
Discussiones Mathematicae
Graph Theory 34 (2014) 23–29
doi:10.7151/dmgt.1699

HYPERGRAPHS WITH PENDANT PATHS ARE NOT

CHROMATICALLY UNIQUE

Ioan Tomescu

Faculty of Mathematics and Computer Science
University of Bucharest

Str. Academiei, 14
010014 Bucharest, Romania

e-mail: ioan@fmi.unibuc.ro

Abstract

In this note it is shown that every hypergraph containing a pendant path
of length at least 2 is not chromatically unique. The same conclusion holds
for h-uniform r-quasi linear 3-cycle if r ≥ 2.
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1. Notation and Preliminary Results

A simple hypergraph H = (V, E), with order n = |V | and size m = |E|, consists
of a vertex-set V (H) = V and an edge-set E(H) = E , where E ⊆ V and |E| ≥ 2
for each edge E in E . H is h-uniform, or is an h-hypergraph, if |E| = h for each
E in E and H is linear if no two edges intersect in more than one vertex [1]. Let
r ≥ 1 and h ≥ 2r. H is said to be r-quasi linear (or shortly quasi linear) [13] if
any two edges intersect in 0 or r vertices. Examples of quasi linear hypergraphs
are t-stars [5, 8], also called sunflower hypergraphs [7, 11, 12]. We say that a
hypergraph S is a t-star with kernel K, where K ⊆ V (S) and t ≥ 1, if S has
exactly t edges and e ∩ e′ = K for all distinct edges e and e′ of S. A system
of t pairwise disjoint edges (matching) is a t-star with empty kernel. In [12] a
sunflower hypergraph was denoted by SH(n, p, h); it is an h-hypergraph having
a kernel of cardinality h− p, n vertices and k edges, where n = h + (k − 1)p and
1 ≤ p ≤ h− 1.
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A hypergraph for which no edge is a subset of any other is called Sperner. Two
vertices u, v ∈ V (H) belong to the same component if there are vertices x0 =
u, x1, . . . , xk = v and edges E1, . . . , Ek of H such that xi−1, xi ∈ Ei for each i

(1 ≤ i ≤ k) [1]. H is said to be connected if it has only one component. An
h-uniform hypertree is a connected linear h-hypergraph without cycles [1]. We
shall define two classes of quasi linear uniform hypergraphs called quasi linear
elementary path and quasi linear elementary cycle and denoted by P

h,r
m and

C
h,r
m , respectively, as follows: P

h,r
m consists of m edges E1, . . . , Em such that

|E1| = · · · = |Em| = h, |Ei ∩ Ei+1| = r for any 1 ≤ i ≤ m − 1 and every edge
has in common with other edges only the common vertices with its neighboring
edges (r for E1 and Em, and 2r for the remaining edges). C

h,r
m may be defined

in a similar way; in this case |Em ∩ E1| = r.
If λ ∈ N, a λ-coloring of a hypergraph H is a function f : V (H) → {1, . . . , λ}

such that for each edge E of H there exist x, y in E for which f(x) 6= f(y). The
number of λ-colorings of H is given by a polynomial P (H,λ) of degree |V (H)|
in λ, called the chromatic polynomial of H. P (H,λ) can be obtained applying
inclusion-exclusion principle, in the same way as for graphs, getting the following
formula [10]:

P (H,λ) =
∑

W⊆E(H)
(−1)|W |λc(W ),(1)

where c(W ) denotes the number of components of the spanning subhypergraph
induced by edges from W . All h-uniform hypertrees have the same chromatic
polynomial.

Lemma 1 [6]. If T h
k is any h-uniform hypertree with k edges, then

P (T h
k , λ) = λ(λh−1 − 1)k.(2)

Two hypergraphs H and G are said to be chromatically equivalent or χ-equivalent,
written H ∼ G, if P (H,λ) = P (G, λ). Let us restrict ourselves to the class of
Sperner hypergraphs. A simple hypergraph H is said to be chromatically unique
if H is isomorphic to H ′ for every simple hypergraph H ′ such that H ′ ∼ H; that
is, the structure of H is uniquely determined up to isomorphism by its chromatic
polynomial. The notion of χ-unique graphs was first introduced and studied by
Chao and Whitehead [4] (see also [9]). It is clear that all h-hypergraphs are
Sperner. The notion of χ-uniqueness in the class of h-hypergraphs may be de-
fined as follows: An h-hypergraph H is said to be h-chromatically unique if H is
isomorphic to H ′ for every h-hypergraph H ′ such that H ′ ∼ H.

Non-trivial chromatically unique hypergraphs are extremely rare. One exam-
ple of a non-trivial chromatically unique hypergraph was proposed by Borowiecki
and  Lazuka; it is SH(n, 1, h).

Theorem 2 [3]. SH(n, 1, h) is chromatically unique.
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The proof of this result was completed in [11]. Note that for p = h−1, SH(n, h−
1, h) is an h-uniform hypertree. The chromaticity of SH(n, p, h) may be stated
as follows.

Theorem 3 [12]. Let n = h + (k − 1)p, where h ≥ 3, k ≥ 1 and 1 ≤ p ≤ h− 1.
Then SH(n,p,h) is h-chromatically unique for every 1 ≤ p ≤ h− 2; for p = h− 1
SH(n, p, h) is h-chromatically unique for k = 1 or k = 2 but it has not this
property for k ≥ 3. Moreover, SH(n, p, h) is not chromatically unique for every
p, k ≥ 2.

SH(n, p, h) is quasi linear with r = h − p and it is a path for k = 2. The
chromaticity of non-uniform hypertrees was studied by Walter [14].

2. Main Results

Consider the hypergraph H represented in Figure 1, where H1 is a subhypergraph
of H, U and W are two edges such that: U ∩ V (H1) = A 6= ∅; U ∩W = B 6= ∅;
W ∩ V (H1) = ∅. Such a path consisting of edges U and W will be called a
pendant path of length 2. Denote |A| = s ≥ 1; |U\(A∪B)| = p ≥ 1; |B| = t ≥ 1;
|W\U | = q ≥ 1.

H1

A B

U
W

s p
t q

v

u

Figure 1. Hypergraph H.

Theorem 4. Every hypergraph containing a pendant path of length at least 2 is
not chromatically unique.

Proof. For the hypergraph H from Figure 1 defined as above we shall define
another Sperner hypergraph F such that P (H,λ) = P (F, λ). For this consider
two distinct vertices u ∈ W\U and v ∈ U\(A ∪ B) and three edges: U ′ = U ,
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Figure 2. Structure of hypergraph F .

W ′ = W ∪{v}\{u} and Z = U ∪W\{v}. We have |U ′∩W ′| = |U ∩W |+1 = t+1.
F is defined as follows: V (F ) = V (H) and E(F ) = E(H1) ∪ {U ′,W ′, Z} (see
Figure 2).

Let ϕ(H1, λ) and ξ(H1, λ) denote the number of λ-colorings of H1 such that A

is monochromatic and A is not monochromatic, respectively; the corresponding
numbers of λ-colorings of H are denoted by ϕ(H,λ) and ξ(H,λ), respectively.

If A is monochromatic and B is monochromatic, having the same color as
A, then the number of λ-colorings of H is ϕ(H1, λ)(λp − 1)(λq − 1); if A is
monochromatic and B is monochromatic having a color different from the color
of A this number equals ϕ(H1, λ)(λ − 1)λp(λq − 1) and if A is monochromatic
and B is not monochromatic we get ϕ(H1, λ)λp+q(λt − λ), which implies that

ϕ(H,λ) = ϕ(H1, λ)((λp − 1)(λq − 1) + (λ− 1)λp(λq − 1) + λp+q(λt − λ)).

In a similar manner if A is not monochromatic and B is monochromatic, then
the number of λ-colorings of H equals ξ(H1, λ)λp+1(λq − 1); if A and B are not
monochromatic we get ξ(H1, λ)λp+q(λt − λ), thus yielding

ξ(H,λ) = ξ(H1, λ)(λp+1(λq − 1) + λp+q(λt − λ))

and the chromatic polynomial of H is P (H,λ) = ϕ(H,λ) + ξ(H,λ).

We shall prove that F has the same chromatic polynomial, by showing that
ϕ(H,λ) = ϕ(F, λ) and ξ(H,λ) = ξ(F, λ).

If A is not monochromatic, by considering the cases B monochromatic and
B not monochromatic we easily deduce that

ξ(F, λ) = ξ(H1, λ)(λp+1(λq − 1) + λp+q(λt − λ)) = ξ(H,λ).
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If A is monochromatic and B is not monochromatic then the number of λ-
colorings of F is equal to ϕ(H1, λ)λp+q(λt − λ).

If A is monochromatic and B is monochromatic, we shall consider the sub-
cases: a) the colors of A and B coincide; b) the colors of A and B are different.

a) Suppose that the common color of A and B is λ0. If f is a coloring having
required properties, we obtain four subcases:

f(u) = f(v) = λ0, when the number of λ-colorings of F is equal to ϕ(H1, λ)
(λq−1 − 1)(λp−1 − 1);

f(u) = λ0 and f(v) 6= λ0, the number is ϕ(H1, λ)(λ− 1)(λp+q−2 − 1);

f(u) 6= λ0 and f(v) = λ0, we get ϕ(H1, λ)(λ− 1)(λp−1 − 1)(λq−1 − 1);

if f(u) 6= λ0 and f(v) 6= λ0, then the number of λ-colorings of F equals
ϕ(H1, λ)(λ− 1)2λp+q−2.

b) If A and B have different colors then the number of λ-colorings of F is
equal to ϕ(H1, λ)(λ− 1)λp(λq − 1).

By summing up these values we deduce that ϕ(F, λ) = ϕ(H,λ), which com-
pletes the proof that P (F, λ) = P (H,λ).

We have proved the result for any hypergraph having a pendant path of
length 2; it is clear that it also holds for hypergraphs containing pendant paths
of length at least 2.

For m = 2 the path P
h,r
2 is a sunflower hypergraph and its chromaticity follows

from Theorem 3. If m ≥ 3 the previous theorem has the following Corollary:

Corollary 5. P
h,r
m is not chromatically unique for every m ≥ 3, r ≥ 1 and

h ≥ 2r + 1.
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Figure 3. Structure of hypergraph X.

Theorem 6. Cycle C
h,r
3 is not chromatically unique if r ≥ 2.
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Proof. Denote p = h − r, where h ≥ p + 2; h ≥ 2r is equivalent to h ≤ 2p. By
(1) we deduce P (Ch,r

3 , λ) = λ3p − 3λ3p−h+1 + 3λ2p−h+1 − λ. We shall define a

hypergraph X which is not h-uniform and is chromatically equivalent to C
h,r
3 .

For this consider the sets in Figure 3: E,F,G,H,U, V are pairwise disjoint,
vertices x, y, z, w are distinct and A = E∪F∪U∪{x, y, z}, B = G∪H∪U∪{x,w}.
|A| = |B| = h, |V | = 2p− h− 1, |E| = 2p− h− 1, |F | = h− p, |U | = h− p− 2,
|G| = h − p, |H| = 2p − h. X is defined as follows: V (X) = A ∪ B ∪ V and
E(X) = {A,B,C,D}, where C = F ∪G∪H and D = F ∪G∪U ∪V ∪{y, z, w}. It
follows that |V (X)| = 3p, |C| = h and |D| = 2h− p. Using (1) we get P (X,λ) =
λ3p−3λ3p−h+1−λc(D) +λc(A,B) +λc(A,C) +λc(A,D) +λc(B,C) +λc(B,D) +λc(C,D)−
λc(A,B,C) − λc(A,B,D) − λc(A,C,D) − λc(B,C,D) + λc(A,B,C,D) = P (Ch,r

3 , λ), since:
λc(D) = λc(B,C) = λ4p−2h+1, λc(A,B) = λc(A,B,C) = λ2p−h, λc(B,D) = λc(B,C,D) =
λ2p−h, λc(A,B,D) = λc(A,C,D) = λc(A,B,C,D) = λ, λc(A,C) = λc(A,D) = λc(C,D) =
λ2p−h+1.

Bokhary, Tomescu and Bhatti [2] proved that h-uniform linear elementary cycles

C
h,1
m of length m are not chromatically unique for every m,h ≥ 3. This result

and the previous theorem support the following conjecture:

Conjecture 7. Cycles Ch,r
m are not chromatically unique for every m,h ≥ 3 and

r ≥ 1.

It is not difficult to show that for small values of m ≥ 3 and for every r ≥ 2 paths
P

h,r
m and cycles C

h,r
m are h-chromatically unique. This observation leads to the

following:

Conjecture 8. For every m ≥ 3 and r ≥ 2 paths P
h,r
m and cycles C

h,r
m are

h-chromatically unique.
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