\left\lfloor\frac{n-1}{2}\right\rfloor+2\left\lfloor\frac{n}{2}\right\rfloor$ crossings.

Corollary 7. $\operatorname{cr}\left(G_{1} \square S_{n}\right)=6\left\lfloor\frac{n}{2}\right\rfloor\left\lfloor\frac{n-1}{2}\right\rfloor+2\left\lfloor\frac{n}{2}\right\rfloor$ for $n \geq 1$.
The drawing of the Cartesian product $G_{1} \square S_{n}$ with $6\left\lfloor\frac{n}{2}\right\rfloor\left\lfloor\frac{n-1}{2}\right\rfloor+2\left\lfloor\frac{n}{2}\right\rfloor$ crossings is shown in Figure 5. In the next section, we will use parts of similar drawings for some special graphs G_{i} of order six.

4. The Crossing Number of $G_{i} \square S_{n}$ for Some Graphs of Order Six

There are 112 connected graphs of order six. In the rest of the paper, we collect old and new results concerning the crossing numbers of Cartesian products of eighteen graphs on six vertices with stars. In Section 3, the crossing number of $G_{1} \square S_{n}$ is established. In Figure 6 , the other 16 graphs $G_{i}, i=2,3, \ldots, 17$, on six vertices are presented. The last graph, not presented in Figure 6, is the complete tripartite graph $K_{2,2,2}$.

Figure 6. Sixteen graphs G_{j} on six vertices.
As corollary of Theorem 4, in [4] Bokal estimated the following results:
Corollary 8 [4]. Let T be a tree and $n \geq 1$. Then, for $d_{v}=\operatorname{deg}_{T}(v)$,

$$
\operatorname{cr}\left(S_{n} \square T\right)=\sum_{v \in V(T), d_{v} \geq 2} \operatorname{cr}\left(K_{1, d_{v}, n}\right)
$$

Corollary 9 [4]. Let $n \geq 1$ be any integer and T a subcubic tree with n_{2} vertices of degree two and n_{3} vertices of degree three. Then,

$$
\operatorname{cr}\left(S_{n} \square T\right)=\left\lfloor\frac{n}{2}\right\rfloor\left(\left(n_{2}+2 n_{3}\right)\left\lfloor\frac{n-1}{2}\right\rfloor+n_{3}\right)
$$

In [10], Huang and Zhao proved that $\operatorname{cr}\left(K_{1,4, n}\right)=4\left\lfloor\frac{n}{2}\right\rfloor\left\lfloor\frac{n-1}{2}\right\rfloor+2\left\lfloor\frac{n}{2}\right\rfloor$. Mei and Huang proved in [21] that the crossing number of the complete tripartite graph $K_{1,5, n}$ is $6\left\lfloor\frac{n}{2}\right\rfloor\left\lfloor\frac{n-1}{2}\right\rfloor+4\left\lfloor\frac{n}{2}\right\rfloor$. This, together with Asano's [1] result $\operatorname{cr}\left(K_{1,3, n}\right)=$ $2\left\lfloor\frac{n}{2}\right\rfloor\left\lfloor\frac{n-1}{2}\right\rfloor+\left\lfloor\frac{n}{2}\right\rfloor$ and the known fact that $\operatorname{cr}\left(K_{1,2, n}\right)=\operatorname{cr}\left(K_{3, n}\right)=\left\lfloor\frac{n}{2}\right\rfloor\left\lfloor\frac{n-1}{2}\right\rfloor$ enables us to state:

Corollary 10. Let $n \geq 1$ be any integer and T a tree with maximum degree five. Let T have n_{2} vertices of degree two, n_{3} vertices of degree three, n_{4} vertices of degree four, and n_{5} vertices of degree five. Then,

$$
\operatorname{cr}\left(S_{n} \square T\right)=\left\lfloor\frac{n}{2}\right\rfloor\left(\left(n_{2}+2 n_{3}+4 n_{4}+6 n_{5}\right)\left\lfloor\frac{n-1}{2}\right\rfloor+n_{3}+2 n_{4}+4 n_{5}\right) .
$$

In [3], Bokal proved the conjecture given by Jendrol' and Ščerbová [11] that $\operatorname{cr}\left(P_{m} \square S_{n}\right)=(m-2)\left\lfloor\frac{n}{2}\right\rfloor\left\lfloor\frac{n-1}{2}\right\rfloor$ for the path P_{m} of length $m-1$. Hence, $\operatorname{cr}\left(G_{2} \square S_{n}\right)=\operatorname{cr}\left(P_{6} \square S_{n}\right)=4\left\lfloor\frac{n}{2}\right\rfloor\left\lfloor\frac{n-1}{2}\right\rfloor$. For the graphs G_{3}, G_{4}, and G_{5} in Figure 6, Corollary 9 implies that $\operatorname{cr}\left(G_{3} \square S_{n}\right)=\operatorname{cr}\left(G_{5} \square S_{n}\right)=4\left\lfloor\frac{n}{2}\right\rfloor\left\lfloor\frac{n-1}{2}\right\rfloor+\left\lfloor\frac{n}{2}\right\rfloor$ and $\operatorname{cr}\left(G_{4} \square S_{n}\right)=4\left\lfloor\frac{n}{2}\right\rfloor\left\lfloor\frac{n-1}{2}\right\rfloor+2\left\lfloor\frac{n}{2}\right\rfloor$. Moreover, by Corollary $10, \operatorname{cr}\left(\left(G_{6} \square S_{n}\right)=\right.$ $5\left\lfloor\frac{n}{2}\right\rfloor\left\lfloor\frac{n-1}{2}\right\rfloor+2\left\lfloor\frac{n}{2}\right\rfloor$. This results enables us to give the crossing numbers of Cartesian products of stars with the graphs G_{7}, G_{8}, G_{9}, and G_{10}. The graph G_{7} contains G_{6} as a subgraph, so $\operatorname{cr}\left(G_{7} \square S_{n}\right) \geq 5\left\lfloor\frac{n}{2}\right\rfloor\left\lfloor\frac{n-1}{2}\right\rfloor+2\left\lfloor\frac{n}{2}\right\rfloor$. On the other hand, in Figure 7 (a) there is a left-side drawing of the graph $G_{7} \square S_{n}$ with $\left\lceil\frac{n}{2}\right\rceil$ non-central copies of G_{7} and the right $\left\lfloor\frac{n}{2}\right\rfloor$ non-central copies of G_{7} are omitted (compare with the drawing of the graph $G_{1} \square S_{n}$ in Figure 5). The drawing in Figure 7(a) implies that there is a drawing of the graph $G_{7} \square S_{n}$ with $5\left\lfloor\frac{n}{2}\right\rfloor\left\lfloor\frac{n-1}{2}\right\rfloor+2\left\lfloor\frac{n}{2}\right\rfloor$ crossings and therefore, $\operatorname{cr}\left(G_{7} \square S_{n}\right)=5\left\lfloor\frac{n}{2}\right\rfloor\left\lfloor\frac{n-1}{2}\right\rfloor+2\left\lfloor\frac{n}{2}\right\rfloor$.

Figure 7. The half-drawings of the graphs $G_{7} \square S_{n}, G_{8} \square S_{n}, G_{10} \square S_{n}$, and $G_{17} \square S_{n}$.

The graph G_{8} contains G_{5} as a subgraph, so $\operatorname{cr}\left(G_{8} \square S_{n}\right) \geq 4\left\lfloor\frac{n}{2}\right\rfloor\left\lfloor\frac{n-1}{2}\right\rfloor+\left\lfloor\frac{n}{2}\right\rfloor$. Figure $7(\mathrm{~b})$ shows that there is a drawing of the graph $G_{8} \square S_{n}$ with $4\left\lfloor\frac{n}{2}\right\rfloor\left\lfloor\frac{n-1}{2}\right\rfloor+$ $\left\lfloor\frac{n}{2}\right\rfloor$ crossings. This states that $\operatorname{cr}\left(G_{8} \square S_{n}\right)=4\left\lfloor\frac{n}{2}\right\rfloor\left\lfloor\frac{n-1}{2}\right\rfloor+\left\lfloor\frac{n}{2}\right\rfloor$. Both graphs G_{9} and G_{10} contain G_{4}. This implies that $\operatorname{cr}\left(G_{9} \square S_{n}\right) \geq 4\left\lfloor\frac{n}{2}\right\rfloor\left\lfloor\frac{n-1}{2}\right\rfloor+2\left\lfloor\frac{n}{2}\right\rfloor$ and $\operatorname{cr}\left(G_{10} \square S_{n}\right) \geq 4\left\lfloor\frac{n}{2}\right\rfloor\left\lfloor\frac{n-1}{2}\right\rfloor+2\left\lfloor\frac{n}{2}\right\rfloor$. In the half-drawing of the graph $G_{10} \square S_{n}$ in Figure 7 (c) we can see that the crossing number of the graph $G_{10} \square S_{n}$ is at most $4\left\lfloor\frac{n}{2}\right\rfloor\left\lfloor\frac{n-1}{2}\right\rfloor+2\left\lfloor\frac{n}{2}\right\rfloor$. Using the fact that the graph $G_{9} \square S_{n}$ is a subgraph of $G_{10} \square S_{n}$, we have that $\operatorname{cr}\left(G_{9} \square S_{n}\right)=\operatorname{cr}\left(G_{10} \square S_{n}\right)=4\left\lfloor\frac{n}{2}\right\rfloor\left\lfloor\frac{n-1}{2}\right\rfloor+2\left\lfloor\frac{n}{2}\right\rfloor$.

In [21], Mei and Huang proved that $\operatorname{cr}\left(K_{1,5, n}\right)=6\left\lfloor\frac{n}{2}\right\rfloor\left\lfloor\frac{n-1}{2}\right\rfloor+4\left\lfloor\frac{n}{2}\right\rfloor$. Since the graph $S_{5} \square S_{n}=G_{11} \square S_{n}$ is a subdivision of the graph $K_{1,5, n}, \operatorname{cr}\left(G_{11} \square S_{n}\right)=$ $6\left\lfloor\frac{n}{2}\right\rfloor\left\lfloor\frac{n-1}{2}\right\rfloor+4\left\lfloor\frac{n}{2}\right\rfloor$. All graphs $G_{i}, i=12,13, \ldots, 17$, in Figure 6 contain the graph G_{11} as a subgraph and therefore, $\operatorname{cr}\left(G_{i} \square S_{n}\right) \geq 6\left\lfloor\frac{n}{2}\right\rfloor\left\lfloor\frac{n-1}{2}\right\rfloor+4\left\lfloor\frac{n}{2}\right\rfloor$ for $i=$ $12,13, \ldots, 17$. The left-side drawing of the graph $G_{17} \square S_{n}$ in Figure 7(d) implies that there is a drawing of the graph $G_{17} \square S_{n}$ with at most $6\left\lfloor\frac{n}{2}\right\rfloor\left\lfloor\frac{n-1}{2}\right\rfloor+4\left\lfloor\frac{n}{2}\right\rfloor$ crossings. Thus, we have the same lower and upper bound for the crossing number of all six considered graphs, which implies that $\operatorname{cr}\left(G_{i} \square S_{n}\right)=6\left\lfloor\frac{n}{2}\right\rfloor\left\lfloor\frac{n-1}{2}\right\rfloor+4\left\lfloor\frac{n}{2}\right\rfloor$ for all $i=12,13, \ldots, 17$.

In [9], Ho proved that the crossing number of the complete 4 -partite graph $K_{2,2,2, n}$ is $6\left\lfloor\frac{n}{2}\right\rfloor\left\lfloor\frac{n-1}{2}\right\rfloor+3 n$. Using this result, in [5] it is shown that the crossing number of the Cartesian product $K_{2,2,2} \square S_{n}$ is $6\left\lfloor\frac{n}{2}\right\rfloor\left\lfloor\frac{n-1}{2}\right\rfloor+6 n$.

5. Comments

Except the graph $K_{5} \square S_{n}$, the known results concerning crossing numbers of Cartesian products of stars with graphs of order five are collected in [18]. The crossing number of $K_{5} \square S_{n}$ was presented in [20]. For six remaining graphs G_{i} on five vertices, the problem of estimating $\operatorname{cr}\left(G_{i} \square S_{n}\right)$ is still open, even though some incorrect result were published. For example, in $[8]$ the incorrect proof states that for the tree T on five vertices with one vertex of degree two and one vertex of degree three, the crossing number of $T \square S_{n}$ is $4\left\lfloor\frac{n}{2}\right\rfloor\left\lfloor\frac{n-1}{2}\right\rfloor+\left\lfloor\frac{n}{2}\right\rfloor$. This contradicts Corollary 9.

We suppose that the application of Zip product operation can be used to estimate the unknown values of the crossing number for Cartesian products of some graphs on five vertices with trees, and also with stars. The same we expect for lager graphs, namely for some of 94 remaining graphs of order six.

Acknowledgement

The authors are very grateful to the anonymous referees for several helpful comments and suggestions which improved the presentation of the paper and allowed to generalize previous results. Concretely, the new Theorem 6 extends the previous result presented now in Corollary 7.

References

[1] K. Asano, The crossing number of $K_{1,3, n}$ and $K_{2,3, n}$, J. Graph Theory 10 (1986) 1-8. doi:10.1002/jgt. 3190100102
[2] L.W. Beineke and R.D. Ringeisen, On the crossing numbers of products of cycles and graphs of order four, J. Graph Theory 4 (1980) 145-155. doi:10.1002/jgt. 3190040203
[3] D. Bokal, On the crossing number of Cartesian products with paths, J. Combin. Theory (B) 97 (2007) 381-384. doi:10.1016/j.jctb.2006.06.003
[4] D. Bokal, On the crossing numbers of Cartesian products with trees, J. Graph Theory 56 (2007) 287-300. doi:10.1002/jgt. 20258
[5] M. Draženská and M. Klešč, The crossing numbers of products of the graph $K_{2,2,2}$ with stars, Carpathian J. Math. 24 (2008) 327-331.
[6] L.Y. Glebsky and G. Salazar, The crossing number of $C_{m} \times C_{n}$ is as conjectured for $n \geq m(m+1)$, J. Graph Theory 47 (2004) 53-72. doi:10.1002/jgt. 20016
[7] F. Harary, P.C. Kainen and A.J. Schwenk, Toroidal graphs with arbitrarily high crossing numbers, Nanta Math 6 (1973) 58-67.
[8] X. He, The crossing number of Cartesian products of stars with 5 -vertex graphs, in: 2010 International Conference on Computational Intelligence and Software Engineering, CiSE 2010, Wuhan, December 2010.
[9] P.T. Ho, The crossing number of $K_{2,2,2, n}$, Far East J. Appl. Math. 30 (2008) 43-69.
[10] Y. Huang and T. Zhao, The crossing number of $K_{1,4, n}$, Discrete Math. 308 (2008) 1634-1638. doi:10.1016/j.disc.2006.12.002
[11] S. Jendrol' and M. Ščerbová, On the crossing numbers of $S_{m} \times P_{n}$ and $S_{m} \times C_{n}$, Časopis pro Pěstování Matematiky 107 (1982) 225-230.
[12] D.J. Kleitman, The crossing number of $K_{5, n}$, J. Combin. Theory (B) 9 (1971) 315323.
[13] M. Klešč, The crossing numbers of Cartesian products of stars and paths or cycles, Math. Slovaca 41 (1991) 113-120.
[14] M. Klešč, The crossing numbers of products of paths and stars with 4-vertex graphs, J. Graph Theory 18 (1994) 605-614.
[15] M. Klešč, The crossing number of $K_{2,3} \times P_{n}$ and $K_{2,3} \times S_{n}$, Tatra Mt. Math. Publ. 9 (1996) 51-56.
[16] M. Klešč, On the crossing numbers of products of stars and graphs of order five, Graphs Combin. 17 (2001) 289-294.
doi:10.1007/s003730170042
[17] M. Klešč, The join of graphs and crossing numbers, Electron. Notes Discrete Math. 28 (2007) 349-355.
doi:10.1016/j.endm.2007.01.049
[18] M. Klešč, On the crossing numbers of Cartesian products of stars and graphs on five vertices, Combinatorial Algorithms, Springer, LNCS 5874 (2009) 324-333. doi:10.1007/978-3-642-10217-2_32
[19] V.R. Kulli and M.H. Muddebihal, Characterization of join graphs with crossing number zero, Far East J. Appl. Math. 5 (2001) 87-97.
[20] S. Lü and Y. Huang, On the crossing numner of $K_{5} \times S_{n}$, J. Math. Res. Expo. 28 (2008) 445-459.
[21] H. Mei and Y. Huang, The crossing number of $K_{1,5, n}$, Internat. J. Math. Combin. 1 (2007) 33-44.
[22] K. Zarankiewicz, On a problem of P. Turán concerning graphs, Fund. Math 41 (1954) 137-145.

[^0]: ${ }^{1}$ The research was supported by the Slovak VEGA grant No. 1/0309/11.
 ${ }^{2}$ This work was supported by the Slovak Research and Development Agency under the contract No. APVV-0008-10.

