Note

SMALLEST REGULAR GRAPHS OF GIVEN DEGREE AND DIAMETER

Martin Knor ${ }^{1}$
Slovak University of Technology in Bratislava Faculty of Civil Engineering, Department of Mathematics
Radlinského 11, 81368 Bratislava
e-mail: knor@math.sk

Abstract

In this note we present a sharp lower bound on the number of vertices in a regular graph of given degree and diameter.

Keywords: regular graph, degree/diameter problem, extremal graph.
2010 Mathematics Subject Classification: 05C35, 05C12.

1. Introduction

The degree/diameter problem consists in determination of the largest order $N(d, k)$ of a graph with (maximum) degree d and diameter k. An upper bound for $N(d, k)$ is the Moore bound $M(d, k)=1+d+d(d-1)+\cdots+d(d-1)^{k-1}$ and graphs achieving this bound are called Moore graphs. As shown in [1, 3, 5], Moore graphs exist only when $d=2$ or $k=1$ or when $k=2$ and the degree is either 3 or 7 or possibly 57 . For all other pairs (d, k) we have $N(d, k) \leq M(d, k)-2$, see $[2,4]$. Recently, there are plenty of papers dealing with the degree/diameter problem, some of them constructing "large" graphs of given degree and diameter, which increases the lower bound for $N(d, k)$ for special pairs (d, k), other decreasing $N(d, k)$ for special classes of graphs. For a nice survey see $[7]$.

In this note we consider the inverse of degree/diameter problem. Since usually the degree/diameter problem is formulated for regular graphs (although some authors require only that d is the maximum degree), we ask what is the minimum

[^0]order $n(d, k)$ of a regular graph of degree d and diameter k. In this note we answer this question completely.

We start with some notation. Let G be a graph, $G=(V(G), E(G))$. For two of its vertices, say x and y, by $\operatorname{dist}_{G}(x, y)$ we denote their distance in G. By $N_{i}(x)$ we denote the set of vertices that are at distance i from x. As usual, $N_{1}(x)$ is often abbreviated to $N(x)$. The longest distance in G is the diameter $\operatorname{diam}(G)$. The complete graph on n vertices is denoted by K_{n} and the discrete graph on n vertices (the complement of K_{n}) is denoted by D_{n}. If G is a graph, then by $G^{(-1)}$ (and $G^{(-2)}$) we denote a graph obtained from G by removing all the edges of one 1-factor (one 2-factor).

If G and H are graphs, then $G+H$ denotes the join of G and H, that is, a graph obtained from the disjoint union of G and H by adding all edges $x y$, where $x \in V(G)$ and $y \in V(H)$. The sequential join of graphs $G_{1}, G_{2}, \ldots, G_{r}$ is denoted by $G_{1}+G_{2}+\cdots+G_{r}$ and is defined by

$$
G_{1}+G_{2}+\cdots+G_{r}=\left(G_{1}+G_{2}\right) \cup\left(G_{2}+G_{3}\right) \cup \cdots \cup\left(G_{r-1}+G_{r}\right) .
$$

Thus, one can obtain $G_{1}+G_{2}+\cdots+G_{r}$ from the disjoint union $G_{1} \cup G_{2} \cup \cdots \cup G_{r}$ by adding all edges $x y$ where $x \in V\left(G_{i}\right)$ and $y \in V\left(G_{i+1}\right)$ for $i=1,2, \ldots, r-1$. To simplify the expressions, instead of

$$
\cdots+\underbrace{G+G+\cdots+G}_{k \text { times }}+\cdots \quad \text { we write } \quad \cdots+(G)_{k}+\cdots
$$

Finally, denote by $G \div H$ a graph obtained from the disjoint union of G and H by adding all edges of one 1 -factor, every edge of which joins a vertex of G with a vertex of H. Obviously, $G \div H$ is defined only if $|V(G)|=|V(H)|$. Analogously as in the case of join, by $G_{1} \div G_{2} \div \cdots \div G_{r}$ we denote the graph $\left(G_{1} \div G_{2}\right) \cup\left(G_{2} \div G_{3}\right) \cup \cdots \cup\left(G_{r-1} \div G_{r}\right)$. We can form also more complicated expressions using both + and \div. In such a way, $\mathrm{K}_{1}+\mathrm{D}_{2} \div \mathrm{D}_{2} \div \mathrm{K}_{2}$ is a cycle of length 7; see Figure 1.

Figure 1. The graph $\mathrm{K}_{1}+\mathrm{D}_{2} \div \mathrm{D}_{2} \div \mathrm{K}_{2}$.

2. Results

For small diameters we have the following statement.
Proposition 1. Let $d \geq 2$. We have
(i) $n(d, 1)=d+1$;
(ii) if d is even, then $n(d, 2)=d+2$;
(iii) if d is odd, then $n(d, 2)=d+3$;
(iv) $n(d, 3)=2 d+2$.

Proof. The case $k=1$ is obvious since K_{d+1} is the unique graph of diameter 1 and degree d.

Let $k=2$. Let G be a d-regular graph of diameter 2 , and let $x, y \in V(G)$ such that $\operatorname{dist}_{G}(x, y)=2$. Then $\{x\} \cup N(x)=N_{0}(x) \cup N_{1}(x)$, which gives $\left|N_{0}(x)\right|+\left|N_{1}(x)\right|=d+1$. Since $y \in N_{2}(x)$, we have $|V(G)|=\left|N_{0}(x)\right|+\left|N_{1}(x)\right|+$ $\left|N_{2}(x)\right| \geq d+2$, which gives $n(d, 2) \geq d+2$. However, if d is odd then $|V(G)|$ cannot be odd and so $n(d, 2) \geq d+3$ in this case. If d is even then $\mathrm{K}_{d+2}^{(-1)}$ is a d-regular graph of diameter 2 on $d+2$ vertices, which shows $n(d, 2) \leq d+2$; while if d is odd then $\mathrm{K}_{d+3}^{(-2)}$ is a d-regular graph of diameter 2 on $d+3$ vertices, which shows $n(d, 2) \leq d+3$.

Finally, let $k=3$. Analogously as above, let G be a d-regular graph of diameter 3, and let $x, y \in V(G)$ such that $\operatorname{dist}_{G}(x, y)=3$. Then $\{x\} \cup N(x)=$ $N_{0}(x) \cup N_{1}(x)$, which gives $\left|N_{0}(x)\right|+\left|N_{1}(x)\right|=d+1$, and $\{y\} \cup N(y) \subseteq N_{2}(x) \cup$ $N_{3}(x)$, which gives $\left|N_{2}(x)\right|+\left|N_{3}(x)\right| \geq d+1$. Thus, $|V(G)|=\left|N_{0}(x)\right|+\left|N_{1}(x)\right|+$ $\left|N_{2}(x)\right|+\left|N_{3}(x)\right| \geq 2 d+2$, and so $n(d, 3) \geq 2 d+2$. On the other hand, denote by $\mathrm{K}_{n, n}$ a complete bipartite graph on $2 n$ vertices in which the two partite sets have n vertices each. Then $\mathrm{K}_{d+1, d+1}^{(-1)}$ is a d-regular graph of diameter 3 on $2 d+2$ vertices, which shows $n(d, 3) \leq 2 d+2$.

Now we turn our attention to larger diameters. Since there are only two 2 -regular graphs of diameter k, namely the cycle on $2 k$ vertices and the cycle on $2 k+1$ vertices, we have the following trivial observation.

Proposition 2. If $k \geq 4$, then $n(2, k)=2 k$.
For larger degrees we have a slightly different bound.
Theorem 3. Let $k=3 j+t$, where $k \geq 4$ and $0 \leq t \leq 2$, and let $d \geq 3$. Then $n(d, k)=(d+1)(j+1)+t+\delta$, where $\delta=1$ if either d is odd and $t=1$ or d is even and $t=2$. Otherwise $\delta=0$.

Proof. First we prove a lower bound for $n(d, k)$. Let G be a regular graph of degree d and diameter k and let $x, y \in V(G)$ such that $\operatorname{dist}_{G}(x, y)=k$. Denote $n_{i}=\left|N_{i}(x)\right|$. Since $x \in N_{0}(x)$, we have $\{x\} \cup N(x) \subseteq N_{0}(x) \cup N_{1}(x)$. Thus, $n_{0}+n_{1} \geq d+1$. Analogously $n_{k-1}+n_{k} \geq d+1$ since $y \in N_{k}(x)$. Further, for every $i, 1 \leq i \leq j-1$, we have $n_{3 i-1}+n_{3 i}+n_{3 i+1} \geq d+1$ since for $z_{i} \in N_{3 i}(x)$ it holds $\left\{z_{i}\right\} \cup N\left(z_{i}\right) \subseteq N_{3 i-1}(x) \cup N_{3 i}(x) \cup N_{3 i+1}(x)$. Finally, if $t \geq 1$ then $n_{k-1-\ell} \geq 1$ where $1 \leq \ell \leq t$. Summing up all these inequalities we get

$$
|V(G)|=\sum_{i=0}^{k} n_{i} \geq(d+1)(j+1)+t
$$

If $t=2$ then we use $n_{k-3} \geq 1$ and $n_{k-2} \geq 1$. But if d is even then G cannot have a bridge, and so $n_{k-3}+n_{k-2} \geq 3$. Thus, we get $|V(G)|=\sum_{i=0}^{k} n_{i} \geq$ $(d+1)(j+1)+t+1$ in this case.

Similarly, if $t=1$ and d is odd then $(d+1)(j+1)+t$ is an odd number. But a regular graph of odd degree cannot have an odd number of vertices, and so $|V(G)|=\sum_{i=0}^{k} n_{i} \geq(d+1)(j+1)+t+1$ also in this case.

To prove the upper bound we construct extremal graphs, that is, regular graphs of degree d and diameter k on $n(d, k)$ vertices. First we define an extremal graph G for odd d. The case $k=4$ is treated separately. If $d=3$ then one extremal graph G is on Figure 2. For $d \geq 5$ we set $G=\mathrm{K}_{2}+\mathrm{K}_{d-1}^{(-2)}+\mathrm{D}_{2} \div \mathrm{D}_{2}+\mathrm{K}_{d-1}$.

Figure 2. An extremal graph for $d=3$ and $k=4$.
Recall that $k=3 j+t$. To cover the remaining diameters, that is, $5,6,7, \ldots$, in the next we assume $j \geq 1$ if $t=2$, and $j \geq 2$ if $t=0$ or $t=1$:
$G=\mathrm{K}_{2}+\mathrm{K}_{d-1}^{(-1)}+\left(\mathrm{K}_{1}+\mathrm{K}_{1}+\mathrm{K}_{d-1}\right)_{j-1}+\mathrm{K}_{1}+\mathrm{K}_{1}+\mathrm{K}_{d-1}^{(-1)}+\mathrm{K}_{2}$, if $t=2 ;$
$G=\mathrm{K}_{2}+\mathrm{K}_{d-1}^{(-1)}+\left(\mathrm{K}_{1}+\mathrm{K}_{1}+\mathrm{K}_{d-1}\right)_{j-2}+\mathrm{K}_{1}+\mathrm{K}_{1}+\mathrm{K}_{d-1} \div \mathrm{K}_{d-1}^{(-1)}+\mathrm{K}_{2}$, if $t=0$;
$G=\mathrm{K}_{2}+\mathrm{K}_{d-1}^{(-1)}+\left(\mathrm{K}_{1}+\mathrm{K}_{1}+\mathrm{K}_{d-1}\right)_{j-2}+\mathrm{K}_{1}+\mathrm{K}_{1}+\mathrm{K}_{d-1}^{(-1)}+\mathrm{D}_{2} \div \mathrm{D}_{2}+\mathrm{K}_{d-1}$, if $t=1$.

Now we define an extremal graph G for even d. To cover all possible diameters, that is, $4,5,6, \ldots$, in the next we assume $j \geq 1$ if $t=1$ or $t=2$, and $j \geq 2$ if $t=0$:
$G=\mathrm{K}_{3}+\mathrm{K}_{d-2}^{(-1)}+\left(\mathrm{K}_{1}+\mathrm{K}_{2}+\mathrm{K}_{d-2}\right)_{j-1}+\mathrm{K}_{1}+\mathrm{D}_{2}+\mathrm{K}_{d-1}$, if $t=1$;
$G=\mathrm{K}_{3}+\mathrm{K}_{d-2}^{(-1)}+\left(\mathrm{K}_{1}+\mathrm{K}_{2}+\mathrm{K}_{d-2}\right)_{j-1}+\mathrm{K}_{1}+\mathrm{K}_{2}+\mathrm{K}_{d-2}^{(-2)}+\mathrm{K}_{3}$, if $t=2 ;$
$G=\mathrm{K}_{3}+\mathrm{K}_{d-2}^{(-1)}+\left(\mathrm{K}_{1}+\mathrm{K}_{2}+\mathrm{K}_{d-2}\right)_{j-2}+\mathrm{K}_{1}+\mathrm{K}_{2}+\mathrm{K}_{d-2} \div \mathrm{K}_{d-2}^{(-1)}+\mathrm{K}_{3}$, if $t=0$.
Observe that in all these graphs, whenever we removed a 1-factor out of K_{q}, then the number of vertices q was even. Obviously, in each case G has diameter k and it is a matter of routine to check that G is a regular graph of degree d. (For example, a vertex in the last copy of $K_{d-2}^{(-1)}$ in the last graph is joined to 1 vertex of $\mathrm{K}_{d-2}, d-4$ vertices of $\mathrm{K}_{d-2}^{(-1)}$ and to 3 vertices of K_{3}, so its degree is $1+d-4+3=d$.) Also, in each of these cases the number of vertices of G attains the bound of the theorem. To verify this statement it suffices to check the number of vertices for the smallest admissible values of j since in each case in the brackets we have exactly $d+1$ vertices.

By Proposition 2, if $d=2$ then $n(d, k)=d k$. However, for higher degrees we get $n(d, k) \sim \frac{1}{3} d k$. Denote by $n_{\mathrm{VT}}(d, k)$ the minimum number of vertices in a vertextransitive d-regular graph with diameter k. As shown in [6], for $k \geq 4$ and "large" d we have $n_{\mathrm{VT}}(d, k) \sim \frac{2}{3} d k$, and so $n_{\mathrm{VT}}(d, k) \doteq 2 n(d, k)$ in this case. On the other hand, since the extremal graphs constructed in the proof of Proposition 1 are vertex-transitive, we have $n_{\mathrm{VT}}(d, k)=n(d, k)$ when $k \leq 3$.

References

[1] E. Bannai and T. Ito, On finite Moore graphs, J. Fac. Sci. Tokyo Univ. 20 (1973) 191-208.
[2] E. Bannai and T. Ito, Regular graphs with excess one, Discrete Math. 37 (1981) 147-158. doi:10.1016/0012-365X(81)90215-6
[3] R.M. Damerell, On Moore graphs, Proc. Cambridge Philos. Soc. 74 (1973) 227-236. doi:10.1017/S0305004100048015
[4] P. Erdös, S. Fajtlowicz and A.J. Hoffman, Maximum degree in graphs of diameter 2, Networks 10 (1980) 87-90. doi:10.1002/net. 3230100109
[5] A.J. Hoffman and R.R. Singleton, On Moore graphs with diameter 2 and 3, IBM J. Res. Develop. 4 (1960) 497-504. doi:10.1147/rd.45.0497
[6] M. Knor and J. Širáň, Smallest vertex-transitive graphs of given degree and diameter, J. Graph Theory, (to appear).
[7] M. Miller and J. Širáñ, Moore graphs and beyond: A survey of the degree-diameter problem, Electron. J. Combin., Dynamic survey No. D14 (2005), 61pp.

Received 7 March 2012
Revised 17 September 2012
Accepted 2 October 2012

[^0]: ${ }^{1}$ The author acknowledges partial support by Slovak research grants VEGA 1/0781/11 and APVV-0223-10.

