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Abstract

In this note we present a sharp lower bound on the number of vertices
in a regular graph of given degree and diameter.
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1. Introduction

The degree/diameter problem consists in determination of the largest orderN(d, k)
of a graph with (maximum) degree d and diameter k. An upper bound for N(d, k)
is the Moore bound M(d, k) = 1 + d + d(d − 1) + · · · + d(d − 1)k−1 and graphs
achieving this bound are called Moore graphs. As shown in [1, 3, 5], Moore graphs
exist only when d = 2 or k = 1 or when k = 2 and the degree is either 3 or 7 or
possibly 57. For all other pairs (d, k) we have N(d, k) ≤ M(d, k) − 2, see [2, 4].
Recently, there are plenty of papers dealing with the degree/diameter problem,
some of them constructing “large” graphs of given degree and diameter, which
increases the lower bound for N(d, k) for special pairs (d, k), other decreasing
N(d, k) for special classes of graphs. For a nice survey see [7].

In this note we consider the inverse of degree/diameter problem. Since usually
the degree/diameter problem is formulated for regular graphs (although some
authors require only that d is the maximum degree), we ask what is the minimum
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order n(d, k) of a regular graph of degree d and diameter k. In this note we answer
this question completely.

We start with some notation. Let G be a graph, G = (V (G), E(G)). For
two of its vertices, say x and y, by distG(x, y) we denote their distance in G. By
Ni(x) we denote the set of vertices that are at distance i from x. As usual, N1(x)
is often abbreviated to N(x). The longest distance in G is the diameter diam(G).
The complete graph on n vertices is denoted by Kn and the discrete graph on n

vertices (the complement of Kn) is denoted by Dn. If G is a graph, then by G(−1)

(and G(−2)) we denote a graph obtained from G by removing all the edges of one
1-factor (one 2-factor).

If G and H are graphs, then G + H denotes the join of G and H, that is,
a graph obtained from the disjoint union of G and H by adding all edges xy,
where x ∈ V (G) and y ∈ V (H). The sequential join of graphs G1, G2, . . . , Gr is
denoted by G1 +G2 + · · ·+Gr and is defined by

G1 +G2 + · · ·+Gr = (G1 +G2) ∪ (G2 +G3) ∪ · · · ∪ (Gr−1 +Gr).

Thus, one can obtain G1+G2+ · · ·+Gr from the disjoint union G1∪G2∪· · ·∪Gr

by adding all edges xy where x ∈ V (Gi) and y ∈ V (Gi+1) for i = 1, 2, . . . , r−1.
To simplify the expressions, instead of

· · ·+G+G+ · · ·+G
︸ ︷︷ ︸

k times

+ · · · we write · · ·+ (G)k + · · · .

Finally, denote by G ÷ H a graph obtained from the disjoint union of G and
H by adding all edges of one 1-factor, every edge of which joins a vertex of
G with a vertex of H. Obviously, G ÷ H is defined only if |V (G)| = |V (H)|.
Analogously as in the case of join, by G1 ÷ G2 ÷ · · · ÷ Gr we denote the graph
(G1 ÷G2) ∪ (G2 ÷G3) ∪ · · · ∪ (Gr−1 ÷Gr). We can form also more complicated
expressions using both + and ÷. In such a way, K1 +D2 ÷D2 ÷K2 is a cycle of
length 7; see Figure 1.

Figure 1. The graph K1 +D2 ÷D2 ÷K2.
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2. Results

For small diameters we have the following statement.

Proposition 1. Let d ≥ 2. We have

(i) n(d, 1) = d+ 1;

(ii) if d is even, then n(d, 2) = d+ 2;

(iii) if d is odd, then n(d, 2) = d+ 3;

(iv) n(d, 3) = 2d+ 2.

Proof. The case k = 1 is obvious since Kd+1 is the unique graph of diameter 1
and degree d.

Let k = 2. Let G be a d-regular graph of diameter 2, and let x, y ∈ V (G)
such that distG(x, y) = 2. Then {x} ∪ N(x) = N0(x) ∪ N1(x), which gives
|N0(x)|+ |N1(x)| = d+1. Since y ∈ N2(x), we have |V (G)| = |N0(x)|+ |N1(x)|+
|N2(x)| ≥ d + 2, which gives n(d, 2) ≥ d + 2. However, if d is odd then |V (G)|

cannot be odd and so n(d, 2) ≥ d + 3 in this case. If d is even then K
(−1)
d+2 is a

d-regular graph of diameter 2 on d+2 vertices, which shows n(d, 2) ≤ d+2; while

if d is odd then K
(−2)
d+3 is a d-regular graph of diameter 2 on d+ 3 vertices, which

shows n(d, 2) ≤ d+ 3.

Finally, let k = 3. Analogously as above, let G be a d-regular graph of
diameter 3, and let x, y ∈ V (G) such that distG(x, y) = 3. Then {x} ∪ N(x) =
N0(x)∪N1(x), which gives |N0(x)|+ |N1(x)| = d+1, and {y} ∪N(y) ⊆ N2(x)∪
N3(x), which gives |N2(x)|+ |N3(x)| ≥ d+1. Thus, |V (G)| = |N0(x)|+ |N1(x)|+
|N2(x)| + |N3(x)| ≥ 2d + 2, and so n(d, 3) ≥ 2d + 2. On the other hand, denote
by Kn,n a complete bipartite graph on 2n vertices in which the two partite sets

have n vertices each. Then K
(−1)
d+1,d+1 is a d-regular graph of diameter 3 on 2d+2

vertices, which shows n(d, 3) ≤ 2d+ 2.

Now we turn our attention to larger diameters. Since there are only two 2-regular
graphs of diameter k, namely the cycle on 2k vertices and the cycle on 2k + 1
vertices, we have the following trivial observation.

Proposition 2. If k ≥ 4, then n(2, k) = 2k.

For larger degrees we have a slightly different bound.

Theorem 3. Let k = 3j + t, where k ≥ 4 and 0 ≤ t ≤ 2, and let d ≥ 3. Then
n(d, k) = (d + 1)(j + 1) + t+ δ, where δ = 1 if either d is odd and t = 1 or d is
even and t = 2. Otherwise δ = 0.
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Proof. First we prove a lower bound for n(d, k). Let G be a regular graph of
degree d and diameter k and let x, y ∈ V (G) such that distG(x, y) = k. Denote
ni = |Ni(x)|. Since x ∈ N0(x), we have {x} ∪ N(x) ⊆ N0(x) ∪ N1(x). Thus,
n0 + n1 ≥ d + 1. Analogously nk−1 + nk ≥ d + 1 since y ∈ Nk(x). Further, for
every i, 1 ≤ i ≤ j−1, we have n3i−1 + n3i + n3i+1 ≥ d + 1 since for zi ∈ N3i(x)
it holds {zi} ∪ N(zi) ⊆ N3i−1(x) ∪ N3i(x) ∪ N3i+1(x). Finally, if t ≥ 1 then
nk−1−ℓ ≥ 1 where 1 ≤ ℓ ≤ t. Summing up all these inequalities we get

|V (G)| =
∑k

i=0 ni ≥ (d+ 1)(j + 1) + t.

If t = 2 then we use nk−3 ≥ 1 and nk−2 ≥ 1. But if d is even then G cannot
have a bridge, and so nk−3 + nk−2 ≥ 3. Thus, we get |V (G)| =

∑k
i=0 ni ≥

(d+ 1)(j + 1) + t+ 1 in this case.

Similarly, if t = 1 and d is odd then (d + 1)(j + 1) + t is an odd number.
But a regular graph of odd degree cannot have an odd number of vertices, and
so |V (G)| =

∑k
i=0 ni ≥ (d+ 1)(j + 1) + t+ 1 also in this case.

To prove the upper bound we construct extremal graphs, that is, regular
graphs of degree d and diameter k on n(d, k) vertices. First we define an extremal
graph G for odd d. The case k = 4 is treated separately. If d = 3 then one

extremal graphG is on Figure 2. For d ≥ 5 we setG = K2+K
(−2)
d−1 +D2÷D2+Kd−1.

Figure 2. An extremal graph for d = 3 and k = 4.

Recall that k = 3j + t. To cover the remaining diameters, that is, 5, 6, 7, . . . , in
the next we assume j ≥ 1 if t = 2, and j ≥ 2 if t = 0 or t = 1:

G = K2 +K
(−1)
d−1 + (K1 +K1 +Kd−1)j−1 +K1 +K1 +K

(−1)
d−1 +K2, if t = 2;

G = K2 +K
(−1)
d−1 + (K1 +K1 +Kd−1)j−2 +K1 +K1 +Kd−1 ÷K

(−1)
d−1 +K2, if t = 0;

G = K2 +K
(−1)
d−1 + (K1 +K1 +Kd−1)j−2 +K1 +K1 +K

(−1)
d−1 +D2 ÷D2 +Kd−1, if

t = 1.

Now we define an extremal graph G for even d. To cover all possible diame-
ters, that is, 4, 5, 6, . . . , in the next we assume j ≥ 1 if t = 1 or t = 2, and j ≥ 2
if t = 0:

G = K3 +K
(−1)
d−2 + (K1 +K2 +Kd−2)j−1 +K1 +D2 +Kd−1, if t = 1;

G = K3 +K
(−1)
d−2 + (K1 +K2 +Kd−2)j−1 +K1 +K2 +K

(−2)
d−2 +K3, if t = 2;
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G = K3 +K
(−1)
d−2 + (K1 +K2 +Kd−2)j−2 +K1 +K2 +Kd−2 ÷K

(−1)
d−2 +K3, if t = 0.

Observe that in all these graphs, whenever we removed a 1-factor out of Kq,
then the number of vertices q was even. Obviously, in each case G has diameter
k and it is a matter of routine to check that G is a regular graph of degree d.

(For example, a vertex in the last copy of K
(−1)
d−2 in the last graph is joined to

1 vertex of Kd−2, d−4 vertices of K
(−1)
d−2 and to 3 vertices of K3, so its degree

is 1 + d − 4 + 3 = d.) Also, in each of these cases the number of vertices of G
attains the bound of the theorem. To verify this statement it suffices to check
the number of vertices for the smallest admissible values of j since in each case
in the brackets we have exactly d+ 1 vertices.

By Proposition 2, if d = 2 then n(d, k) = dk. However, for higher degrees we get
n(d, k) ∼ 1

3dk. Denote by nVT(d, k) the minimum number of vertices in a vertex-
transitive d-regular graph with diameter k. As shown in [6], for k ≥ 4 and “large”
d we have nVT(d, k) ∼

2
3dk, and so nVT(d, k)

.
= 2n(d, k) in this case. On the other

hand, since the extremal graphs constructed in the proof of Proposition 1 are
vertex-transitive, we have nVT(d, k) = n(d, k) when k ≤ 3.
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