Discussiones Mathematicae Graph Theory 34 (2014) 23–29 doi:10.7151/dmgt.1699

HYPERGRAPHS WITH PENDANT PATHS ARE NOT CHROMATICALLY UNIQUE

IOAN TOMESCU

Faculty of Mathematics and Computer Science University of Bucharest Str. Academiei, 14 010014 Bucharest, Romania

e-mail: ioan@fmi.unibuc.ro

Abstract

In this note it is shown that every hypergraph containing a pendant path of length at least 2 is not chromatically unique. The same conclusion holds for *h*-uniform *r*-quasi linear 3-cycle if $r \ge 2$.

Keywords: sunflower hypergraph, chromatic polynomial, chromatic uniqueness, pendant path.

2010 Mathematics Subject Classification: 05C15; 05C65.

1. NOTATION AND PRELIMINARY RESULTS

A simple hypergraph $H = (V, \mathcal{E})$, with order n = |V| and size $m = |\mathcal{E}|$, consists of a vertex-set V(H) = V and an edge-set $E(H) = \mathcal{E}$, where $E \subseteq V$ and $|E| \ge 2$ for each edge E in \mathcal{E} . H is h-uniform, or is an h-hypergraph, if |E| = h for each E in \mathcal{E} and H is linear if no two edges intersect in more than one vertex [1]. Let $r \ge 1$ and $h \ge 2r$. H is said to be r-quasi linear (or shortly quasi linear) [13] if any two edges intersect in 0 or r vertices. Examples of quasi linear hypergraphs are t-stars [5, 8], also called sunflower hypergraphs [7, 11, 12]. We say that a hypergraph S is a t-star with kernel K, where $K \subseteq V(S)$ and $t \ge 1$, if S has exactly t edges and $e \cap e' = K$ for all distinct edges e and e' of S. A system of t pairwise disjoint edges (matching) is a t-star with empty kernel. In [12] a sunflower hypergraph was denoted by SH(n, p, h); it is an h-hypergraph having a kernel of cardinality h - p, n vertices and k edges, where n = h + (k - 1)p and $1 \le p \le h - 1$. A hypergraph for which no edge is a subset of any other is called Sperner. Two vertices $u, v \in V(H)$ belong to the same component if there are vertices $x_0 = u, x_1, \ldots, x_k = v$ and edges E_1, \ldots, E_k of H such that $x_{i-1}, x_i \in E_i$ for each i $(1 \leq i \leq k)$ [1]. H is said to be connected if it has only one component. An h-uniform hypertree is a connected linear h-hypergraph without cycles [1]. We shall define two classes of quasi linear uniform hypergraphs called quasi linear elementary path and quasi linear elementary cycle and denoted by $P_m^{h,r}$ and $C_m^{h,r}$, respectively, as follows: $P_m^{h,r}$ consists of m edges E_1, \ldots, E_m such that $|E_1| = \cdots = |E_m| = h, |E_i \cap E_{i+1}| = r$ for any $1 \leq i \leq m - 1$ and every edge has in common with other edges only the common vertices with its neighboring edges (r for E_1 and E_m , and 2r for the remaining edges). $C_m^{h,r}$ may be defined in a similar way; in this case $|E_m \cap E_1| = r$.

If $\lambda \in \mathbb{N}$, a λ -coloring of a hypergraph H is a function $f: V(H) \to \{1, \ldots, \lambda\}$ such that for each edge E of H there exist x, y in E for which $f(x) \neq f(y)$. The number of λ -colorings of H is given by a polynomial $P(H, \lambda)$ of degree |V(H)|in λ , called the chromatic polynomial of H. $P(H, \lambda)$ can be obtained applying inclusion-exclusion principle, in the same way as for graphs, getting the following formula [10]:

(1)
$$P(H,\lambda) = \sum_{W \subseteq E(H)} (-1)^{|W|} \lambda^{c(W)},$$

where c(W) denotes the number of components of the spanning subhypergraph induced by edges from W. All *h*-uniform hypertrees have the same chromatic polynomial.

Lemma 1 [6]. If T_k^h is any h-uniform hypertree with k edges, then

(2)
$$P(T_k^h, \lambda) = \lambda (\lambda^{h-1} - 1)^k.$$

Two hypergraphs H and G are said to be chromatically equivalent or χ -equivalent, written $H \sim G$, if $P(H, \lambda) = P(G, \lambda)$. Let us restrict ourselves to the class of Sperner hypergraphs. A simple hypergraph H is said to be chromatically unique if H is isomorphic to H' for every simple hypergraph H' such that $H' \sim H$; that is, the structure of H is uniquely determined up to isomorphism by its chromatic polynomial. The notion of χ -unique graphs was first introduced and studied by Chao and Whitehead [4] (see also [9]). It is clear that all h-hypergraphs are Sperner. The notion of χ -uniqueness in the class of h-hypergraphs may be defined as follows: An h-hypergraph H is said to be h-chromatically unique if H is isomorphic to H' for every h-hypergraph H' such that $H' \sim H$.

Non-trivial chromatically unique hypergraphs are extremely rare. One example of a non-trivial chromatically unique hypergraph was proposed by Borowiecki and Lazuka; it is SH(n, 1, h).

Theorem 2 [3]. SH(n, 1, h) is chromatically unique.

The proof of this result was completed in [11]. Note that for p = h - 1, SH(n, h - 1, h) is an *h*-uniform hypertree. The chromaticity of SH(n, p, h) may be stated as follows.

Theorem 3 [12]. Let n = h + (k - 1)p, where $h \ge 3$, $k \ge 1$ and $1 \le p \le h - 1$. Then SH(n,p,h) is h-chromatically unique for every $1 \le p \le h - 2$; for p = h - 1SH(n,p,h) is h-chromatically unique for k = 1 or k = 2 but it has not this property for $k \ge 3$. Moreover, SH(n,p,h) is not chromatically unique for every $p, k \ge 2$.

SH(n, p, h) is quasi linear with r = h - p and it is a path for k = 2. The chromaticity of non-uniform hypertrees was studied by Walter [14].

2. MAIN RESULTS

Consider the hypergraph H represented in Figure 1, where H_1 is a subhypergraph of H, U and W are two edges such that: $U \cap V(H_1) = A \neq \emptyset$; $U \cap W = B \neq \emptyset$; $W \cap V(H_1) = \emptyset$. Such a path consisting of edges U and W will be called a pendant path of length 2. Denote $|A| = s \ge 1$; $|U \setminus (A \cup B)| = p \ge 1$; $|B| = t \ge 1$; $|W \setminus U| = q \ge 1$.

Figure 1. Hypergraph H.

Theorem 4. Every hypergraph containing a pendant path of length at least 2 is not chromatically unique.

Proof. For the hypergraph H from Figure 1 defined as above we shall define another Sperner hypergraph F such that $P(H, \lambda) = P(F, \lambda)$. For this consider two distinct vertices $u \in W \setminus U$ and $v \in U \setminus (A \cup B)$ and three edges: U' = U,

Figure 2. Structure of hypergraph F.

 $W' = W \cup \{v\} \setminus \{u\}$ and $Z = U \cup W \setminus \{v\}$. We have $|U' \cap W'| = |U \cap W| + 1 = t + 1$. F is defined as follows: V(F) = V(H) and $E(F) = E(H_1) \cup \{U', W', Z\}$ (see Figure 2).

Let $\varphi(H_1, \lambda)$ and $\xi(H_1, \lambda)$ denote the number of λ -colorings of H_1 such that A is monochromatic and A is not monochromatic, respectively; the corresponding numbers of λ -colorings of H are denoted by $\varphi(H, \lambda)$ and $\xi(H, \lambda)$, respectively.

If A is monochromatic and B is monochromatic, having the same color as A, then the number of λ -colorings of H is $\varphi(H_1, \lambda)(\lambda^p - 1)(\lambda^q - 1)$; if A is monochromatic and B is monochromatic having a color different from the color of A this number equals $\varphi(H_1, \lambda)(\lambda - 1)\lambda^p(\lambda^q - 1)$ and if A is monochromatic and B is not monochromatic we get $\varphi(H_1, \lambda)\lambda^{p+q}(\lambda^t - \lambda)$, which implies that

$$\varphi(H,\lambda) = \varphi(H_1,\lambda)((\lambda^p - 1)(\lambda^q - 1) + (\lambda - 1)\lambda^p(\lambda^q - 1) + \lambda^{p+q}(\lambda^t - \lambda)).$$

In a similar manner if A is not monochromatic and B is monochromatic, then the number of λ -colorings of H equals $\xi(H_1, \lambda)\lambda^{p+1}(\lambda^q - 1)$; if A and B are not monochromatic we get $\xi(H_1, \lambda)\lambda^{p+q}(\lambda^t - \lambda)$, thus yielding

$$\xi(H,\lambda) = \xi(H_1,\lambda)(\lambda^{p+1}(\lambda^q - 1) + \lambda^{p+q}(\lambda^t - \lambda))$$

and the chromatic polynomial of H is $P(H, \lambda) = \varphi(H, \lambda) + \xi(H, \lambda)$.

We shall prove that F has the same chromatic polynomial, by showing that $\varphi(H,\lambda) = \varphi(F,\lambda)$ and $\xi(H,\lambda) = \xi(F,\lambda)$.

If A is not monochromatic, by considering the cases B monochromatic and B not monochromatic we easily deduce that

$$\xi(F,\lambda) = \xi(H_1,\lambda)(\lambda^{p+1}(\lambda^q - 1) + \lambda^{p+q}(\lambda^t - \lambda)) = \xi(H,\lambda).$$

If A is monochromatic and B is not monochromatic then the number of λ colorings of F is equal to $\varphi(H_1, \lambda)\lambda^{p+q}(\lambda^t - \lambda)$.

If A is monochromatic and B is monochromatic, we shall consider the subcases: a) the colors of A and B coincide; b) the colors of A and B are different.

a) Suppose that the common color of A and B is λ_0 . If f is a coloring having required properties, we obtain four subcases:

 $f(u) = f(v) = \lambda_0$, when the number of λ -colorings of F is equal to $\varphi(H_1, \lambda)$ $(\lambda^{q-1}-1)(\lambda^{p-1}-1);$

 $f(u) = \lambda_0$ and $f(v) \neq \lambda_0$, the number is $\varphi(H_1, \lambda)(\lambda - 1)(\lambda^{p+q-2} - 1);$ $f(u) \neq \lambda_0$ and $f(v) = \lambda_0$, we get $\varphi(H_1, \lambda)(\lambda - 1)(\lambda^{p-1} - 1)(\lambda^{q-1} - 1);$

if $f(u) \neq \lambda_0$ and $f(v) \neq \lambda_0$, then the number of λ -colorings of F equals $\varphi(H_1,\lambda)(\lambda-1)^2\lambda^{p+q-2}$.

b) If A and B have different colors then the number of λ -colorings of F is equal to $\varphi(H_1,\lambda)(\lambda-1)\lambda^p(\lambda^q-1)$.

By summing up these values we deduce that $\varphi(F,\lambda) = \varphi(H,\lambda)$, which completes the proof that $P(F, \lambda) = P(H, \lambda)$.

We have proved the result for any hypergraph having a pendant path of length 2; it is clear that it also holds for hypergraphs containing pendant paths of length at least 2.

For m = 2 the path $P_2^{h,r}$ is a sunflower hypergraph and its chromaticity follows from Theorem 3. If $m \ge 3$ the previous theorem has the following Corollary:

Corollary 5. $P_m^{h,r}$ is not chromatically unique for every $m \ge 3$, $r \ge 1$ and $h \ge 2r + 1.$

Figure 3. Structure of hypergraph X.

Theorem 6. Cycle $C_3^{h,r}$ is not chromatically unique if $r \ge 2$.

Proof. Denote p = h - r, where $h \ge p + 2$; $h \ge 2r$ is equivalent to $h \le 2p$. By (1) we deduce $P(C_3^{h,r}, \lambda) = \lambda^{3p} - 3\lambda^{3p-h+1} + 3\lambda^{2p-h+1} - \lambda$. We shall define a hypergraph X which is not h-uniform and is chromatically equivalent to $C_3^{h,r}$.

For this consider the sets in Figure 3: E, F, G, H, U, V are pairwise disjoint, vertices x, y, z, w are distinct and $A = E \cup F \cup U \cup \{x, y, z\}, B = G \cup H \cup U \cup \{x, w\}$. |A| = |B| = h, |V| = 2p - h - 1, |E| = 2p - h - 1, |F| = h - p, |U| = h - p - 2, |G| = h - p, |H| = 2p - h. X is defined as follows: $V(X) = A \cup B \cup V$ and $E(X) = \{A, B, C, D\},$ where $C = F \cup G \cup H$ and $D = F \cup G \cup U \cup V \cup \{y, z, w\}.$ It follows that |V(X)| = 3p, |C| = h and |D| = 2h - p. Using (1) we get $P(X, \lambda) = \lambda^{3p} - 3\lambda^{3p-h+1} - \lambda^{c(D)} + \lambda^{c(A,B)} + \lambda^{c(A,C)} + \lambda^{c(A,D)} + \lambda^{c(B,C)} + \lambda^{c(B,D)} + \lambda^{c(C,D)} - \lambda^{c(A,B,C)} - \lambda^{c(A,B,D)} - \lambda^{c(A,C,D)} - \lambda^{c(A,B,C,D)} = P(C_3^{h,r}, \lambda),$ since: $\lambda^{c(D)} = \lambda^{c(B,C)} = \lambda^{4p-2h+1}, \lambda^{c(A,B)} = \lambda^{c(A,B,C)} = \lambda^{2p-h}, \lambda^{c(B,D)} = \lambda^{c(B,C,D)} = \lambda^{c(C,D)} = \lambda^{2p-h+1}.$

Bokhary, Tomescu and Bhatti [2] proved that *h*-uniform linear elementary cycles $C_m^{h,1}$ of length *m* are not chromatically unique for every $m, h \ge 3$. This result and the previous theorem support the following conjecture:

Conjecture 7. Cycles $C_m^{h,r}$ are not chromatically unique for every $m, h \ge 3$ and $r \ge 1$.

It is not difficult to show that for small values of $m \ge 3$ and for every $r \ge 2$ paths $P_m^{h,r}$ and cycles $C_m^{h,r}$ are *h*-chromatically unique. This observation leads to the following:

Conjecture 8. For every $m \ge 3$ and $r \ge 2$ paths $P_m^{h,r}$ and cycles $C_m^{h,r}$ are *h*-chromatically unique.

Acknowledgements

The author thanks the referees for helpful comments.

References

- [1] C. Berge, Graphs and Hypergraphs (North-Holland, Amsterdam, 1973).
- S.A. Bokhary, I. Tomescu and A.A. Bhatti, On the chromaticity of multi-bridge hypergraphs, Graphs Combin. 25 (2009) 145–152. doi:10.1007/s00373-008-0831-7
- M. Borowiecki and E. Lazuka, *Chromatic polynomials of hypergraphs*, Discuss. Math. Graph Theory 20 (2000) 293–301. doi:10.7151/dmgt.1128

- [4] C.Y. Chao and E.G. Whitehead, Jr., On chromatic equivalence of graphs, in: Theory and Applications of Graphs, Y. Alavi and D.R. Lick (Ed(s)), (Lecture Notes Math. 642, New York, Springer (1978)) 121–131.
- [5] D. Dellamonica, V. Koubek, D.M. Martin and V. Rödl, On a conjecture of Thomassen concerning subgraphs of large girth, J. Graph Theory 67 (2011) 316– 331. doi:10.1002/jgt.20534
- [6] K. Dohmen, Chromatische Polynome von Graphen und Hypergraphen (Dissertation, Düsseldorf, 1993).
- [7] P. Erdős and R. Rado, Intersection theorems for systems of sets, J. Lond. Math. Soc. 35 (1960) 85–90. doi:10.1112/jlms/s1-35.1.85
- [8] Z. Füredi, On finite set-systems whose intersection is a kernel of a star, Discrete Math. 47 (1983) 129–132. doi:10.1016/0012-365X(83)90081-X
- K.M. Koh and K.L. Teo, The search for chromatically unique graphs, Graphs Combin. 6 (1990) 259–285. doi:10.1007/BF01787578
- [10] I. Tomescu, Chromatic coefficients of linear uniform hypergraphs, J. Combin. Theory (B) 72 (1998) 229–235. doi:10.1006/jctb.1997.1811
- I. Tomescu, Sunflower hypergraphs are chromatically unique, Discrete Math. 285 (2004) 355–357. doi:10.1016/j.disc.2004.02.015
- [12] I. Tomescu, On the chromaticity of sunflower hypergraphs SH(n, p, h), Discrete Math. **307** (2007) 781–786.
 doi:10.1016/j.disc.2006.07.026
- I. Tomescu and S. Javed, On the chromaticity of quasi linear hypergraphs, Graphs Combin. 29 (2013) 1921–1026. doi:10.1007/s00373-012-1232-5
- [14] M. Walter, Some results on chromatic polynomials of hypergraphs, Electron. J. Combin. 16 (2009) R94.

Received 7 May 2012 Revised 11 October 2012 Accepted 15 October 2012