Discussiones Mathematicae
Graph Theory 34 (2014) 23-29
doi:10.7151/dmgt.1699

HYPERGRAPHS WITH PENDANT PATHS ARE NOT
CHROMATICALLY UNIQUE

IoaN TOMESCU

Faculty of Mathematics and Computer Science
University of Bucharest
Str. Academiei, 14
010014 Bucharest, Romania

e-mail: ioan@fmi.unibuc.ro

Abstract

In this note it is shown that every hypergraph containing a pendant path
of length at least 2 is not chromatically unique. The same conclusion holds
for h-uniform r-quasi linear 3-cycle if r > 2.
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1. NOTATION AND PRELIMINARY RESULTS

A simple hypergraph H = (V, ), with order n = |V| and size m = |€|, consists
of a vertex-set V(H) =V and an edge-set E(H) = &, where E C V and |E| > 2
for each edge F in €. H is h-uniform, or is an h-hypergraph, if |E| = h for each
E in € and H is linear if no two edges intersect in more than one vertex [1]. Let
r>1and h > 2r. H is said to be r-quasi linear (or shortly quasi linear) [13] if
any two edges intersect in 0 or r vertices. Examples of quasi linear hypergraphs
are t-stars [5, 8], also called sunflower hypergraphs [7, 11, 12]. We say that a
hypergraph S is a t-star with kernel K, where K C V(S) and t > 1, if S has
exactly t edges and e N e’ = K for all distinct edges e and €’ of S. A system
of t pairwise disjoint edges (matching) is a t-star with empty kernel. In [12] a
sunflower hypergraph was denoted by SH(n,p, h); it is an h-hypergraph having
a kernel of cardinality h — p, n vertices and k edges, where n = h + (k — 1)p and
1<p<h-1.
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A hypergraph for which no edge is a subset of any other is called Sperner. Two
vertices u,v € V(H) belong to the same component if there are vertices xg =
u,T1,...,rr = v and edges Fi, ..., By of H such that z;_1, z; € E; for each ¢
(1 <i < k)[1]. H is said to be connected if it has only one component. An
h-uniform hypertree is a connected linear h-hypergraph without cycles [1]. We
shall define two classes of quasi linear uniform hypergraphs called quasi linear
elementary path and quasi linear elementary cycle and denoted by Pl and
Cgf, respectively, as follows: P#L’r consists of m edges Fi,...,E, such that
|E1| = -+ = |Em| = h|Ei N Eiy1| = r for any 1 < i < m —1 and every edge
has in common with other edges only the common vertices with its neighboring
edges (r for Ey and E,,, and 2r for the remaining edges). chr may be defined
in a similar way; in this case |E,, N E1| = 7.

If A € N, a A-coloring of a hypergraph H is a function f: V(H) — {1,..., A}
such that for each edge E of H there exist x, y in E for which f(z) # f(y). The
number of A-colorings of H is given by a polynomial P(H,\) of degree |V (H)]
in A, called the chromatic polynomial of H. P(H,\) can be obtained applying
inclusion-exclusion principle, in the same way as for graphs, getting the following
formula [10]:

(1) P(H,)\) = ZWCE(H)(_1)|W|/\C(W)’

where ¢(W) denotes the number of components of the spanning subhypergraph
induced by edges from W. All h-uniform hypertrees have the same chromatic
polynomial.

Lemma 1 [6]. If T} is any h-uniform hypertree with k edges, then
(2) P(TE ) = A\ — 1)k,

Two hypergraphs H and G are said to be chromatically equivalent or y-equivalent,
written H ~ G, if P(H,\) = P(G,)\). Let us restrict ourselves to the class of
Sperner hypergraphs. A simple hypergraph H is said to be chromatically unique
if H is isomorphic to H' for every simple hypergraph H’ such that H' ~ H; that
is, the structure of H is uniquely determined up to isomorphism by its chromatic
polynomial. The notion of x-unique graphs was first introduced and studied by
Chao and Whitehead [4] (see also [9]). It is clear that all h-hypergraphs are
Sperner. The notion of y-uniqueness in the class of h-hypergraphs may be de-
fined as follows: An h-hypergraph H is said to be h-chromatically unique if H is
isomorphic to H' for every h-hypergraph H’ such that H ~ H.

Non-trivial chromatically unique hypergraphs are extremely rare. One exam-
ple of a non-trivial chromatically unique hypergraph was proposed by Borowiecki
and Lazuka; it is SH(n, 1, h).

Theorem 2 [3]. SH(n,1,h) is chromatically unique.
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The proof of this result was completed in [11]. Note that for p =h—1, SH(n,h—
1,h) is an h-uniform hypertree. The chromaticity of SH (n,p, h) may be stated
as follows.

Theorem 3 [12]. Letn=h+ (k—1)p, where h >3, k> 1 and 1 <p < h—1.
Then SH(n,p,h) is h-chromatically unique for every 1 <p < h—2; forp=h—1
SH(n,p,h) is h-chromatically unique for k = 1 or k = 2 but it has not this
property for k > 3. Moreover, SH(n,p,h) is not chromatically unique for every
p, k> 2.

SH(n,p,h) is quasi linear with » = h — p and it is a path for £ = 2. The
chromaticity of non-uniform hypertrees was studied by Walter [14].

2. MAIN RESULTS

Consider the hypergraph H represented in Figure 1, where H; is a subhypergraph
of H, U and W are two edges such that: UNV(Hy) = A#0; UNW = B # {);
W NV(H;) = (. Such a path consisting of edges U and W will be called a
pendant path of length 2. Denote |A| =s > 1; |[U\(AUB)|=p>1; |B|=t>1;
WA\U|=¢q=1.

Figure 1. Hypergraph H.

Theorem 4. Every hypergraph containing a pendant path of length at least 2 is
not chromatically unique.

Proof. For the hypergraph H from Figure 1 defined as above we shall define
another Sperner hypergraph F' such that P(H,\) = P(F,)\). For this consider
two distinct vertices w € W\U and v € U\(A U B) and three edges: U’ = U,
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Figure 2. Structure of hypergraph F.

W' =WU{vH\{u} and Z = UUW\{v}. We have |[UNW'| = |[UNW|+1=1t+1.
F is defined as follows: V(F) = V(H) and E(F) = E(H;) U{U', W', Z} (see
Figure 2).
Let ¢(Hy,\) and £(Hp, \) denote the number of A-colorings of Hy such that A
is monochromatic and A is not monochromatic, respectively; the corresponding
numbers of \-colorings of H are denoted by ¢(H, \) and &(H, \), respectively.
If A is monochromatic and B is monochromatic, having the same color as
A, then the number of A-colorings of H is ¢(Hi,A\)(AP — 1)(A? — 1); if A is
monochromatic and B is monochromatic having a color different from the color
of A this number equals p(Hi, A)(A — 1)AP(A? — 1) and if A is monochromatic
and B is not monochromatic we get p(Hy, \)ANPT4(A! — \), which implies that

O(H,\) = @(H, \) (WP = 1A = 1) + (A = DAP(AT — 1) + APTIAE = ))).

In a similar manner if A is not monochromatic and B is monochromatic, then
the number of A-colorings of H equals £(Hy, \)APT1(A\? — 1); if A and B are not
monochromatic we get £(Hyp, \)APT4(X! — \), thus yielding

E(H, ) = E(Hy, Y (WTHAT = 1) + XTI — X))

and the chromatic polynomial of H is P(H,\) = ¢(H, \) + {(H, ).

We shall prove that F' has the same chromatic polynomial, by showing that
e(H,\) = p(F,A) and £(H, \) = £(F, ).

If A is not monochromatic, by considering the cases B monochromatic and
B not monochromatic we easily deduce that

E(F,A) = E(Hy, (AP AT — 1) + WA = X)) = E(H, N).
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If A is monochromatic and B is not monochromatic then the number of A-
colorings of F is equal to ¢(Hy, \)APTI(A — X).

If A is monochromatic and B is monochromatic, we shall consider the sub-
cases: a) the colors of A and B coincide; b) the colors of A and B are different.

a) Suppose that the common color of A and B is A\g. If f is a coloring having
required properties, we obtain four subcases:

f(u) = f(v) = Ag, when the number of A-colorings of F' is equal to ¢(Hy, \)
(o= =)L - 1);
f(u) = X\ and f(v) # Ao, the number is p(Hy, \)(A — 1)(APT972 — 1);
F(u) # Ao and f(v) = Ao, we get @(Hy, \J(A — 1)W1 — 1)(Aa=1 — 1);
if f(u) # Ao and f(v) # Ao, then the number of A-colorings of F' equals
©(Hy, A\)(A — 1)2\PFa=2,

b) If A and B have different colors then the number of A-colorings of F is
equal to p(Hi, A)(A — 1)AP(A? —1).

By summing up these values we deduce that ¢(F,\) = ¢(H, \), which com-
pletes the proof that P(F,\) = P(H,\).

We have proved the result for any hypergraph having a pendant path of
length 2; it is clear that it also holds for hypergraphs containing pendant paths
of length at least 2. |

For m = 2 the path ch " is a sunflower hypergraph and its chromaticity follows
from Theorem 3. If m > 3 the previous theorem has the following Corollary:

Corollary 5. PL" s not chromatically unique for every m > 3, r > 1 and
h>2r+1.

Figure 3. Structure of hypergraph X.

Theorem 6. Cycle C’?}f’r is mot chromatically unique if r > 2.
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Proof. Denote p = h —r, where h > p+ 2; h > 2r is equivalent to h < 2p. By
(1) we deduce P(CI" X) = A3 — 3\3~ht1 4 3)\20-h+1 _ )\ We shall define a
hypergraph X which is not h-uniform and is chromatically equivalent to C’?}f "’
For this consider the sets in Figure 3: F, F,G, H,U,V are pairwise disjoint,
vertices z,y, z, w are distinct and A = EUFUUU{z,y,z}, B= GUHUUU{z,w}.
Al =|B|=h, [V|=2p—h—1|E[=2p—h—1,|F[=h—p, [U =h-p-2,
|G| = h —p, |[H| = 2p —h. X is defined as follows: V(X) = AUBUYV and
E(X)={A,B,C,D}, where C = FUGUH and D = FUGUUUV U{y, z,w}. It
follows that |V (X)| = 3p, |C| = h and |D| = 2h — p. Using (1) we get P(X,\) =
A3P 3)\3p7h+1 _ )\C(D) 4 )\C(A,B) +)\C(A,C) + AC(A,D) +)\C(B,C) + AC(B,D) +)\C(C,D) _
)\C(A,B,C) _ )\C(A,B,D) _ AC(A,C,D) _ )\c(B,C,D) + )\c(A,B,C,D) _ P(Cg’r,A), since:
)\C(D) — )\C(B,C) — )\4p—2h+1’)\c(A,B) — )\C(A,B,C) — )\2p—h7)\c(B,D) — )\C(B,C,D) —
)\2p—h7 )\C(A,B,D) — )\C(A,C,D) — )\c(A,B,C,D) =\ AC(A,C) — )\c(A,D) — )\C(C,D) —_
)\2p—h+1‘ |

Bokhary, Tomescu and Bhatti [2] proved that h-uniform linear elementary cycles
ol of length m are not chromatically unique for every m,h > 3. This result
and the previous theorem support the following conjecture:

Conjecture 7. Cycles Cf:f are not chromatically unique for every m,h > 3 and
r>1.

It is not difficult to show that for small values of m > 3 and for every r > 2 paths
P and cycles O are h-chromatically unique. This observation leads to the
following:

Conjecture 8. For every m > 3 and r > 2 paths PQ’T and cycles Cff{r are
h-chromatically unique.
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