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Abstract

It is well-known that any graph has all real eigenvalues and a graph is
bipartite if and only if its spectrum is symmetric with respect to the origin.
We are interested in finding whether the permanental roots of a bipartite
graph G have symmetric property as the spectrum of G. In this note, we
show that the permanental roots of bipartite graphs are symmetric with
respect to the real and imaginary axes. Furthermore, we prove that any
graph has no negative real permanental root, and any graph containing at
least one edge has complex permanental roots.
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1. Introduction

In the literature there are many polynomials associated to graphs. For example,
characteristic polynomial [10], chromatic polynomial [3], matching polynomial
[11] and permanental polynomial [15]. No doubt, the most extensively examined
such polynomial is the characteristic polynomial.
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It is well-known that the characteristic roots of any graph are all real, and a graph
is bipartite if and only if its spectrum is symmetric with respect to the origin (see,
for example, [10], p. 87). An interesting question is whether the permanental
roots of a bipartite graph G have symmetric property as the spectrum of G.

We answer this question affirmatively and show that the permanental roots
of a bipartite graph are symmetric with respect to the real and imaginary axes.

The permanent of an n× n matrix M with entries mij (i, j = 1, 2, . . . , n) is
defined by

per(M) =
∑

σ

∏n

i=1
miσ(i),(1)

where the sum is taken over all permutations σ of {1, 2, . . . , n}. In strong contrast
to determinants, computing permanents, even of matrices in which all entries are
0 or 1, is #P-complete [17].

Let G be a graph and A(G) the adjacency matrix of G. Recall that the
characteristic polynomial of G is defined by

φ(G, x) = det(xI −A(G)).(2)

In analogy to Equation (2), one defines the permanental polynomial of G, π(G, x),
as the permanent of the characteristic matrix of A(G), i.e.

π(G, x) = per(xI −A(G)).(3)

A root of π(G, x) is called a permanental root of G. The per-spectrum pS(G) [4]
of G is the multiset of permanental roots of G.

It seems that the permanental polynomial was first considered by Turner
[16]. He in fact considered a graph polynomial which generalizes both the per-
manental and characteristic polynomials. The permanental polynomial was first
systematically studied by Merris et al. [15], and the study of analogous objects
in chemical literature was started by Kasum et al. [13]. The literature on per-
manental polynomial is far less than that on characteristic polynomial (see, for
example, [2, 4, 5, 6, 7, 8, 9, 12, 13, 15, 18, 19]). This may be due to the difficulty
of actually computing the permanent per(xI −A(G)).

In [4], Borowiecki proved that G has pS(G) = {iλ1, iλ2, . . . , iλn} if and only
if G is bipartite without cycles of length 4k (k = 1, 2, . . .), where i2 = −1 and
{λ1, λ2, . . . , λn} is the spectrum (i.e. the multiset of characteristic roots) of G.
In [5], Borowiecki and Jóźwiak posed the following problem.

Problem 1. Characterize those graphs which have pure imaginary per-spectrum.

Yan and Zhang [18] gave a partial solution to this problem. They obtained that
if G is a bipartite graph containing no subgraphs which are even subdivisions of
K2,3, then the permanental roots of G are pure imaginary.
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Cash [7] developed a computer program for the calculation of the permanental
polynomial of molecular graphs, and applied it to a variety of benzenoid hydro-
carbons [7] and fullerenes [8]. The mathematical properties of the coefficients and
roots of the permanental polynomials of these chemical graphs were investigated.

In this note, we present a preliminary treatment of the permanental roots of
graphs. The structure of this paper is the following. In the next section, we prove
that any graph has no negative real permanental root, and any graph containing
at least one edge has complex permanental roots. In Section 3, we show that a
graph is bipartite if and only if its per-spectrum is symmetric with respect to the
real and imaginary axes.

2. Some Properties of the Permanental Roots of Graphs

By the definition of permanent, we immediately obtain the following result.

Theorem 2. Let G be a disconnected graph with components G1, G2, . . . , Gω

(ω ≥ 2). Then π(G, x) =
∏ω

i=1 π(Gi, x).

Clearly, by Theorem 2, the per-spectrum of a disconnected graph G is the union
of the per-spectrum of each connected component Gi of G.

A graph G is said to be a Sachs graph if each component of G is a single
edge or a cycle. Merris et al. [15] obtained a modified Sachs theorem on the
permanental polynomial of a graph.

Theorem 3. Let G be a graph on n vertices with π(G, x) =
∑n

k=0 bkx
n−k. Then

bk = (−1)k
∑

H
2c(H), 1 ≤ k ≤ n,(4)

where the sum is taken over all Sachs subgraphs H of G on k vertices, and c(H)
is the number of cycles in H.

By the definition of permanental polynomial, we have b0 = 1. It follows from
Theorem 3 that bi ≤ 0 if i is odd and bi ≥ 0 otherwise. In particular, b1 always
equals 0, b2 is the number of edges of G, and −b3 is twice the number of triangles
in G. For a bipartite graph G, bi = 0 for all odd i since there exists no Sachs
subgraph of an odd number of vertices in G. In fact, Borowiecki and Jóźwiak [5]
obtained the following result.

Theorem 4. Let G be a graph on n vertices with π(G, x) =
∑n

k=0 bkx
n−k. Then

G is bipartite if and only if bi = 0 for all odd i.

An interval is called a root-free interval for a permanental polynomial π(G, x)
if G has no permanental root in this interval. Likewise, an interval is called a
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root-free interval for a family S of graphs if every graph in S has no permanental
root in this interval. We shall show that (−∞, 0) is a root-free interval for the
family of all graphs.

Proposition 5. For every graph G, π(G, x) has no negative real root.

Proof. Let π(G, x) =
∑n

k=0 bkx
n−k. If n is odd, then bkλ

n−k ≤ 0 and λn < 0
for all real λ < 0. If n is even, then bkλ

n−k ≥ 0 and λn > 0 for all real λ < 0.
Therefore, for all real λ < 0, π(G, λ) < 0 if n is odd and π(G, λ) > 0 otherwise.

Note that 0 may be a permanental root of some graphs (for instance, 0 is a
permanental root of a tree with an odd number of vertices). Thus (−∞, 0) is a
maximal root-free interval for the permanental polynomials of all graphs.

The following result shows that the multiplicity of 0 as a permanental root
of G can be determined by the maximum number of vertices of a Sachs subgraph
of G.

Lemma 6. Let G be a graph on n vertices. Then the multiplicity of 0 as a root of

π(G, x) is equal to n− p, where p is the maximum number of vertices of a Sachs

subgraph of G.

Lemma 6 can be easily obtained from Theorem 3. As immediate consequences,
we obtain the following two corollaries.

Corollary 7. A graph G has a zero permanental root if and only if G has no

spanning Sachs subgraph.

Corollary 8. If G is bipartite, then the multiplicity of 0 as a root of π(G, x) is

equal to the deficiency of G (i.e. the number of vertices left uncovered by any

maximum matching of G [14]).

It is well-known that all the characteristic roots of a graph are real. However,
there exists no graph containing at least one edge whose permanental roots are
all real. Before proving this statement, we need the following useful and classical
result.

Lemma 9 (Descartes’ rule of signs [1]). Let P (x) be a polynomial in one variable

x with real coefficients. If P (x) is arranged in ascending or descending powers,

then the number of real positive roots of the polynomial is no more than the

number of sign variations in consecutive coefficients, and differs from this upper

bound by an even integer. Multiple roots of the same value are counted separately.

Proposition 10. Let G be a graph containing at least one edge. Then π(G, x)
has complex roots.
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Proof. Let π(G, x) =
∑p

k=0 bkx
n−k, where p is the maximum number of vertices

of a Sachs subgraph of G. By Lemma 6, G has exactly n − p zero permanental
roots. Since b1 = 0, there are at most p − 2 sign changes in π(G, x). Hence, by
Lemma 9, π(G, x) has at most p−2 real positive roots. By Proposition 5, π(G, x)
has no real negative root. It follows that π(G, x) has at most n − 2 real roots.
Thus G has at least two complex permanental roots.

3. The Permanental Roots of Bipartite Graphs

Firstly, we show that any bipartite graph has no non-zero real permanental root.

Proposition 11. If G is bipartite, then G has no real permanental root except

(possible) 0.

Proof. Let G be a bipartite graph. By Theorems 3 and 4, all the coefficients of
π(G, x) are nonnegative. It is easy to verify that π(G, λ) > 0 for all real λ > 0,
which implies that G has no positive real permanental root. By Proposition 5,
G has no negative real permanental root. This completes the proof.

Proposition 11 implies that all non-zero permanental roots of a bipartite graph
are complex. By the complex conjugate root theorem, if z ∈ C is a complex root
of π(G, x) then so is z̄ (the complex conjugate of z). Moreover, we will show that
all non-zero permanental roots of a bipartite graph occur in purely imaginary
pairs, (ib,−ib), b ∈ R, and quadruplets, ±a± ib, a, b ∈ R.

Lemma 12. Let P (x) = xn + b1x
n−2 + b2x

n−4 + · · · + bpx
n−2p, where p ≤ ⌊n2 ⌋,

bi ∈ R, and bp 6= 0. Then the roots of P (x) are symmetric with respect to the real

and imaginary axes, i.e. all non-zero roots occur in real pairs (a,−a), a ∈ R,

purely imaginary pairs, (ib,−ib), b ∈ R, and quadruplets, ±a± ib, a, b ∈ R.

Proof. Let f(t) = tp+b1t
p−1+b2t

p−2+· · ·+bp−1t+bp. Then P (x) = xn−2p(x2p+
b1x

2p−2 + b2x
2p−4 + · · · + bp) = xn−2pf(x2). Clearly, the roots of P (x) consist

of 0 (n − 2p times) and the roots of f(x2). Since bp 6= 0, 0 is not a root of
f(t). Suppose that the roots of f(t) are z1, z̄1, z2, z̄2, . . . , zs, z̄s, a1, a2,. . . , al,
c1, c2, . . . , cm, where zj (j = 1, . . . , s) are complex numbers, aj (j = 1, . . . , l) are
positive numbers, cj (j = 1, . . . ,m) are negative numbers, and 2s + l + m = p.
Let zj = rje

iθj (θj 6= kπ, k = 0,±1,±2, . . .), where i2 = −1. Then z̄j = rje
−iθj .

The roots of the equation x2 = zj are x0 =
√
rje

i
θj

2 =
√
rj(cos

θj
2 + i sin

θj
2 ) and

x1 =
√
rje

i
θj+2π

2 =
√
rj(− cos

θj
2 − i sin

θj
2 ). The roots of the equation x2 = z̄j are

x′0 =
√
rje

i
−θj

2 =
√
rj(cos

θj
2 − i sin

θj
2 ) and x′1 =

√
rje

i
−θj+2π

2 =
√
rj(− cos

θj
2 +

i sin
θj
2 ). The roots of the equation x2 = aj are x1,2 = ±√

aj and the roots of the
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equation x2 = cj are x1,2 = ±i
√−cj . Therefore, the roots of P (x) are {0,. . .,0}

∪ {±√
rj(cos

θj
2 ± i sin

θj
2 )|j = 1, . . . , s} ∪ {±√

aj |j = 1, . . . , l} ∪ {±i
√−cj |j =

1, . . . ,m}. This completes the proof.

By Theorem 4, the permanental polynomial of a bipartite graph has the same
form as that of Lemma 12. Therefore, we immediately obtain the following result.

Proposition 13. The per-spectrum of a bipartite graph is symmetric with respect

to the real and imaginary axes.

Now we are in position to present the main result of this paper, which gives a
characterization of bipartite graphs G in terms of the per-spectrum of G.

Theorem 14. G is bipartite if and only if the per-spectrum of G is symmetric

with respect to the real and imaginary axes.

Proof. The necessity of this theorem holds from Proposition 13. We proceed to
prove the sufficiency of this theorem. Suppose that G is a graph on n vertices
and the per-spectrum of G is symmetric with respect to the real and imaginary
axes. Let π(G, x) =

∑p
k=0 bkx

n−k, where p is the maximum number of vertices
of a Sachs subgraph of G. Let f(t) = tp + b2t

p−2 + b3t
p−3 + · · · + bp−1t + bp.

Then π(G, x) = xn−pf(x). Clearly, the roots of π(G, x) consist of 0 (n− p times)
and the roots of f(x). By Proposition 5, G has no positive real permanental
root. In fact, if G has a positive real permanental root, then G has a negative
real permanental root, a contradiction. Suppose that the permanental roots of
G are {0, . . . , 0} ∪ {±aj ± icj |aj , cj ∈ R, aj > 0, cj > 0, j = 1, . . . , s} ∪ {±idj |dj ∈
R, dj > 0, j = 1, . . . , l}, where 4s + 2l = p. Let zj = aj + icj . Then f(x) =∏s

j=1((x − zj)(x + zj)(x − z̄j)(x + z̄j))
∏l

j=1((x − idj)(x + idj)) =
∏s

j=1(x
4 −

2(a2j − c2j )x
2 + (a2j + c2j )

2)
∏l

j=1(x
2 + d2j ).

Since the coefficients of the odd-power terms of f(x) are all equal to 0, we can
assume that f(x) = xp + b′2x

p−2 + b′4x
p−4 + · · ·+ b′p−2x

2 + b′p. Therefore, π(G, x)

= xn−p(xp + b′2x
p−2 + b′4x

p−4 + · · ·+ b′p−2x
2 + b′p) = xn + b′2x

n−2 + b′4x
n−4 + · · ·+

b′p−2x
n−p+2 + b′px

n−p. By Theorem 4, G is a bipartite graph. This completes the
proof.

Remark 15. It is worth pointing out that by the above argument we can show
that G is a bipartite graph if and only if the spectrum of G is symmetric with
respect to the origin, whereas in most cases the eigenvector method is used to
prove this classical result.



A Note on the Permanental Roots of Bipartite Graphs 55

References

[1] B. Anderson, J. Jackson and M. Sitharam, Descartes’ rule of signs revisited , Amer.
Math. Monthly 105 (1998) 447–451.
doi:10.2307/3109807

[2] F. Belardo, V.D. Filippis and S.K. Simić, Computing the permanental polynomial of
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