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Abstract

A path-neighborhood graph is a connected graph in which every neigh-
borhood induces a path. In the main results the 3-sun-free path-neighborhood
graphs are characterized. The 3-sun is obtained from a 6-cycle by adding
three chords between the three pairs of vertices at distance 2. A Pk-graph
is a path-neighborhood graph in which every neighborhood is a Pk, where
Pk is the path on k vertices. The Pk-graphs are characterized for k ≤ 4.
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1. Introduction

There is a long tradition in graph theory to characterize classes of graphs by
forbidden subgraphs. There are two types of such characterizations: by for-
bidden subgraphs, and by forbidden induced subgraphs. The area of forbidden
subgraphs has its origins in Kuratowski’s characterization of planar graphs as
being the graphs without subdivisions of K5 or K3,3 as subgraphs [20]. Nowa-
days forbidden minors is a major theme in graph theory. The area of forbidden
induced subgraphs has its origins in the characterization of interval graphs by
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Lekkerkerker and Boland [23]. Since then many other classes of graphs have been
characterized by forbidden induced subgraphs, see e.g. [5, 15].

The opposite type of problem would be the problem of characterizing classes
of graphs having certain prescribed (induced) subgraphs. A classical problem
of this type is the Reconstruction Problem: given a graph G, is it possible to
reconstruct G if all its (non-isomorphic) vertex-deleted subgraphs are given. Its
origins lay with Ulam [29]. Another classical problem of this type was proposed by
A.A. Zykov in 1963, [32]. It reads as follows. A graph H is said to be realizable by
a graph G if every neighborhood in G induces a subgraph isomorphic to H. The
problem was also referred to as the Trahtenbrot-Zykov problem, see [18]. Most
of the work done on this problem is of the type: is a given graph H realizable or
not; for a few references see e.g. [18, 6, 9, 7, 16, 8, 24]. Yet another instance is the
following problem: characterize the class of graphs that have all their spanning
trees in a given family of trees, all of the same order. Some first results of this
type have been obtained in [19].

A broader perspective on the Trahtenbrot-Zykov problem is the following:
Given a class of graphs G, characterize the graphs in which the neighborhood of
each vertex is isomorphic to some graph in G. Parsons and Pisanski proposed
this problem in 1987, see [27]. A number of interesting results of this type have
been obtained in the literature. We give a few examples. The Trahtenbrot-Zykov
problem is the special case where G consists of a single graph. First results of this
type were obtained by Hall [16]. In this paper he presented amongst other things
also a characterization of the connected graphs in which each neighborhood is a
path on four vertices, see Theorem 17 below. Borowiecki et al. [4] determined
bounds for the number of edges in locally k-tree graphs, i.e. graphs in which any
neighborhood is a k-tree. The reference list of this paper contains some more
examples with other types of neighborhoods. Fronček [12, 13] derived a bound
for the number of edges in a graph that is locally a path, i.e. each neighborhood is
a path. Diwan and Usharani [10] studied the colorability of such graphs that are
planar. Parsons and Pisanski [27] studied topological characterizations of graphs
in which any neighborhood is a path or a cycle. An interesting result from the
viewpoint of this paper is their characterization of connected graphs in which the
neighborhood of each vertex is a path of fixed length k (for k = 4 and 5). The
case k = 4 is also a corollary of our main result below, so for details see below.
Another interesting result from the viewpoint of this paper is that of Zelinka [31]:

Theorem A. Let G be a finite planar 3-connected graph. Then the following two

assertions are equivalent:

(i) G is locally snake-like.

(ii) Each vertex in G is adjacent to exactly one face of degree greater than 3 and

each triangle in G is the boundary of a face.
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A snake in Zelinka’s terminology is just a path. And a locally snake-like graph is
a graph in which the neighborhood of each vertex induces a path. Below we call
such graphs path-neighborhood graphs. Note that following [3] we use snake in
this paper to indicate a maximal outerplanar graph with at least four vertices in
which each face shares an edge with the outerface, so it is a maximal outerplanar
graph with exactly two vertices of degree 2.

In this paper we continue the line of study of Zelinka, Parsons and Pisanski,
and Fronček, although our results were obtained independently of these papers.
We study the path-neighborhood graphs: connected graphs in which every neigh-
borhood induces a path. Note that the paths need not be of the same length.
The problem considered is to characterize the path-neighborhood graphs. Zelinka
provides a special result of this type: a characterization of 3-connected, planar
path-neighborhood graphs. In general it seems to be a difficult problem. As a
first step we characterize the path-neighborhood graphs that are 3-sun-free. The
3-sun is depicted in Figure 2. A prime example of such a graph is the snake, a
special type of maximal outerplanar graph, and we will see that maximal outer-
planar graphs play an important role in the sequel. But contrary to the Zelinka
result, our theorem does not restrict to planar graphs. As a corollary of our
theorems we get a new proof of the characterization of the graphs in which all
neighborhoods induce a path Pk of fixed length k − 1, for k ≤ 4.

2. First Results and Examples

A path-neighborhood graph is a connected graph in which the neighborhood of
each vertex induces a path. Since the empty path does not exist, a path has
vertices. Hence the one-vertex graph K1 is not a path-neighborhood graph. Two
simple examples are the 3-sun and the k-fan, see Figure 1. The 3-sun consists
of a 6-cycle with three chords that form a triangle. It is sometimes also called a
trampoline. The k-fan Fk is the graph consisting of a path R of length k and an
additional vertex x adjacent to all k + 1 vertices of R. We call x the center and
R the path of the fan. Clearly, in a path-neighborhood graph a vertex x of degree
k+1 and its neighbors induce a k-fan with center x and path R consisting of the
neighbors.
First we state some simple and obvious facts.

Fact 1. The 3-sun is a path-neighborhood graph. If it occurs in a path-neighbor-

hood graph, then it must be induced.

Fact 2. The k-fan is a path-neighborhood graph. If it occurs in a path-neighbor-

hood graph, then it must be induced.

Fact 3. A path-neighborhood graph does not contain a K4.
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Figure 1. 5-fan and 3-sun.

Fact 4. A path-neighborhood graph does not contain a K1,1,3.

Fact 5. If a path-neighborhood graph contains a vertex of degree 1, then it is K2.

Fact 6. If a path-neighborhood graph has maximum degree 2, then it is K3.

Proposition 7. Let G be a path-neighborhood graph of maximum degree at most

3. Then G is K2 or K3 or the 2-fan.

Proof. If G does not contain a vertex of degree 3, then, by Facts 5 and 6, G
is either K2 or K3. So let x be a vertex of degree 3 with neighboring path
u → y → v. Then y is also of degree 3 with neighboring path u → x → v. If
u would have another neighbor besides x and y, then the edge xy must be in a
path containing this other neighbor. This would mean that either x or y must
have a fourth neighbor, impossible. So both u and v have degree 2, and G is the
2-fan on these four vertices.

The 3-sun and the fans are instances of a wider class of path-neighborhood graphs.
An outerplanar graph is a planar graph that has a plane embedding such that all
vertices lie on the outer cycle. A maximal outerplanar graph is an outerplanar
graph such that the number of edges is maximum. Another way to view a maximal
outerplanar graph is that it is the triangulation of a plane cycle. These graphs
appeared for the first time in the literature in the classical book of Harary [17].
The following lemma appeared in a different form in [25]. It seems now to be
part of folklore. Its proof is a simple exercise.

Lemma 8. Let G be a maximal outerplanar graph with its plane embedding, and

let v be any vertex. Then the neighborhood of v consists of a path v1 → v2 →

· · · → vk and the edges vv1 and vvk are on the outer face, whereas the edges

vv2, vv3, . . . , vvk−1 are interior edges.
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So maximal outerplanar graphs are path-neighborhood graphs.

A 3-sun-free maximal outerplanar graph with at least four vertices is called a
snake, see e.g. [3]. Note that in a snake the triangulation of the plane cycle is such
that each triangle has an edge on the outer cycle. Moreover, in the statement of
Lemma 8, the subpath between v2 and vk−1 lies entirely on the outer cycle. A
snake contains exactly two vertices of degree two. The smallest snake is the 2-fan.
The triangle K3 could be considered a snake as well, but then it is degenerated in
the sense that it contains three vertices of degree two. For this reason we exclude
K3.

For our purposes it is convenient to view snakes in a different way. It may
seem rather complicated, but it is quite helpful in the proofs or our main theorems.
We partition the outer cycle into two paths P = u1 → u2 → · · · → up and
Q = v1 → · · · → vq. We consider two possibilities. First u1 and up are the
vertices of degree two. Note that we have two choices for P . In Figure 2A the
two paths are indicated by thicker lines. Second u1 and vq are the vertices of
degree 2, see Figure 2B. Again we have two choices for P . When considered in
this way we could also start with the two paths P and Q, and then make a strip
by a triangulation ‘between’ P and Q. In the first case u1 is joined only to v1 on
Q and up is joined only to vq on Q. In the second case u1 is joined only to v1 on
Q and vq only to up on P . Thus the vertices of degree two are respectively u1, up,
and u1, vq. Moreover, each vertex is joined to consecutive vertices on the other
path. We call this a triangulated strip on P and Q. The first one is denoted by
P �Q. The second one is denoted by P �Q. In the proofs below, paths P and
Q play a different role. This is the reason for this notation and terminology. The
symbols P , Q, ui, and vj will always be used in the above sense.

Note that any two consecutive vertices on one path have a unique common
neighbor on the other path. In P � Q vertices u1 and up are not a common
neighbor of consecutive vertices on Q. In P � Q vertices u1 and vq are not a
common neighbor of two consecutive vertices on the other path.

Lemma 9. Let G be a path-neighborhood graph, and let S be a triangulated strip

in G. If S = P �Q, and an internal vertex of Q has a neighbor outside S, then

G contains a 3-sun. If S = P �Q, and an internal vertex of Q distinct from vq−1

has a neighbor outside S, then G contains a 3-sun.

Proof. Let S = P � Q, and write Q = v1 → v2 → · · · → vq−1 → vq, and let vi
be an internal vertex of Q with a neighbor x outside S. Note that 1 < i < q.
The neighbors of vi in S form a path with ends vi−1 and vi+1. So there is a path
in N(vi) connecting x either to vi−1 or to vi+1, say vi−1. Let y be the last vertex
on this path before vi−1. Then y is a common neighbor of vi and vi−1. Let uj
be the common neighbor of vi and vi−1 on P . Note that 1 < j < p. Now either
uj and vi−2 are adjacent or vi−1 and uj−1 are adjacent. Also either uj and vi+1
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Figure 2. Snake as triangulated strip.

are adjacent or vi and uj+1 are adjacent. In all cases we get a 3-sun. The case
S = P �Q follows similarly.

From the triangulated strip we can make two other types of 3-sun-free path-
neighborhood graphs. In all the cases below, if we connect the ends of P (or the
ends of Q) by an edge, then P (or Q) should be of length at least three, so that
the path is not turned into a triangle by connecting its ends. Otherwise the path
may have length two. First we join u1 and up, as well as v1 and vq. Then we join
either u1 and vq or v1 and up. So we connect the two ends of the strip such that a
nice ‘band’ results. Such a graph could be considered as consisting of two cycles
u1 → u2 → · · · → up → u1 and v1 → v2 → · · · → vq → v1 with a “triangulation”
in between. We call this graph the triangulated band, for an example see Figure
5A. Obviously, the triangulated band is planar. For the second type we proceed
as follows: loosely speaking we twist the strip before we connect the two ends
by which a ‘Möbius band’ arises. There are two ways to make the connection.
First we join u1 to up and vq and we join up to v1. Second we join v1 to vq and
up and we join u1 to vq. We call these graphs a triangulated Möbius band. For
an example see Figure 5B. The triangulated Möbius band is nonplanar, since it
contains K3,3 as a minor.

Note that, if either the triangulated band or the triangulated Möbius band
occurs in a path-neighborhood graph G, then it must be induced, otherwise a
cycle in some neighborhood would arise. Moreover, if there is a vertex x outside
this band adjacent to some vertex w on the band, then, as in Lemma 9, it follows
that G contains a 3-sun. For later reference we state this as a Lemma.
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Lemma 10. If a triangulated band or triangulated Möbius band occurs in a path-

neighborhood graph then it is induced, and any vertex outside the band adjacent

to the band produces a 3-sun.

3. Path-neighborhood Graphs without a 3-sun

In this section we characterize the 3-sun-free path-neighborhood graphs. In view
of Facts 5 and 6 we only need to deal with the case in which there are vertices of
degree at least three. It turns out that the 3-sun-free path-neighborhood graphs
are precisely the 3-sun-free examples given in the previous section, so the trivial
ones K2 and K3 and the snakes and the bands.

Theorem 11. Let G be a 3-sun-free path-neighborhood graph with a vertex of

degree 2. Then G is K3 or a snake.

Proof. Assume that G is not K3. Let u1 be a vertex of degree 2. Then both its
neighbors have degree at least 3. If both have degree 3, then, as in Proposition
7, it follows that G is the 2-fan, and we are done.

So let u2 be a neighbor of u1 of degree at least 4. Let Φ2 be the fan induced
by u2 and its neighboring path R2 = u1 → v1 → v2 → · · · → vk2 → u3. If
v1 would have degree at least 4 as well, then this would introduce a common
neighbor x of v1 and v2 distinct from u2, by which a 3-sun would arise. So, by
Lemma 9, the only vertices in Φ2 that still may have neighbors outside Φ2 are u3
and vk2 . If u3 has degree 2, then, as above, it follows that vk2 has no neighbors
outside Φ2. So G = Φ2, and we are done.

So assume that u3 has degree at least 3. Note that u3 is adjacent to edge
u2vk2 , where u2 has no neighbors outside Φ2. So the neighboring path of u3 must
be of the form R3 = u2 → vk2 → · · · → vk3 → v4, which is the path in the fan
Φ3 of u3, where all vertices are new except u2 and vk2 . If R3 is of length 2, then
we set k2 = k3, and R3 is just u2 → vk2 = vk3 → u4. Note that Φ2 ∪ Φ3 is a
triangulated strip. As above it follows that in Φ2 ∪Φ3 the only vertices that may
have neighbors outside Φ2 ∪ Φ3 are u4 and vk3 . Again, if u4 is of degree 2, then
G = Φ2 ∪ Φ3, which is a snake, and we are done.

If u4 has degree at least 3, then its neighboring path R4 is of the form
u3 → vk3 → · · · → vk4 → u5, where all vertices except u3 and vk3 are new. As
before, only u5 and vk4 may have neighbors outside the subgraph found so far.
This subgraph is again a triangulated strip.

Thus we continue. Since this process has to stop, we will find a path P =
u1 → u2 → · · · → up and a path Q = v1 → v2 → vkp−1

with the appropriate
edges in between to make it a triangulated strip P � Q. The process stopped
because up has degree 2. So we conclude that G is this triangulated strip, and so
is a snake.
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Theorem 12. Let G be a 3-sun-free path-neighborhood graph with minimum

degree at least 3. Then G is a triangulated band or a triangulated Möbius band.

Proof. The idea of the proof is to find a triangulated strip on paths P and Q

such that only the ends of the paths may have adjacencies that are not yet given
in the strip. By maximizing such a strip we deduce that these adjacencies cannot
be outside the strip, so that the ends must be adjacent to each other in such a
way that the required bands arise.

First we note that, by Proposition 7, G must contain a vertex u2 of degree at
least 4. Let Φ2 be the fan of u2 with path R2 = u1 → v1 → v2 → · · · → vk2 → v3.
Note that k2 ≥ 2. Then Φ2 is induced in G and u2 and vi with 1 < i < k2 have
no neighbors outside Φ2.

Consider u3, and let Φ3 be its fan. Its neighboring path R3 contains the
edge u2vk2 , and u2 has no neighbors outside Φ2, so R3 must be of the form
u2 → vk2 → · · · → vk3 → u4, where all vertices ar new except u2 and vk2 . In the
case that R3 is of length 2, we set k2 = k3. Now Φ2 ∪ Φ3 is a triangulated strip
P ′ �Q′ with P ′ = u1 → u2 → u3 → u4 and Q′ = R2 → R3 is the concatenation
of R2 and R3. By Lemma 9, the internal vertices of Q′ have no neighbors outside
the strip. By construction the internal vertices of P ′ have no neighbors outside
the strip. Hence u4 is adjacent to u3 and vk3 and possibly to u1 and/or v1 but not
to any other vertex of the strip. If u4 is not adjacent to u1 or v1, then we consider
the fan Φ4 on u4 and its neighboring path R4 = u3 → vk3 → · · · → vk4 → u5,
where all vertices are new except u3 and vk3 . We extend path P ′ with u5 and path
Q′ with the other new vertices, and we get a longer triangulated strip P ′ � Q′.
We continue this extension process until we end up with a strip S = P �Q with
P = u1 → u2 → · · · → up, Q = v1 → v2 → · · · → vkp−1

, and up is adjacent to u1
and/or v1. We set kp−1 = q, so that the last vertex of Q is vq.

Now consider u1. If u1 is not adjacent to up or vq, then, as above, we can
extend the strip S on the other side until this end vertex of P is adjacent to
up and/or vq. By renumbering the vertices we get the strip S = P � Q with
P = u1 → u2 → · · · → up and Q = v1 → v2 → · · · → vq such that u1 is adjacent
to up and/or vq and up is adjacent to u1 and/or v1.

We consider two cases.

Case 1. u1 and up are not adjacent. Then, necessarily, u1 and vq are adjacent
as well as up and v1. We depict this in Figure 1A. The black vertices have no
other adjacencies in the figure. Now if v1 and vq are adjacent, then we get a
triangulated Möbius band. By Lemma 10, G is this band.

So suppose that v1 and vq are not adjacent. Note that, by Lemma 9, u2
and v2 do not have neighbors outside strip S. Consider u1. It is adjacent to
edge u2v1 and to vq. So its neighboring path must be of the form R = u2 →

v1 → x → · · · → vq plus possibly some extension beyond vq. Consider v1. It
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Figure 3. Case 1 in proof of Theorem 12.

is adjacent to v2, u2, u1 and up. So its neighboring path must be of the form
R′ = v2 → u2 → u1 → y → · · · → up with possibly some extension beyond up.
To avoid a K1,1,3 on u1, v1, u2, x, y we must have x = y, see Figure 1B. Let z be
the neighbor of x on R different from u1, so it is the next vertex in the direction
of vq, and let z′ be the neighbor of x on R′ in the direction of up. If z 6= z′, then
u1, u2, v1, z

′, x, z form a 3-sun, which is forbidden. If z = z′, then u1, v1, z form a
triangle in the neighborhood of x, which is also forbidden. This implies that v1
and vq have to be adjacent.

Case 2. u1 and up are adjacent. For the sake of simplicity, let us assume that
both paths of the strip are from left to right with increasing indices. In Figure 1
the strips are bent to fit on the page. So u1 and v1 are the leftmost vertices of
the paths, and up and vq are the rightmost vertices.

Subcase 2.1. up and v1 are adjacent. Now up is adjacent to the edges up−1vq
and u1v1. Since up−1 has no neighbors outside the strip, there must be a path R

in N(up) between vq and either u1 or v1.

First assume that R = vq → · · · → v′ → u1. If v′ = vq, then we get a
triangulated Möbius band from the strip P � Q. If v′ 6= vq, then we extend Q

with the subpath of R between vq and the last vertex v′ before u1, see Figure 4A,
where R is indicated by dashed edges and vertices. We renumber the vertices of
Q so that its last vertex is again vq. Now we have a strip P �Q, and the edges
u1up, v1up, and u1vq connect the ends of the strip, so that again a triangulated
Möbius band arises. By Lemma 10, G is this Möbius band.

Second assume that R = vq → · · · → v′ → v1. If v′ = vq, then we get a
triangulated band from the strip P � Q. If v′ 6= vq, then we extend Q with the
subpath of R between vq and the last vertex v′ before v1, see Figure 4B, where
R is indicated by dashed edges and vertices. We renumber the vertices of Q so
that its last vertex is again vq. Now we have a strip P �Q, and the edges u1up,
v1up, and v1vq connect the ends of the strip, so that again a triangulated band
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Figure 4. Case 2.1 in proof of Theorem 12.

arises. By Lemma 10, G is this triangulated band.

Subcase 2.2. up and v1 are not adjacent. Note that u1 is adjacent to the
edge u2v1 and to up. Since u2 has no neighbors outside the strip there must be
a path R in N(u1) between up and v1, say R = up → v′ → · · · → v′′ → v1. Now
we extend Q to the left with the subpath of R between v′ and v′′, and again
renumber the vertices of Q in the appropriate way. So we get a strip with paths
P and Q such that up is adjacent to u1 and v1, and we are in Subcase 2.1.

This last subcase completes the proof.

4. Path-neighborhood Graphs with Degree Restrictions

We denote by Pk the path with k vertices. A P≤k-neighborhood graph is a
path-neighborhood graph of maximum degree k. A Pk-neighborhood graph is
a regular path-neighborhood graph of degree k, so a connected graph in which
each neighborhood induces a Pk. In terms of the Trahtenbrot-Zykov Problem
a Pk-neighborhood graph realizes the path Pk. The following facts can be eas-
ily deduced for P≤k-neighborhood graphs and Pk-neighborhood graphs, see also
[16, 27].

Fact 13. K2 is the only P1-neighborhood graph (and the only P≤1-neighborhood

graph).

Fact 14. If a path-neighborhood graph contains a pendant vertex, then it is K2,

hence the P1-neighborhood graph.

Fact 15. K3 is the only P2-neighborhood graph.
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The following proposition was already mentioned in [32]. It is an immediate
consequence of Proposition 7.

Proposition 16. There is no P3-neighborhood graph.

The P4-neighborhood graphs were already characterized by Hall as early as 1985
in [16] as the graphs consisting of a cycle of length at least 7 with additional edges
connecting vertices at distance two. These graphs are also known as circulant
graphs, see [26]. A new proof for Hall’s characterization was given in [27] (as
Theorem 5.1). Here we present these graphs in a different way so that we can
deduce the characterization in a simple way from our main result Theorem 12.

The triangulated band in which all vertices have degree 4 is called a bracelet,
see Figure 5A. It is also known as an antiprism. It consists of two cycles of the
same length n ≥ 4 with a triangulation in between that takes the form of a zigzag.
Therefore we denote it by Zn. The bracelet Z4 is also known as the brick, cf.
[18]. The triangulated Möbius band in which all vertices have degree 4 is called
the twisted bracelet, see Figure 5B. It consists of a cycle of length n and a path
on n− 1 vertices with a triangulation in between. Loosely speaking, it starts as
a zigzag, but at the end it is closed “Möbius-wise”.

Figure 5. Bracelets.

Theorem 17. Let G be a P4-neighborhood graph. Then G is Zn or Yn, for some

n ≥ 4.

Proof. First we prove that G is 3-sun-free. Suppose that G contains a 3-sun H.
Then H is induced in G (Fact 1). Let u be a vertex of degree two in H and let
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x and y be its neighbors in H. Then x and y have already a P4 as neighborhood
in H. So they do not have neighbors outside H. But for u to have a P4 as
neighborhood either x or y must be an internal vertex in this P4, so must have
a neighbor outside H. This impossibility implies that G is 3-sun-free. Now the
theorem follows from Theorem 12.

The following theorem is an easy consequence of above results.

Theorem 18. The P≤4-neighborhood graphs are K2, K3, the 3-sun, the snakes

of maximum degree 4, and the bracelets and twisted bracelets.

Grünbaum constructed a very nice example of a P5-neighborhood graph, see
[18]. In [27] Parsons and Pisanski gave a sketch of a characterization of the
P5-neighborhood graphs.

5. Concluding Remarks

Parsons and Pisanski [27] proposed the problem of characterizing the graphs, in
which the neighborhoods of the vertices are from a given class of graphs. Here
we consider the case where all neighborhoods are paths. As a first result we have
characterized the 3-sun-free path-neighborhood graphs. The snakes, 3-sun-free
maximal outerplanar graphs, played a major role in the story. As a corollary,
we have a new proof of the characterization of the graphs that realize P4 in the
sense of the Trahtenbrot-Zykov Problem (cf. [16, 27]). The characterization of
path-neighborhood graphs in general seems to be a very difficult problem. For
instance, take a maximal outerplanar graph with many pendant snake-like parts
(that are 3-sun-free except for the part where they are connected with the rest
of the graph), similar to paths pending at a tree. Now we can pairwise connect
such pendant snakes at their ends as in making the bands above, thus creating
fairly complicated path-neighborhood graphs, which are still close to maximal
outerplanar graphs. Question: can we construct path-neighborhood graphs that
are not even close to being maximal outerplanar, whatever that means?

In [21] the connection between path-neighborhood graphs, maximal outerpla-
nar graphs and two other classes of graphs is pursued. These two other classes
are the chordal graphs and the triangle graphs. The triangle graph T (G) of a
graph G is the graph with the triangles of G as vertices, and two such vertices
are joined in T (G) if, as triangles in G, they share an edge. Triangle graphs were
introduced by [28], see also [11, 1, 22].

An instance of this connection is given by the following theorem in [21].

Theorem 19. A connected graph G is a path-neighborhood graph with a tree as

its triangle graph if and only if G is a maximal outerplanar graph.
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Clearly, much more could be said about the triangle graph of a path-neighborhood
graph.

A variation of the above type of problems was studied by Zelinka and Fronček:
the edge-neighborhood of en edge uv is the set of vertices distinct from u and v

that are adjacent to u or to v or to both. Now similar questions can be raised
with respect to the edge-neighborhood, see e.g. [30, 14].
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[15] M.C. Golumbic, Algorithmic Graph Theory and Perfect Graphs, Ann. Discrete
Math. 57 (Elsevier, Amsterdam, 2004).

[16] J.I. Hall, Graphs with constnt link and small degree and order, J. Graph Theory 9

(1985) 419–444.
doi:10.1002/jgt.3190090313

[17] F. Harary, Graph Theory (Addison-Wesley, Reading Massachusetts, 1969).

[18] P. Hell, Graphs with given neighborhoods I, in: Problémes combinatoires et théorie
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