THE DISTANCE ROMAN DOMINATION NUMBERS OF GRAPHS

Hamideh Aram, Sepideh Norouzian,
Seyed Mahmoud Sheikholeslami
Department of Mathematics
Azarbaijan Shahid Madani University
Tabriz, I.R. Iran
e-mail: s.m.sheikholeslami@azaruniv.edu
AND
Lutz Volkmann
Lehrstuhl II für Mathematik
RWTH Aachen University
52056 Aachen, Germany
e-mail: volkm@math2.rwth-aachen.de

Abstract

Let k be a positive integer, and let G be a simple graph with vertex set $V(G)$. A k-distance Roman dominating function on G is a labeling $f: V(G) \rightarrow\{0,1,2\}$ such that for every vertex with label 0 , there is a vertex with label 2 at distance at most k from each other. The weight of a k-distance Roman dominating function f is the value $\omega(f)=\sum_{v \in V} f(v)$. The k-distance Roman domination number of a graph G, denoted by $\gamma_{R}^{k}(D)$, equals the minimum weight of a k-distance Roman dominating function on G. Note that the 1-distance Roman domination number $\gamma_{R}^{1}(G)$ is the usual Roman domination number $\gamma_{R}(G)$. In this paper, we investigate properties of the k-distance Roman domination number. In particular, we prove that for any connected graph G of order $n \geq k+2, \gamma_{R}^{k}(G) \leq 4 n /(2 k+3)$ and we characterize all graphs that achieve this bound. Some of our results extend these ones given by Cockayne et al. in 2004 and Chambers et al. in 2009 for the Roman domination number. Keywords: k-distance Roman dominating function, k-distance Roman domination number, Roman dominating function, Roman domination number.

2010 Mathematics Subject Classification: 05C69.

1. Terminology and Introduction

In this paper, G is a simple graph with vertex set $V=V(G)$ and edge set $E=$ $E(G)$. Denote by K_{n} the complete graph, by C_{n} the cycle and by P_{n} the path of order n, respectively. Given two graphs G_{1} and G_{2} such that $V\left(G_{1}\right) \cap V\left(G_{2}\right)=\emptyset$, the disjoint union is the graph $G_{1} \cup G_{2}$ with vertex set $V\left(G_{1}\right) \cup V\left(G_{2}\right)$ and edge set $E\left(G_{1}\right) \cup E\left(G_{2}\right)$. Let k be a positive integer. For two vertices x and y, let $d(x, y)$ denote the distance between x and y in G. The girth $g(G)$ of a graph G is the length of its shortest cycle. For a vertex $v \in V(G)$, the open k-neighborhood $N_{k, G}(v)$ is the set $\{u \in V(G) \mid u \neq v$ and $d(u, v) \leq k\}$ and the closed k neighborhood $N_{k, G}[v]$ is the set $N_{k, G}(v) \cup\{v\}$. The open k-neighborhood $N_{k, G}(S)$ of a set $S \subseteq V$ is the set $\bigcup_{v \in S} N_{k, G}(v)$, and the closed-k-neighborhood $N_{k, G}[S]$ of S is the set $N_{k, G}(S) \cup S$. The k-degree of a vertex v is defined as $\operatorname{deg}_{k, G}(v)=\left|N_{k, G}(v)\right|$. The minimum and maximum k-degree of a graph G are denoted by $\delta_{k}(G)$ and $\Delta_{k}(G)$, respectively. If $\delta_{k}(G)=\Delta_{k}(G)$, then the graph G is called distance- k regular. The k-th power G^{k} of a graph G is the graph with vertex set $V(G)$ where two different vertices u and v are adjacent if and only if the distance $d(u, v)$ is at most k in G. Now we observe that $N_{k, G}(v)=N_{1, G^{k}}(v)=N_{G^{k}}(v), N_{k, G}[v]=$ $N_{1, G^{k}}[v]=N_{G^{k}}[v], \operatorname{deg}_{k, G}(v)=\operatorname{deg}_{1, G^{k}}(v)=\operatorname{deg}_{G^{k}}(v), \delta_{k}(G)=\delta_{1}\left(G^{k}\right)=\delta\left(G^{k}\right)$ and $\Delta_{k}(G)=\Delta_{1}\left(G^{k}\right)=\Delta\left(G^{k}\right)$. Consult $[6,10]$ for the notation and terminology which are not defined here.

Let $k \geq 1$ be an integer. A set $D \subseteq V(G)$ is a k-distance dominating set of G if every vertex in $V(G)-D$ is within distance k of at least one vertex in D. The k-distance domination number $\gamma^{k}(G)$ of G is the minimum cardinality among all k-distance dominating sets of G.

A k-distance Roman dominating function (k DRDF) on a graph $G=(V, E)$ is a function $f: V \longrightarrow\{0,1,2\}$ satisfying the condition that for every vertex v for which $f(v)=0$, there is a vertex u for which $f(u)=2$ and $d(u, v) \leq k$. The weight of a $k \operatorname{DRDF} f$ is the value $\omega(f)=\sum_{v \in V} f(v)$. The k-distance Roman domination number of a graph G, denoted by $\gamma_{R}^{k}(G)$, equals the minimum weight of a k DRDF on G. A $\gamma_{R}^{k}(G)$-function is a k-distance Roman dominating function of G with weight $\gamma_{R}^{k}(G)$. A k-distance Roman dominating function $f: V \longrightarrow\{0,1,2\}$ can be represented by the ordered partition $\left(V_{0}, V_{1}, V_{2}\right)$ (or $\left(V_{0}^{f}, V_{1}^{f}, V_{2}^{f}\right)$ to refer f) of V, where $V_{i}=\{v \in V \mid f(v)=i\}$. In this representation, its weight is $\omega(f)=\left|V_{1}\right|+2\left|V_{2}\right|$. Since $V_{1}^{f} \cup V_{2}^{f}$ is a k-distance dominating set when f is a k DRDF, and since placing weight 2 at the vertices of a k-distance dominating set yields a $k \mathrm{DRDF}$, we have

$$
\begin{equation*}
\gamma^{k}(G) \leq \gamma_{R}^{k}(G) \leq 2 \gamma^{k}(G) \tag{1}
\end{equation*}
$$

Note that the 1-distance Roman domination number $\gamma_{R}^{1}(G)$ is the usual Roman domination number $\gamma_{R}(G)$. The definition of the Roman dominating function was
given multiplicity by Steward [9] and ReVelle and Rosing [8]. Cockayne et al. [3] as well as Chambers et al. [2] have given a lot of results on Roman domination.

Our purpose in this paper is to initiate the study of the k-distance Roman domination number and establish some bounds for the k-distance Roman domination number of a graph. Some of our results extend many well-known results.

2. Some Basic Results

We start with some known results on the classical Roman domination number.
Theorem A [4]. For any graph G of order n and maximum degree $\Delta \geq 1$,

$$
\gamma_{R}(G) \geq \frac{2 n}{\Delta+1}
$$

Theorem B [3]. For any graph G of order n and minimum degree δ,

$$
\gamma_{R}(G) \leq \frac{2+\ln ((1+\delta) / 2)}{\delta+1} n
$$

Theorem C [2]. For any tree T of order $n \geq 3, \gamma_{R}(T) \leq 4 n / 5$.
Theorem D [2]. If G is a graph of order $n \geq 3$, then

$$
\gamma_{R}(G)+\gamma_{R}(\bar{G}) \leq n+3
$$

Furthermore, equality holds only when G or \bar{G} is C_{5} or $\frac{n}{2} K_{2}$.
The next two observations are straightforward to verify.
Observation 1. Let $f=\left(V_{0}, V_{1}, V_{2}\right)$ be any γ_{R}^{k}-function of a graph G. Then
(a) $\Delta_{k}\left(G\left[V_{1}\right]\right) \leq 1$.
(b) If $w \in V_{1}$, then $N_{k, G}(w) \cap V_{2}=\emptyset$.
(c) If $u \in V_{0}$, then $\left|V_{1} \cap N_{k, G}(u)\right| \leq 2$.
(d) V_{2} is a γ^{k}-set of the induced subgraph $G\left[V_{0} \cup V_{2}\right]$.
(e) Let $H=G\left[V_{0} \cup V_{2}\right]$. Then each vertex $v \in V_{2}$ with $N_{k, G}(v) \cap V_{2} \neq \emptyset$ has at least two private neighbors relative to V_{2} in the graph H.

Observation 2. Let $k \geq 1$ be an integer, and let G be a graph of order $n \geq 2$. If $\operatorname{diam}(G) \leq k$, then $\gamma_{R}^{k}(G)=\gamma_{R}\left(K_{n}\right)=2$.

Observation 3. If $k \geq 1$ is an integer and G is a graph of order n with $\Delta_{k}(G) \geq$ 1 , then

$$
\gamma_{R}^{k}(G) \geq \frac{2 n}{\Delta_{k}(G)+1}
$$

Proof. Using the facts $\gamma_{R}^{k}(G)=\gamma_{R}\left(G^{k}\right), \Delta_{k}(G)=\Delta\left(G^{k}\right)$ and Theorem A, we obtain

$$
\gamma_{R}^{k}(G)=\gamma_{R}\left(G^{k}\right) \geq \frac{2 n}{\Delta\left(G^{k}\right)+1}=\frac{2 n}{\Delta_{k}(G)+1} .
$$

Applying Theorem B, we obtain analogously the next result.
Observation 4. For any graph G of order n,

$$
\gamma_{R}^{k}(G) \leq \frac{2+\ln \left(\left(1+\delta_{k}(G)\right) / 2\right)}{\delta_{k}(G)+1} n .
$$

Observation 5. If $k \geq 1$ is an integer and G is a graph of order n with $\Delta_{k}(G) \geq$ 1, then

$$
\gamma_{R}^{k}(G) \leq n-\Delta_{k}(G)+1
$$

Proof. Let v be a vertex of G such that $\operatorname{deg}_{k, G}(v)=\Delta_{k}(G)$. Then $f=$ $\left(N_{k, G}(v), V(G)-N_{k, G}[v],\{v\}\right)$ is a k DRDF on G with weight $n-\Delta_{k}(G)+1$ and therefore $\gamma_{R}^{k}(G) \leq n-\Delta_{k}(G)+1$.
Let $k \geq 1$ be an integer, and let H be a graph with $\Delta_{k}(H)=n(H)-1 \geq 2$. Now let $G=r K_{1} \cup s K_{2} \cup H$ for two integers $r, s \geq 0$. Then $\Delta_{k}(G)=\Delta_{k}(H)$ and

$$
\gamma_{R}^{k}(G)=r+2 s+2=n(G)-\Delta_{k}(G)+1
$$

This family of graphs demonstrates that the uppper bound in Observation 5 is sharp.

Observation 6. Let $k \geq 1$ be an integer, and let G be a graph of order $n \geq 2$. Then $\gamma_{R}^{k}(G)=2$ if and only if $n=2$ or $n \geq 3$ and $\Delta_{k}(G)=n-1$.

Proof. Assume first that $n=2$ or $n \geq 3$ and $\Delta_{k}(G)=n-1$. If $n=2$, then $\gamma_{R}^{k}(G)=2$. If $n \geq 3$ and $\Delta_{k}(G)=n-1$, then Observation 5 implies that

$$
2 \leq \gamma_{R}^{k}(G) \leq n-\Delta_{k}(G)+1=2
$$

and therefore $\gamma_{R}^{k}(G)=2$.
Conversely, assume that $\gamma_{R}^{k}(G)=2$. If $\Delta_{k}(G)=0$, then it follows that $n=2$. If $\Delta_{k}(G) \geq 1$, then we deduce from Observation 3 that

$$
2=\gamma_{R}^{k}(G) \geq \frac{2 n}{\Delta_{k}(G)+1}
$$

and hence $\Delta_{k}(G)+1 \geq n$. This leads to $\Delta_{k}(G)=n-1$, and the proof is complete.

Observation 7. Let $k \geq 1$ be an integer, and let G be a graph of order n. Then $\gamma_{R}^{k}(G)=n$ if and only if $G=r K_{1} \cup s K_{2}$ for some integers $r, s \geq 0$.

Proof. If $G=r K_{1} \cup s K_{2}$ for some integers $r, s \geq 0$, then obviously $\gamma_{R}^{k}(G)=n$.
Conversely, assume that $\gamma_{R}^{k}(G)=n$. If $\Delta_{k}(G) \geq 2$, then Observation 5 leads to the contradiction $\gamma_{R}^{k}(G) \leq n-1$. Thus $\Delta_{k}(G) \leq 1$ and so $G=r K_{1} \cup s K_{2}$ for some integers $r, s \geq 0$.

Observation 8. Let $k \geq 1$ be an integer, and let G be a graph of order $n \geq 4$. Then $\gamma_{R}^{k}(G)=3$ if and only if $\Delta_{k}(G)=n-2$.
Proof. Assume first that $\Delta_{k}(G)=n-2$. Observation 6 implies that $\gamma_{R}^{k}(G) \geq 3$. Since we deduce from Observation 5 that $\gamma_{R}^{k}(G) \leq n-\Delta_{k}(G)+1=3$, we obtain $\gamma_{R}^{k}(G)=3$.

Conversely, assume that $\gamma_{R}^{k}(G)=3$. By Observation 6 , we have $\Delta_{k}(G) \leq$ $n-2$. Let now $f=\left(V_{0}, V_{1}, V_{2}\right)$ be a $\gamma_{R}^{k}(G)$-function. We deduce from the assumption $n \geq 4$ that $\left|V_{1}\right|=\left|V_{2}\right|=1$. Let $V_{2}=\{v\}$ and $V_{1}=\{w\}$. Since $\gamma_{R}^{k}(G)=3$, it is obvious that $N_{k, G}[v]=V(G)-\{w\}$ and thus $\Delta_{k}(G) \geq n-2$. This yields $\Delta_{k}(G)=n-2$, and the proof is complete.

Observation 9. Let $k \geq 2$ be an integer, and let G be a graph of order $n \geq 3$. Then $\gamma_{R}^{k}(G)=n-1$ if and only if $G=K_{3} \cup r K_{1} \cup s K_{2}$ or $G=P_{3} \cup r K_{1} \cup s K_{2}$ for some integers $r, s \geq 0$.

Proof. If $G=K_{3} \cup r K_{1} \cup s K_{2}$ or $G=P_{3} \cup r K_{1} \cup s K_{2}$ for some integers $r, s \geq 0$, then obviously $\gamma_{R}^{k}(G)=n-1$.

Conversely, assume that $\gamma_{R}^{k}(G)=n-1$. If $\Delta_{k}(G) \geq 3$, then Observation 5 implies the contradiction $\gamma_{R}^{k}(G) \leq n-\Delta_{k}(G)+1 \leq n-2$. Therefore $\Delta_{k}(G) \leq 2$. If $\Delta_{k}(G) \leq 1$, then we deduce from Observation 7 the contradiction $\gamma_{R}^{k}(G)=n$. Consequently, $\Delta_{k}(G)=2$. If G contains at least two components H_{1} and H_{2} with $\Delta_{k}\left(H_{1}\right)=\Delta_{k}\left(H_{2}\right)=2$, then $\gamma_{R}^{k}(G) \leq n-2$, a contradiction. Hence G has exactly one component H with $\Delta_{k}(H)=2$, and the remaining components are isolated vertices or isomorphic to K_{2}. If $|V(H)| \geq 4$, then the assumption $k \geq 2$ shows that $\Delta_{k}(G)=\Delta_{k}(H) \geq 3$, a contradiction. Hence $|V(H)|=3$ and so $G=K_{3} \cup r K_{1} \cup s K_{2}$ or $G=P_{3} \cup r K_{1} \cup s K_{2}$ for some integers $r, s \geq 0$.

The proof of the next result is similar to that of Observation 9 and is therefore omitted.

Observation 10. Let G be a graph of order $n \geq 3$. Then $\gamma_{R}(G)=n-1$ if and only if $G=H \cup r K_{1} \cup s K_{2}$ for some integers $r, s \geq 0$, where $H \in$ $\left\{C_{3}, C_{4}, C_{5}, P_{3}, P_{4}, P_{5}\right\}$.
Observation 11. Let $k \geq 3$ be an integer, and let G be a graph of order $n \geq 2$. Then $\gamma_{R}^{k}(G)=2$ or $\gamma_{R}^{k}(\bar{G})=2$.

Proof. If $\operatorname{diam}(G) \leq 3$, then it follows from Observation 2 that $\gamma_{R}^{k}(G)=2$. If $\operatorname{diam}(G) \geq 4$, then a result of Bondy and Murty [1] (page 14) implies that $\operatorname{diam}(\bar{G}) \leq 2$. Applying again Observation 2, we see that $\gamma_{R}^{k}(\bar{G})=2$.

Observation 12. Let G be a graph of order $n \geq 2$. If $\operatorname{diam}(G) \neq 3$, then $\gamma_{R}^{2}(G)=2$ or $\gamma_{R}^{2}(\bar{G})=2$.

Proof. If $\operatorname{diam}(G) \leq 2$, then it follows from Observation 2 that $\gamma_{R}^{2}(G)=2$. If $\operatorname{diam}(G) \geq 3$, then the assumption $\operatorname{diam}(G) \neq 3$ implies that $\operatorname{diam}(G) \geq 4$. As above, we deduce that $\operatorname{diam}(\bar{G}) \leq 2$, and Observation 2 leads to $\gamma_{R}^{2}(\bar{G})=2$.

Observation 13. Let $k \geq 1$ be an integer, and let G be a graph of order $n \geq 2$. Then $\gamma_{R}^{k}(G)=2 \gamma^{k}(G)$ if and only if G has a $\gamma_{R}^{k}(G)$-function $f=\left(V_{0}, V_{1}, V_{2}\right)$ with $\left|V_{1}\right|=0$.

Proof. Assume first that $\gamma_{R}^{k}(G)=2 \gamma^{k}(G)$. Let S be a k-distance dominating set of G such that $|S|=\gamma^{k}(G)$. Then $f=(V(G)-S, \emptyset, S)=\left(V_{0}, V_{1}, V_{2}\right)$ is a k DRDF on G such that

$$
\omega(f)=2|S|=2 \gamma^{k}(G)=\gamma_{R}^{k}(G)
$$

and therefore f is a $\gamma_{R}^{k}(G)$-function with $\left|V_{1}\right|=0$.
Conversely, let $f=\left(V_{0}, V_{1}, V_{2}\right)$ be a $\gamma_{R}^{k}(G)$-function with $\left|V_{1}\right|=0$ and thus $\gamma_{R}^{k}(G)=2\left|V_{2}\right|$. Then V_{2} is also k-distance dominating set of G, and hence we deduce that $2 \gamma^{k}(G) \leq 2\left|V_{2}\right|=\gamma_{R}^{k}(G)$. Applying the second inequality in (1), we obtain the identity $\gamma_{R}^{k}(G)=2 \gamma^{k}(G)$, and the proof is complete.

The special case $k=1$ of Observation 13 can be found in the article [3].
Next we will prove a Nordhaus-Gaddum inequality.
Theorem 14. Let $k \geq 2$ be an integer, and let G be a graph of order $n \geq 3$. Then

$$
\gamma_{R}^{k}(G)+\gamma_{R}^{k}(\bar{G}) \leq n+2 .
$$

Furthermore, equality holds in the bound if and only if G or \bar{G} is isomorphic to $r K_{1} \cup s K_{2}$ for two integers $r, s \geq 0$.

Proof. If neither G nor \bar{G} is isomorphic to C_{5} or to $\frac{n}{2} K_{2}$, then it follows from Theorem D that

$$
\gamma_{R}^{k}(G)+\gamma_{R}^{k}(\bar{G}) \leq \gamma_{R}(G)+\gamma_{R}(\bar{G}) \leq n+2
$$

If $G=C_{5}$ or $\bar{G}=C_{5}$, then $\gamma_{R}^{k}(G)+\gamma_{R}^{k}(\bar{G})=4<7=n+2$, and if $G=\frac{n}{2} K_{2}$ or $\bar{G}=\frac{n}{2} K_{2}$, then $\gamma_{R}^{k}(G)+\gamma_{R}^{k}(\bar{G})=n+2$, and the desired Nordhaus-Gaddum bound is proved.

If G or \bar{G} is isomorphic to $r K_{1} \cup s K_{2}$ for two integers $r, s \geq 0$, then obviously $\gamma_{R}^{k}(G)+\gamma_{R}^{k}(\bar{G})=n+2$.

Next assume that $\gamma_{R}^{k}(G)+\gamma_{R}^{k}(\bar{G})=n+2$. We distinguish two cases.
Case 1. Assume that $k \geq 3$. If $\operatorname{diam}(G) \leq 3$, then $\gamma_{R}^{k}(G)=2$ and therefore $\gamma_{R}^{k}(\bar{G})=n$. According to Observation 7, we observe that $\bar{G}=r K_{1} \cup s K_{2}$ for two integers $r, s \geq 0$. If $\operatorname{diam}(G) \geq 4$, then $\operatorname{diam}(\bar{G}) \leq 2$. It follows that $\gamma_{R}^{k}(\bar{G})=2$ and thus $\gamma_{R}^{k}(G)=n$. Applying again Observation 7 , we see that $G=r K_{1} \cup s K_{2}$ for two integers $r, s \geq 0$.

Case 2. Assume that $k=2$. If $\operatorname{diam}(G) \leq 2$, then $\gamma_{R}^{2}(G)=2$ and therefore $\gamma_{R}^{2}(\bar{G})=n$. According to Observation 7, we observe that $\bar{G}=r K_{1} \cup s K_{2}$ for two integers $r, s \geq 0$. If $\operatorname{diam}(G) \geq 4$, then $\operatorname{diam}(\bar{G}) \leq 2$. It follows that $\gamma_{R}^{2}(\bar{G})=2$ and thus $\gamma_{R}^{2}(G)=n$, and so $G=r K_{1} \cup s K_{2}$ for two integers $r, s \geq 0$. If $\operatorname{diam}(\bar{G}) \leq 2$ or $\operatorname{diam}(\bar{G}) \geq 4$, then we obtain analogously that G or \bar{G} is isomorphic to $r K_{1} \cup s K_{2}$ for two integers $r, s \geq 0$.

There remains the case that $\operatorname{diam}(G)=\operatorname{diam}(\bar{G})=3$. Let x and y be two vertices of G such that $d(x, y)=\operatorname{diam}(G)=3$. Obviously, $f=(V(G)-$ $\{x, y\}, \emptyset,\{x, y\})$ is a 2 DRDF on \bar{G}, since there is no vertex in G adjacent to both x and y. Therefore $\gamma_{R}^{2}(\bar{G}) \leq 4$. Analogously, we obtain $\gamma_{R}^{2}(G) \leq 4$ and hence

$$
\gamma_{R}^{2}(G)+\gamma_{R}^{2}(\bar{G}) \leq 8<n+2
$$

when $n \geq 7$.
Finally, assume that $4 \leq n \leq 6$. If $4 \leq n \leq 5$, then $\Delta_{2}(G)=\Delta_{2}(\bar{G})=n-1$ and hence $\gamma_{R}^{2}(G)=\gamma_{R}^{2}(\bar{G})=2$ and consequently

$$
\gamma_{R}^{2}(G)+\gamma_{R}^{2}(\bar{G})=4<n+2
$$

If $n=6$, then $\Delta_{2}(G)=\Delta_{2}(\bar{G}) \geq 4$ and hence $\gamma_{R}^{2}(G) \leq 3$ and $\gamma_{R}^{2}(\bar{G}) \leq 3$. It follows that

$$
\gamma_{R}^{2}(G)+\gamma_{R}^{2}(\bar{G}) \leq 6<n+2,
$$

and the proof is complete.

3. Bounds on the k-distance Roman Domination Number

Theorem 15. If $k \geq 1$ is an integer and G a connected graph of order n with $n-\Delta(G)-k \geq 0$, then

$$
\gamma_{R}^{k}(G) \leq n-\Delta(G)-k+2
$$

Proof. Let v be a vertex of G such that $\operatorname{deg}_{G}(v)=\Delta(G)$. If $d(u, v) \leq k$ for each $u \in V(G)$, then obviously $\gamma_{R}^{k}(G)=2$ and we are done. If $d(w, v)>k$ for some
$w \in V(G)$, then choose a vertex u in G such that $d(u, v)=k+1$. Let P be a shortest (u, v)-path. Then clearly $d(v, z) \leq k$ for each $z \in(V(P)-\{u\}) \cup N_{G}(v)$ and hence $f=\left((V(P)-\{u, v\}) \cup N_{G}(v), V(G)-\left((V(P)-\{u\}) \cup N_{G}(v)\right),\{v\}\right)$ is a k DRDF on G with weight $n-\Delta(G)-k+2$ and therefore $\gamma_{R}^{k}(G) \leq n-\Delta(G)-k+2$.

The special case $k=1$ of Theorem 15 can be found in [2].
Theorem 16. If $k \geq 1$ is an integer and G a graph of order n with $\Delta=\Delta(G) \geq$ 3, then

$$
\gamma_{R}^{k}(G) \geq \frac{2 n(\Delta-2)}{\Delta(\Delta-1)^{k}-2}
$$

Proof. Each vertex $v \in V(G)$ dominates at most Δ vertices at distance 1 from v, at most $\Delta(\Delta-1)$ vertices at distance 2 from v, at most $\Delta(\Delta-1)^{2}$ vertices of at distance 3 from v, and so on. Thus

$$
\Delta_{k}(G) \leq \Delta+\Delta(\Delta-1)+\Delta(\Delta-1)^{2}+\cdots+\Delta(\Delta-1)^{k-1}=\Delta \cdot \frac{(\Delta-1)^{k}-1}{\Delta-2}
$$

Applying Observation 3, we obtain the desired lower bound as follows

$$
\gamma_{R}^{k}(G) \geq \frac{2 n}{\Delta_{k}(G)+1} \geq \frac{2 n}{\Delta \cdot \frac{(\Delta-1)^{k}-1}{\Delta-2}+1}=\frac{2 n(\Delta-2)}{\Delta(\Delta-1)^{k}-2} .
$$

In the case that $\Delta(G)=2$, the proof of Theorem 16 leads to the next lower bound, and Proposition 19 below shows that this bound is sharp.

Theorem 17. If $k \geq 1$ is an integer and G a graph of order n with $\Delta(G)=2$, then

$$
\gamma_{R}^{k}(G) \geq \frac{2 n}{2 k+1} .
$$

Theorem 18. If $k \geq 1$ is an integer and G a connected graph of order $n \geq 2$, then

$$
\gamma_{R}^{k}(G) \geq\left\lceil\frac{\operatorname{diam}(G)+2}{k+1}\right\rceil .
$$

Proof. The statement is obviously true for K_{2}. Let G be a connected graph of order $n \geq 3$ and $f=\left(V_{0}^{f}, V_{1}^{f}, V_{2}^{f}\right)$ be a $\gamma_{R}^{k}(\mathrm{G})$-function. Suppose that $P=$ $v_{1} v_{2} \cdots v_{\text {diam }(G)+1}$ is a diametral path in G. This diametral path includes at most two edges from the induced subgraph $G[N[v]]$ for each $v \in V_{1}^{f}$ and at most $2 k$ edges from the induced subgraph $G\left[N_{k, G}[v]\right]$ for each $v \in V_{2}^{f}$. Let $E^{\prime}=\left\{v_{i} v_{i+1} \mid 1 \leq i \leq \operatorname{diam}(G)\right\} \cap\left(\bigcup_{v \in V_{1}^{f}} E(G[N[v]]) \cup \bigcup_{v \in V_{2}^{f}} E\left(G\left[N_{k, G}[v]\right]\right)\right)$.

Then the diametral path contains at most $\left|V_{2}^{f}\right|-1$ edges not in E^{\prime}, joining the neighborhoods at distance k of the vertices of V_{2}^{f}. Since G is a connected graph of order at least $3, V_{2}^{f} \neq \emptyset$. Hence,

$$
\begin{aligned}
\operatorname{diam}(G) & \leq 2 k\left|V_{2}^{f}\right|+2\left|V_{1}^{f}\right|+\left(\left|V_{2}^{f}\right|-1\right) \\
& =(2 k+2)\left|V_{2}^{f}\right|+(k+1)\left|V_{1}^{f}\right|-\left|V_{2}^{f}\right|-1-\left|V_{1}^{f}\right| \\
& \leq(k+1) \gamma_{R}^{k}(G)-2,
\end{aligned}
$$

and the result follows.
The next proposition is straightforward to verify.
Proposition 19. For $n \geq 3$,

$$
\gamma_{R}^{k}\left(C_{n}\right)=\left\{\begin{array}{lc}
\frac{2 n}{2 k+1} & n \equiv 0(\bmod 2 k+1), \\
2\left\lfloor\frac{n}{2 k+1}\right\rfloor+1 & n \equiv 1(\bmod 2 k+1), \\
2\left\lfloor\frac{n}{2 k+1}\right\rfloor+2 & \text { otherwise } .
\end{array}\right.
$$

Theorem 20 [7]. For a graph G of order n with $g(G) \geq 3, \gamma_{R}(G) \geq\left\lceil\frac{2 g(G)}{3}\right\rceil$.
Theorem 21. If $k \geq 1$ is an integer and G a connected graph of order $n \geq 2$ and $\infty>g(G) \geq 2 k+1$, then

$$
\gamma_{R}^{k}(G) \geq\left\lceil\frac{2 g(G)}{2 k+1}\right\rceil
$$

Proof. By Theorem 20 we may assume that $k \geq 2$. First note that if G is an n cycle then the result follows from Proposition 19. Now, let C be a cycle of length $g(G)$ in G. Since $k \geq 2, g(G) \geq 5$. Then a vertex not in $V(C)$, can dominate at most one vertex of C for otherwise we obtain a cycle of length less than $g(G)$ which is a contradiction. On the other hand, each vertex in $V(C)$ dominates at most $2 k+1$ vertex of $V(C)$. Let $f=\left(V_{0}, V_{1}, V_{2}\right)$ be a $\gamma_{R}^{k}(G)$-function. Then obviously, $\gamma_{R}^{k}(G)=\left|V_{1}\right|+2\left|V_{2}\right| \geq\left|V_{1}\right|+2 \frac{g(G)}{2 k+1} \geq \frac{2 g(G)}{2 k+1}$. This leads to the desired bound, and the proof is complete.

The special case $k=1$ of Theorems 18 and 21 can be found in [7].

4. Connected Graphs

Let $k \geq 1$ be an integer. For n-vertex graphs, always $\gamma_{R}^{k}(G) \leq n$, with equality when $G=\overline{K_{n}}$. In this section we prove that $\gamma_{R}^{k}(G) \leq 4 n /(2 k+3)$ when G is a connected n-vertex graph. Since deleting an edge cannot decrease $\gamma_{R}^{k}(G)$, it suffices to prove the bound for trees.

A leaf of a graph G is a vertex of degree 1 , while a support vertex of G is a vertex adjacent to a leaf. For a vertex v in a rooted tree T, let $D(v)$ denote the set of descendants of v and $D[v]=D(v) \cup\{v\}$. The maximal subtree at v is the subtree of T induced by $D[v]$, and is denoted by T_{v}.

Theorem 22. If $k \geq 1$ is an integer and T is a tree of order $n \geq k+2$, then $\gamma_{R}^{k}(T) \leq 4 n /(2 k+3)$.

Proof. By Theorem C we may assume that $k \geq 2$. The proof is by induction on n. The base step handles trees with few vertices or diameter $2 k$ and $2 k+1$. If $k+2 \leq n \leq 2 k+1$ or $\operatorname{diam}(T) \leq 2 k$, then T has a k-distance dominating vertex, and $\gamma_{R}^{k}(T)=2<4 n /(2 k+3)$. If $\operatorname{diam}(T)=2 k+1$, then T has a k-distance dominating set of size 2 , which yields $\gamma_{R}^{k}(T) \leq 4$. This is sufficiently small for trees with at least $2 k+4$ vertices. Let $P=v_{1} v_{2} \cdots v_{2 k+2}$ be a longest path in T. For $n \in\{2 k+2,2 k+3\}$ and $\operatorname{diam}(T)=2 k+1$, we may assume, without loss of generality, that $\operatorname{deg}\left(v_{2 k+1}\right)=2$. Then the function $f: V(G) \rightarrow\{0,1,2\}$ defined by $f\left(v_{k+1}\right)=2, f\left(v_{2 k+2}\right)=1$ and $f(x)=0$ otherwise, is a $k \operatorname{DRDF}$ on G and hence $\gamma_{R}^{k}(T) \leq 3$, which is small enough.

Hence we may assume that $\operatorname{diam}(T) \geq 2 k+2$. For a subtree T^{\prime} with n^{\prime} vertices, where $n^{\prime} \geq k+2$, the induction hypothesis yields a $k \operatorname{DRDF} f^{\prime}$ of T^{\prime} with weight at most $\frac{4}{2 k+3} n^{\prime}$. We find a subtree T^{\prime} such that adding a bit more weight to f^{\prime} will yield a small enough k DRDF f for T. Let $P=v_{1} v_{2} \cdots v_{r} v_{r+1} \cdots v_{r+k+1}$ be a longest path in T chosen to maximize the $\sum_{j=1}^{k} \operatorname{deg}_{T}\left(v_{r+j}\right)$ and let T be rooted in v_{1}. We consider three cases.

Case 1. $\sum_{j=1}^{k} \operatorname{deg}_{T}\left(v_{r+j}\right)>2 k$. Let $T^{\prime}=T-T_{v_{r+1}}$. Since $\operatorname{diam}(T) \geq 2 k+2$, we have $n^{\prime} \geq k+2$. Define f on $V(T)$ by letting $f(x)=f^{\prime}(x)$ except for $f\left(v_{r+1}\right)=2$ and $f(x)=0$ for each $x \in V\left(T_{v_{r+1}}\right)-\left\{v_{r+1}\right\}$. Note that f is a k DRDF for T and that

$$
w(f)=w\left(f^{\prime}\right)+2 \leq \frac{4(n-k-2)}{2 k+3}+2<\frac{4 n}{2 k+3} .
$$

Case 2. $\quad \sum_{j=1}^{k} \operatorname{deg}_{T}\left(v_{r+j}\right)=2 k$ and $\operatorname{deg}\left(v_{r}\right)=2$. Let $T^{\prime}=T-T_{v_{r}}$. If $n^{\prime}=k+1$, then T is a path on $2 k+3$ vertices and has a k DRDF of weight 4. Otherwise, the induction hypothesis applies. Define f on $V(T)$ by letting $f(x)=f^{\prime}(x)$ except for $f\left(v_{r+1}\right)=2$ and $f\left(v_{r}\right)=f\left(v_{r+2}\right)=\cdots=f\left(v_{r+k+1}\right)=0$. Again f is a k DRDF, and the computation $w(f)<\frac{4 n}{2 k+3}$ is the same as in Case 1.

Case 3. $\sum_{j=1}^{k} \operatorname{deg}_{T}\left(v_{r+j}\right)=2 k$ and $\operatorname{deg}\left(v_{r}\right)>2$. Consider two subcases.
Subcase 3.1. $d\left(v_{r}, u\right) \leq k+1$ for each $u \in V(T)$. Let $S=\left\{u_{1}, \ldots, u_{t}\right\}$ be the set of vertices in distance $k+1$ from v_{r}. Obviously $v_{1}, v_{r+k+1} \in S$ and so $t \geq 2$.

On the other hand, it is clear that $n \geq t(k+1)+1$. Define $f: V(G) \rightarrow\{0,1,2\}$ by $f\left(v_{r}\right)=2, f\left(u_{1}\right)=\cdots=f\left(u_{t}\right)=1$ and $f(x)=0$ otherwise. Clearly f is a k DRDF on G and hence

$$
\gamma_{R}^{k}(T) \leq t+2 \leq \frac{4(t(k+1)+1)}{2 k+3} \leq \frac{4 n}{2 k+3},
$$

with equality if and only if $t=2$ and $n=2(k+1)+1$, and this if and only if $T=P_{2 k+3}$.

Subcase 3.2. $d\left(v_{r}, u\right) \geq k+2$ for some $u \in V(T)$. It is clear that $d\left(v_{1}, v_{r}\right) \geq$ $k+2$. By the choice of $P, d\left(v_{r}, w\right) \leq k+1$ for each $w \in V\left(T_{v_{r}}\right)$. Let T_{1} and T_{2} be the connected components of $T-v_{r-1} v_{r}$. Let $f_{i}=\left(V_{0}^{f_{i}}, V_{1}^{f_{i}}, V_{2}^{f_{i}}\right)$ be a $\gamma_{R}^{k}\left(T_{i}\right)$-function for $i=1,2$. Obviously $f=\left(V_{0}^{f_{1}} \cup V_{0}^{f_{2}}, V_{1}^{f_{1}} \cup V_{1}^{f_{2}}, V_{2}^{f_{1}} \cup V_{2}^{f_{2}}\right)$ is a k DRDF of T. By induction hypothesis we obtain
(2) $\gamma_{R}^{k}(T) \leq \gamma_{R}^{k}\left(T_{1}\right)+\gamma_{R}^{k}\left(T_{2}\right)=\omega\left(f_{1}\right)+\omega\left(f_{2}\right) \leq \frac{4\left|V\left(T_{1}\right)\right|}{2 k+3}+\frac{4\left|V\left(T_{2}\right)\right|}{2 k+3}=\frac{4 n}{2 k+3}$.

This completes the proof.
Let k be a positive integer and let $F_{m, k}$ consist of the disjoint union of m copies of $P_{2 k+3}$ plus a path through the central vertices of these copies, as illustrated in Figure 1 for $k=2$. If $v_{1} v_{2} \ldots v_{2 k+3}$ is an induced path in a graph, then a k DRDF must put total weight at least 4 on $\left\{v_{1}, v_{2}, \ldots, v_{2 k+3}\right\}$. In F_{m}, there are m disjoint induced paths on $2 k+3$ vertices, so $\gamma_{R}^{k}(T) \geq 4|V(T)| /(2 k+3)$ for each $T \in F_{m}$. Such copies of $P_{2 k+3}$ can be assembled in many ways, and this allows us to characterize the trees achieving equality in Theorem 22.

Figure 1. A member of $F_{5,2}$.

Theorem 23. If $k \geq 1$ is an integer and T is an n-vertex tree, then $\gamma_{R}^{k}(T)=$ $4 n /(2 k+3)$ if and only if $V(T)$ can be partitioned into sets inducing $P_{2 k+3}$ such that the subgraph induced by the central vertices of these paths is connected.

Proof. We have observed that if an induced subgraph H of G is isomorphic to $P_{2 k+3}$, and its noncentral vertices have no neighbors outside H in G, then every k DRDF of G puts weight at least 4 on $V(H)$. Thus in any tree with such a vertex partition, weight at least 4 is needed on every set in the partition.

To show that equality requires this structure, we examine the proof of Theorem 22 more closely. The proof is by induction on n. In the base cases and Cases 1 and 2 , we produce a k DRDF with weight less than $4 n /(2 k+3)$. In Case 3 and Subcase 3.1 with diameter $2 k+2$, equality requires $T=P_{2 k+3}$.

Define T_{1}, T_{2} as in the inductive part of Case 3 . The bound holds with equality only if $\gamma_{R}^{k}\left(T_{1}\right)=\frac{4\left|V\left(T_{1}\right)\right|}{2 k+3}$ and $\gamma_{R}^{k}\left(T_{2}\right)=\frac{4\left|V\left(T_{2}\right)\right|}{2 k+3}$. It follows from $\gamma_{R}^{k}\left(T_{2}\right)=$ $\frac{4\left|V\left(T_{2}\right)\right|}{2 k+3}$ and the first paragraph in the proof of Theorem 22 that $\operatorname{diam}\left(T_{2}\right)=$ $2 k+2$. Since $d\left(v_{r}, u\right) \leq k+1$ for each $u \in T_{2}$, from the proof of Subcase 3.1 we deduce that $T_{2}=P_{2 k+3}$ with central vertex v_{r}. By induction hypothesis, $V(T)$ can be partitioned into sets inducing $P_{2 k+3}$ such that the subgraph induced by the central vertices of these paths is connected. Suppose $\left\{u_{1}, \ldots, u_{2 k+3}\right\}$ is the partition set inducing $P_{2 k+3}=u_{1} u_{2} \cdots u_{2 k+3}$ containing v_{r-1}. We claim that $v_{r-1}=u_{k+2}$. Otherwise, we may assume, without loss of generality that, $v_{r-1} \in\left\{u_{k+3}, \ldots, u_{2 k+3}\right\}$. Define $f: V(G) \rightarrow\{0,1,2\}$ by $f\left(v_{r}\right)=f\left(u_{k+1}\right)=$ $2, f\left(u_{2 k+3}\right)=1$ and let f assign 2 to all other central vertices and 1 to all other leaves. It is easy to see that f is a $k \mathrm{DRDF}$ of T with weight less than $4 n /(2 k+3)$ which is a contradiction. Thus v_{r-1} is the central vertex of the path $P_{2 k+3}=u_{1} u_{2} \cdots u_{2 k+3}$ and the proof is complete.

Theorem 24. If k is a positive integer and G is a connected n-vertex graph with $n \geq k+2$, then

$$
\gamma_{R}^{k}(G) \leq 4 n /(2 k+3)
$$

Moreover, the equality holds if and only if G is $C_{2 k+3}$ or obtained from $\frac{n}{2 k+3} P_{2 k+3}$ by adding a connected subgraph on the set of centers of the components of $\frac{n}{2 k+3}$ $P_{2 k+3}$.

Proof. If G has the specified form, then as remarked earlier every k DRDF puts weight at least 4 on the vertex set of each copy of $P_{2 k+3}$.

Now suppose that $\gamma_{R}^{k}(G)=\frac{4 n}{2 k+3}$. Since adding edges cannot increase $\gamma_{R}^{k}(G)$, every spanning tree of G has the form specified in Theorem 22. Given a spanning tree T, let S_{1}, \ldots, S_{k} be the $(2 k+3)$-sets in the special partition of $V(T)$. The assignment of weight 4 that guards S_{i} can be chosen independently of any other S_{j}. If any edge of G joins vertices of S_{i} and S_{j} that are not the centers of the paths they induce, then a k DRDF with weight less than $\frac{4 n}{2 k+3}$ can be built as in the proof of Theorem 23.

The special case $k=1$ of Theorems 22, 23 and 24 can be found in [2]. As an application of Theorem 24, we prove the next result.

Corollary 25. Let $f=\left(V_{0}, V_{1}, V_{2}\right)$ be any $\gamma_{R}^{k}(G)$-function of a connected graph G of order $n \geq 3$. Then
(1) $1 \leq\left|V_{2}\right| \leq \frac{2 n}{2 k+3}$ and a graph G admits a $\gamma_{R}^{k}(G)$-function such that $\left|V_{2}\right|=$ $\frac{2 n}{2 k+3}$ if and only if G is $C_{2 k+3}$ or is obtained from $\frac{n}{2 k+3} P_{2 k+3}$ by adding a connected subgraph on the set of centers of the components of $\frac{n}{2 k+3} P_{2 k+3}$.
(2) $0 \leq\left|V_{1}\right| \leq \frac{4 n}{2 k+3}-2$.
(3) $n-\frac{4 n}{2 k+3}+1 \leq\left|V_{0}\right| \leq n-1$.

Proof. (1) If $V_{2}=\emptyset$, then $V_{1}=V(G)$ and $V_{0}=\emptyset$. The RDF $(\emptyset, V(G), \emptyset)$ is not minimum since $\left|V_{1}\right|+2\left|V_{2}\right|>\frac{4 n}{2 k+3}$. Hence $\left|V_{2}\right| \geq 1$. On the other hand, $\left|V_{2}\right| \leq \frac{2 n}{2 k+3}-\left|V_{1}\right| / 2 \leq \frac{2 n}{2 k+3}$.

Let G admit a $\gamma_{R}^{k}(G)$-function $f=\left(V_{0}, V_{1}, V_{2}\right)$ such that $\left|V_{2}\right|=\frac{2 n}{2 k+3}$. Then by Theorem $24, \frac{4 n}{2 k+3} \leq\left|V_{1}\right|+2\left|V_{2}\right|=\gamma_{R}^{k}(G) \leq \frac{4 n}{2 k+3}$ and the result follows from Theorem 24 again.

Conversely, let G be $C_{2 k+3}$ or obtained from $\frac{n}{2 k+3} P_{2 k+3}$ by adding a connected subgraph on the set of centers of the components of $\frac{n}{2 k+3} P_{2 k+3}$. If $G=C_{2 k+3}$, then assign 2 to two vertices at distance 2 and 0 to the other vertices. If G is obtained from $\frac{n}{2 k+3} P_{2 k+3}$ by adding a connected subgraph on the set of centers of the components of $\frac{n}{2 k+3} P_{2 k+3}$, then assign 2 to the neighbors of centers of the components $P_{2 k+3}$ and 0 to the other vertices. Obviously f is a $\gamma_{R}^{k}(G)$-function with the desired property.
(2) Since $\left|V_{2}\right| \geq 1,\left|V_{1}\right| \leq \frac{4 n}{2 k+3}-2\left|V_{2}\right| \leq \frac{4 n}{2 k+3}-2$.
(3) The upper bound comes from $\left|V_{0}\right| \leq n-\left|V_{2}\right| \leq n-1$. For the lower bound, adding side by side $2\left|V_{0}\right|+2\left|V_{1}\right|+2\left|V_{2}\right|=2 n,-\left|V_{1}\right|-2\left|V_{2}\right| \geq \frac{-4 n}{2 k+3}$ and $\left|V_{1}\right| \leq \frac{4 n}{2 k+3}-2$ gives $2\left|V_{0}\right| \geq 2 n-\frac{8 n}{2 k+3}+2$. Therefore $\left|V_{0}\right| \geq n-\frac{4 n}{2 k+3}+1$.

The special case $k=1$ of Corollary 25 can be found in [5].

References

[1] J.A. Bondy, U.S.R. Murty, Graph Theory with Applications (The Macmillan Press Ltd. London and Basingstoke, 1976).
[2] E.W. Chambers, B. Kinnersley, N. Prince and D.B. West, Extremal problems for Roman domination, SIAM J. Discrete Math. 23 (2009) 1575-1586.
doi:10.1137/070699688
[3] E.J. Cockayne, P.M. Dreyer Jr., S.M. Hedetniemi and S.T. Hedetniemi, On Roman domination in graphs, Discrete Math. 278 (2004) 11-22. doi:10.1016/j.disc.2003.06.004
[4] E.J. Cockayne, P.J.P. Grobler, W.R. Gründlingh, J. Munganga, and J.H. van Vuuren, Protection of a graph, Util. Math. 67 (2005) 19-32.
[5] O. Favaron, H. Karami and S.M. Sheikholeslami, On the Roman domination number in graphs, Discrete Math. 309 (2009) 3447-3451.
doi:10.1016/j.disc.2008.09.043
[6] T.W. Haynes, S.T. Hedetniemi and P.J. Slater, Fundamentals of Domination in Graphs (Marcel Dekker, Inc. NewYork, 1998).
[7] B.P. Mobaraky and S.M. Sheikholeslami, Bounds on Roman domination numbers of a graph, Mat. Vesnik 60 (2008) 247-253.
[8] C.S. ReVelle and K.E. Rosing, Defendens imperium romanum: a classical problem in military strategy, Amer. Math. Monthly 107 (2000) 585-594. doi:10.2307/2589113
[9] I. Stewart, Defend the Roman Empire, Sci. Amer. 281 (1999) 136-139.
[10] D.B. West, Introduction to Graph Theory (Prentice-Hall, Inc, 2000).
Received 20 December 2011
Revised 4 September 2012
Accepted 5 September 2012

