HYPERGRAPHS WITH PENDANT PATHS ARE NOT CHROMATICALLY UNIQUE

Ioan Tomescu
Faculty of Mathematics and Computer Science
University of Bucharest
Str. Academiei, 14
010014 Bucharest, Romania
e-mail: ioan@fmi.unibuc.ro

Abstract

In this note it is shown that every hypergraph containing a pendant path of length at least 2 is not chromatically unique. The same conclusion holds for h-uniform r-quasi linear 3 -cycle if $r \geq 2$.

Keywords: sunflower hypergraph, chromatic polynomial, chromatic uniqueness, pendant path.
2010 Mathematics Subject Classification: 05C15; 05C65.

1. Notation and Preliminary Results

A simple hypergraph $H=(V, \mathcal{E})$, with order $n=|V|$ and size $m=|\mathcal{E}|$, consists of a vertex-set $V(H)=V$ and an edge-set $E(H)=\mathcal{E}$, where $E \subseteq V$ and $|E| \geq 2$ for each edge E in \mathcal{E}. H is h-uniform, or is an h-hypergraph, if $|E|=h$ for each E in \mathcal{E} and H is linear if no two edges intersect in more than one vertex [1]. Let $r \geq 1$ and $h \geq 2 r$. H is said to be r-quasi linear (or shortly quasi linear) [13] if any two edges intersect in 0 or r vertices. Examples of quasi linear hypergraphs are t-stars [5, 8], also called sunflower hypergraphs [7, 11, 12]. We say that a hypergraph S is a t-star with kernel K, where $K \subseteq V(S)$ and $t \geq 1$, if S has exactly t edges and $e \cap e^{\prime}=K$ for all distinct edges e and e^{\prime} of S. A system of t pairwise disjoint edges (matching) is a t-star with empty kernel. In [12] a sunflower hypergraph was denoted by $S H(n, p, h)$; it is an h-hypergraph having a kernel of cardinality $h-p, n$ vertices and k edges, where $n=h+(k-1) p$ and $1 \leq p \leq h-1$.

A hypergraph for which no edge is a subset of any other is called Sperner. Two vertices $u, v \in V(H)$ belong to the same component if there are vertices $x_{0}=$ $u, x_{1}, \ldots, x_{k}=v$ and edges E_{1}, \ldots, E_{k} of H such that $x_{i-1}, x_{i} \in E_{i}$ for each i $(1 \leq i \leq k)$ [1]. H is said to be connected if it has only one component. An h-uniform hypertree is a connected linear h-hypergraph without cycles [1]. We shall define two classes of quasi linear uniform hypergraphs called quasi linear elementary path and quasi linear elementary cycle and denoted by $P_{m}^{h, r}$ and $C_{m}^{h, r}$, respectively, as follows: $P_{m}^{h, r}$ consists of m edges E_{1}, \ldots, E_{m} such that $\left|E_{1}\right|=\cdots=\left|E_{m}\right|=h,\left|E_{i} \cap E_{i+1}\right|=r$ for any $1 \leq i \leq m-1$ and every edge has in common with other edges only the common vertices with its neighboring edges (r for E_{1} and E_{m}, and $2 r$ for the remaining edges). $C_{m}^{h, r}$ may be defined in a similar way; in this case $\left|E_{m} \cap E_{1}\right|=r$.

If $\lambda \in \mathbb{N}$, a λ-coloring of a hypergraph H is a function $f: V(H) \rightarrow\{1, \ldots, \lambda\}$ such that for each edge E of H there exist x, y in E for which $f(x) \neq f(y)$. The number of λ-colorings of H is given by a polynomial $P(H, \lambda)$ of degree $|V(H)|$ in λ, called the chromatic polynomial of $H . P(H, \lambda)$ can be obtained applying inclusion-exclusion principle, in the same way as for graphs, getting the following formula [10]:

$$
\begin{equation*}
P(H, \lambda)=\sum_{W \subseteq E(H)}(-1)^{|W|} \lambda^{c(W)}, \tag{1}
\end{equation*}
$$

where $c(W)$ denotes the number of components of the spanning subhypergraph induced by edges from W. All h-uniform hypertrees have the same chromatic polynomial.

Lemma 1 [6]. If T_{k}^{h} is any h-uniform hypertree with k edges, then

$$
\begin{equation*}
P\left(T_{k}^{h}, \lambda\right)=\lambda\left(\lambda^{h-1}-1\right)^{k} . \tag{2}
\end{equation*}
$$

Two hypergraphs H and G are said to be chromatically equivalent or χ-equivalent, written $H \sim G$, if $P(H, \lambda)=P(G, \lambda)$. Let us restrict ourselves to the class of Sperner hypergraphs. A simple hypergraph H is said to be chromatically unique if H is isomorphic to H^{\prime} for every simple hypergraph H^{\prime} such that $H^{\prime} \sim H$; that is, the structure of H is uniquely determined up to isomorphism by its chromatic polynomial. The notion of χ-unique graphs was first introduced and studied by Chao and Whitehead [4] (see also [9]). It is clear that all h-hypergraphs are Sperner. The notion of χ-uniqueness in the class of h-hypergraphs may be defined as follows: An h-hypergraph H is said to be h-chromatically unique if H is isomorphic to H^{\prime} for every h-hypergraph H^{\prime} such that $H^{\prime} \sim H$.

Non-trivial chromatically unique hypergraphs are extremely rare. One example of a non-trivial chromatically unique hypergraph was proposed by Borowiecki and Lazuka; it is $S H(n, 1, h)$.

Theorem $2[3] . S H(n, 1, h)$ is chromatically unique.

The proof of this result was completed in [11]. Note that for $p=h-1, S H(n, h-$ $1, h)$ is an h-uniform hypertree. The chromaticity of $S H(n, p, h)$ may be stated as follows.

Theorem 3 [12]. Let $n=h+(k-1) p$, where $h \geq 3, k \geq 1$ and $1 \leq p \leq h-1$. Then $S H(n, p, h)$ is h-chromatically unique for every $1 \leq p \leq h-2$; for $p=h-1$ SH (n, p, h) is h-chromatically unique for $k=1$ or $k=2$ but it has not this property for $k \geq 3$. Moreover, $S H(n, p, h)$ is not chromatically unique for every $p, k \geq 2$.
$S H(n, p, h)$ is quasi linear with $r=h-p$ and it is a path for $k=2$. The chromaticity of non-uniform hypertrees was studied by Walter [14].

2. Main Results

Consider the hypergraph H represented in Figure 1, where H_{1} is a subhypergraph of H, U and W are two edges such that: $U \cap V\left(H_{1}\right)=A \neq \emptyset ; U \cap W=B \neq \emptyset$; $W \cap V\left(H_{1}\right)=\emptyset$. Such a path consisting of edges U and W will be called a pendant path of length 2. Denote $|A|=s \geq 1 ;|U \backslash(A \cup B)|=p \geq 1 ;|B|=t \geq 1$; $|W \backslash U|=q \geq 1$.

Figure 1. Hypergraph H.

Theorem 4. Every hypergraph containing a pendant path of length at least 2 is not chromatically unique.

Proof. For the hypergraph H from Figure 1 defined as above we shall define another Sperner hypergraph F such that $P(H, \lambda)=P(F, \lambda)$. For this consider two distinct vertices $u \in W \backslash U$ and $v \in U \backslash(A \cup B)$ and three edges: $U^{\prime}=U$,

Figure 2. Structure of hypergraph F.
$W^{\prime}=W \cup\{v\} \backslash\{u\}$ and $Z=U \cup W \backslash\{v\}$. We have $\left|U^{\prime} \cap W^{\prime}\right|=|U \cap W|+1=t+1$. F is defined as follows: $V(F)=V(H)$ and $E(F)=E\left(H_{1}\right) \cup\left\{U^{\prime}, W^{\prime}, Z\right\}$ (see Figure 2).
Let $\varphi\left(H_{1}, \lambda\right)$ and $\xi\left(H_{1}, \lambda\right)$ denote the number of λ-colorings of H_{1} such that A is monochromatic and A is not monochromatic, respectively; the corresponding numbers of λ-colorings of H are denoted by $\varphi(H, \lambda)$ and $\xi(H, \lambda)$, respectively.

If A is monochromatic and B is monochromatic, having the same color as A, then the number of λ-colorings of H is $\varphi\left(H_{1}, \lambda\right)\left(\lambda^{p}-1\right)\left(\lambda^{q}-1\right)$; if A is monochromatic and B is monochromatic having a color different from the color of A this number equals $\varphi\left(H_{1}, \lambda\right)(\lambda-1) \lambda^{p}\left(\lambda^{q}-1\right)$ and if A is monochromatic and B is not monochromatic we get $\varphi\left(H_{1}, \lambda\right) \lambda^{p+q}\left(\lambda^{t}-\lambda\right)$, which implies that

$$
\varphi(H, \lambda)=\varphi\left(H_{1}, \lambda\right)\left(\left(\lambda^{p}-1\right)\left(\lambda^{q}-1\right)+(\lambda-1) \lambda^{p}\left(\lambda^{q}-1\right)+\lambda^{p+q}\left(\lambda^{t}-\lambda\right)\right)
$$

In a similar manner if A is not monochromatic and B is monochromatic, then the number of λ-colorings of H equals $\xi\left(H_{1}, \lambda\right) \lambda^{p+1}\left(\lambda^{q}-1\right)$; if A and B are not monochromatic we get $\xi\left(H_{1}, \lambda\right) \lambda^{p+q}\left(\lambda^{t}-\lambda\right)$, thus yielding

$$
\xi(H, \lambda)=\xi\left(H_{1}, \lambda\right)\left(\lambda^{p+1}\left(\lambda^{q}-1\right)+\lambda^{p+q}\left(\lambda^{t}-\lambda\right)\right)
$$

and the chromatic polynomial of H is $P(H, \lambda)=\varphi(H, \lambda)+\xi(H, \lambda)$.
We shall prove that F has the same chromatic polynomial, by showing that $\varphi(H, \lambda)=\varphi(F, \lambda)$ and $\xi(H, \lambda)=\xi(F, \lambda)$.

If A is not monochromatic, by considering the cases B monochromatic and B not monochromatic we easily deduce that

$$
\xi(F, \lambda)=\xi\left(H_{1}, \lambda\right)\left(\lambda^{p+1}\left(\lambda^{q}-1\right)+\lambda^{p+q}\left(\lambda^{t}-\lambda\right)\right)=\xi(H, \lambda)
$$

If A is monochromatic and B is not monochromatic then the number of λ colorings of F is equal to $\varphi\left(H_{1}, \lambda\right) \lambda^{p+q}\left(\lambda^{t}-\lambda\right)$.

If A is monochromatic and B is monochromatic, we shall consider the subcases: a) the colors of A and B coincide; b) the colors of A and B are different.
a) Suppose that the common color of A and B is λ_{0}. If f is a coloring having required properties, we obtain four subcases:
$f(u)=f(v)=\lambda_{0}$, when the number of λ-colorings of F is equal to $\varphi\left(H_{1}, \lambda\right)$ $\left(\lambda^{q-1}-1\right)\left(\lambda^{p-1}-1\right)$;
$f(u)=\lambda_{0}$ and $f(v) \neq \lambda_{0}$, the number is $\varphi\left(H_{1}, \lambda\right)(\lambda-1)\left(\lambda^{p+q-2}-1\right) ;$
$f(u) \neq \lambda_{0}$ and $f(v)=\lambda_{0}$, we get $\varphi\left(H_{1}, \lambda\right)(\lambda-1)\left(\lambda^{p-1}-1\right)\left(\lambda^{q-1}-1\right)$;
if $f(u) \neq \lambda_{0}$ and $f(v) \neq \lambda_{0}$, then the number of λ-colorings of F equals $\varphi\left(H_{1}, \lambda\right)(\lambda-1)^{2} \lambda^{p+q-2}$.
b) If A and B have different colors then the number of λ-colorings of F is equal to $\varphi\left(H_{1}, \lambda\right)(\lambda-1) \lambda^{p}\left(\lambda^{q}-1\right)$.

By summing up these values we deduce that $\varphi(F, \lambda)=\varphi(H, \lambda)$, which completes the proof that $P(F, \lambda)=P(H, \lambda)$.

We have proved the result for any hypergraph having a pendant path of length 2 ; it is clear that it also holds for hypergraphs containing pendant paths of length at least 2 .

For $m=2$ the path $P_{2}^{h, r}$ is a sunflower hypergraph and its chromaticity follows from Theorem 3. If $m \geq 3$ the previous theorem has the following Corollary:

Corollary 5. $P_{m}^{h, r}$ is not chromatically unique for every $m \geq 3, r \geq 1$ and $h \geq 2 r+1$.

Figure 3. Structure of hypergraph X.

Theorem 6. Cycle $C_{3}^{h, r}$ is not chromatically unique if $r \geq 2$.

Proof. Denote $p=h-r$, where $h \geq p+2 ; h \geq 2 r$ is equivalent to $h \leq 2 p$. By (1) we deduce $P\left(C_{3}^{h, r}, \lambda\right)=\lambda^{3 p}-3 \lambda^{3 p-h+1}+3 \lambda^{2 p-h+1}-\lambda$. We shall define a hypergraph X which is not h-uniform and is chromatically equivalent to $C_{3}^{h, r}$.

For this consider the sets in Figure 3: E, F, G, H, U, V are pairwise disjoint, vertices x, y, z, w are distinct and $A=E \cup F \cup U \cup\{x, y, z\}, B=G \cup H \cup U \cup\{x, w\}$. $|A|=|B|=h,|V|=2 p-h-1,|E|=2 p-h-1,|F|=h-p,|U|=h-p-2$, $|G|=h-p,|H|=2 p-h . \quad X$ is defined as follows: $V(X)=A \cup B \cup V$ and $E(X)=\{A, B, C, D\}$, where $C=F \cup G \cup H$ and $D=F \cup G \cup U \cup V \cup\{y, z, w\}$. It follows that $|V(X)|=3 p,|C|=h$ and $|D|=2 h-p$. Using (1) we get $P(X, \lambda)=$ $\lambda^{3 p}-3 \lambda^{3 p-h+1}-\lambda^{c(D)}+\lambda^{c(A, B)}+\lambda^{c(A, C)}+\lambda^{c(A, D)}+\lambda^{c(B, C)}+\lambda^{c(B, D)}+\lambda^{c(C, D)}-$ $\lambda^{c(A, B, C)}-\lambda^{c(A, B, D)}-\lambda^{c(A, C, D)}-\lambda^{c(B, C, D)}+\lambda^{c(A, B, C, D)}=P\left(C_{3}^{h, r}, \lambda\right)$, since: $\lambda^{c(D)}=\lambda^{c(B, C)}=\lambda^{4 p-2 h+1}, \lambda^{c(A, B)}=\lambda^{c(A, B, C)}=\lambda^{2 p-h}, \lambda^{c(B, D)}=\lambda^{c(B, C, D)}=$ $\lambda^{2 p-h}, \lambda^{c(A, B, D)}=\lambda^{c(A, C, D)}=\lambda^{c(A, B, C, D)}=\lambda, \lambda^{c(A, C)}=\lambda^{c(A, D)}=\lambda^{c(C, D)}=$ $\lambda^{2 p-h+1}$.

Bokhary, Tomescu and Bhatti [2] proved that h-uniform linear elementary cycles $C_{m}^{h, 1}$ of length m are not chromatically unique for every $m, h \geq 3$. This result and the previous theorem support the following conjecture:

Conjecture 7. Cycles $C_{m}^{h, r}$ are not chromatically unique for every $m, h \geq 3$ and $r \geq 1$.

It is not difficult to show that for small values of $m \geq 3$ and for every $r \geq 2$ paths $P_{m}^{h, r}$ and cycles $C_{m}^{h, r}$ are h-chromatically unique. This observation leads to the following:

Conjecture 8. For every $m \geq 3$ and $r \geq 2$ paths $P_{m}^{h, r}$ and cycles $C_{m}^{h, r}$ are h-chromatically unique.

Acknowledgements

The author thanks the referees for helpful comments.

References

[1] C. Berge, Graphs and Hypergraphs (North-Holland, Amsterdam, 1973).
[2] S.A. Bokhary, I. Tomescu and A.A. Bhatti, On the chromaticity of multi-bridge hypergraphs, Graphs Combin. 25 (2009) 145-152. doi:10.1007/s00373-008-0831-7
[3] M. Borowiecki and E. Lazuka, Chromatic polynomials of hypergraphs, Discuss. Math. Graph Theory 20 (2000) 293-301.
doi:10.7151/dmgt. 1128
[4] C.Y. Chao and E.G. Whitehead, Jr., On chromatic equivalence of graphs, in: Theory and Applications of Graphs, Y. Alavi and D.R. Lick (Ed(s)), (Lecture Notes Math. 642, New York, Springer (1978)) 121-131.
[5] D. Dellamonica, V. Koubek, D.M. Martin and V. Rödl, On a conjecture of Thomassen concerning subgraphs of large girth, J. Graph Theory 67 (2011) 316331. doi:10.1002/jgt. 20534
[6] K. Dohmen, Chromatische Polynome von Graphen und Hypergraphen (Dissertation, Düsseldorf, 1993).
[7] P. Erdős and R. Rado, Intersection theorems for systems of sets, J. Lond. Math. Soc. 35 (1960) 85-90. doi:10.1112/jlms/s1-35.1.85
[8] Z. Füredi, On finite set-systems whose intersection is a kernel of a star, Discrete Math. 47 (1983) 129-132. doi:10.1016/0012-365X(83)90081-X
[9] K.M. Koh and K.L. Teo, The search for chromatically unique graphs, Graphs Combin. 6 (1990) 259-285. doi:10.1007/BF01787578
[10] I. Tomescu, Chromatic coefficients of linear uniform hypergraphs, J. Combin. Theory (B) 72 (1998) 229-235. doi:10.1006/jctb.1997.1811
[11] I. Tomescu, Sunflower hypergraphs are chromatically unique, Discrete Math. 285 (2004) 355-357. doi:10.1016/j.disc.2004.02.015
[12] I. Tomescu, On the chromaticity of sunflower hypergraphs $S H(n, p, h)$, Discrete Math. 307 (2007) 781-786. doi:10.1016/j.disc.2006.07.026
[13] I. Tomescu and S. Javed, On the chromaticity of quasi linear hypergraphs, Graphs Combin. 29 (2013) 1921-1026. doi:10.1007/s00373-012-1232-5
[14] M. Walter, Some results on chromatic polynomials of hypergraphs, Electron. J. Combin. 16 (2009) R94.

