
Discussiones Mathematicae
Graph Theory 33 (2013) 785–790
doi:10.7151/dmgt.1698

Note

SHARP UPPER AND LOWER BOUNDS

ON THE NUMBER OF SPANNING TREES

IN CARTESIAN PRODUCT OF GRAPHS

Jernej Azarija

Department of Mathematics, University of Ljubljana

Jadranska 21,

1000 Ljubljana, Slovenia

e-mail: jernej.azarija@gmail.com

Abstract

Let G1 and G2 be simple graphs and let n1 = |V (G1)|, m1 = |E(G1)|,
n2 = |V (G2)| and m2 = |E(G2)|. In this paper we derive sharp upper and
lower bounds for the number of spanning trees τ in the Cartesian product
G1�G2 of G1 and G2. We show that:

τ(G1�G2) ≥
2(n1−1)(n2−1)

n1n2
(τ(G1)n1)

n2+1

2 (τ(G2)n2)
n1+1

2

and

τ(G1�G2) ≤ τ(G1)τ(G2)

[

2m1

n1 − 1
+

2m2

n2 − 1

](n1−1)(n2−1)

.

We also characterize the graphs for which equality holds. As a by-product
we derive a formula for the number of spanning trees in Kn1

�Kn2
which

turns out to be nn1−2
1 nn2−2

2 (n1 + n2)
(n1−1)(n2−1).

Keywords: Cartesian product graphs, spanning trees, number of spanning
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1. Introduction

An important invariant in graph theory is τ(G), the number of spanning trees of
a graph G. The first result related to τ(G) dates back to 1847 and is attributed
to Kirchhoff [8]. In his celebrated theorem he has shown that the number of
spanning trees of a graph G is closely related to the cofactor of a special matrix
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(the Laplacian matrix) that can be obtained after substracting the adjacency

matrix from the respective degree matrix (a diagonal matrix with vertex degrees
on the diagonals). If by Q(G) we denote the Laplacian matrix of a graph G

of order n with eigenvalues 0 = λ1 ≤ · · · ≤ λn, then a corollary of Kirchhoff’s
theorem can be stated as

(1) τ(G) =
1

n
λ2 · · ·λn.

For example, as the eigenvalue n of Q(Kn) has multiplicity (n−1), it follows that

(2) τ(Kn) = nn−2.

Equation (2) is also refered to as Cayley formula as a tribute to its discoverer
Arthur Cayley [5]. For a survey of known results related to the Laplacian spec-
trum of graphs we refer the reader to [9].

Since the result of Cayley, many interesting identites for the number of span-
ning trees for various classes of graphs have been derived. For example, Bog-
danowicz [2] showed that the number of spanning trees of the n-fan Fn+1 equals
to f2n where fn is the n’th Fibonacci number. A similar result relating the num-
ber of spanning trees of the wheel graph to Lucas numbers is also known [6].
Counting the number of spanning trees is not only an area that is rich with sur-
prising identities but also holds a fundamential role in other scientific areas such
as physics [4, 10] networking theory [3] and also finds applications in the study
of various electrical networks [1]. Since graph products (as defined in [7]) form a
basis for many network topologies it is natural to study the function τ in relation
with various graph products.

In this paper we study the number of spanning trees in the Cartesian product
of graphs. For simple graphs G1 and G2, the Cartesian product G1�G2 is defined
as the graph with vertex set V (G1) × V (G2) such that two vertices (u, u′) and
(v, v′) are adjacent if and only if either u = v and u′ is adjacent to v′ in G2, or
u′ = v′ and u is adjacent to v in G1.

In what follows G1 and G2 will denote simple graphs of order n1 and n2 such
that m1 = |E(G1)| and m2 = |E(G2)|. Moreover, we will denote by λ1, . . . , λn1

and µ1, . . . , µn2 the eigenvalues of Q(G1) and Q(G2) respectively. Using this
notation, we can state the well know (see [9] for a survey of results related to the
Laplacian spectrum) fact relating the eigenvalues of G1 and G2 to the eigenvalues
of G1�G2 which are

λi + µj for i = 1, . . . , n1 and j = 1, . . . , n2.

Applying the later equality to identity (1) and using the fact that λ1 = µ1 = 0 one
obtains the following formula for the number of spanning trees for the Cartesian
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product of G1 and G2:

(3) τ(G1�G2) = τ(G1)τ(G2)
∏n1

i=2

∏n2

j=2
(λi + µj).

2. Upper and Lower Bounds for τ(G1�G2)

We are going to simplify equation (3) as to obtain upper and lower bounds
for τ(G1�G2). Furthermore we will characterize the graphs for which equality
holds and derive a formula for the number of spanning trees of the Rook’s graph

Kn1�Kn2 .

Theorem 1. τ(G1�G2) ≥ 2(n1−1)(n2−1)

n1n2
(τ(G1)n1)

n2+1
2 (τ(G2)n2)

n1+1
2 where equal-

ity holds if and only if G1 or G2 is not connected or n1 = n2 and G1 ≃ G2 ≃ Kn1 .

Proof. Consider the expression:
∏n1

i=2

∏n2
j=2(λi + µj).

By the inequality of arithmetic and geometric means λi+µj ≥ 2
√

λiµj for every
i, j, it therefore follows that
∏n1

i=2

∏n2
j=2(λi + µj) ≥

∏n1
i=2

∏n2
j=2 2

√

λiµj = 2(n1−1)(n2−1)
∏n1

i=2

∏n2
j=2

√

λiµj .

The last expression can also be writen as:

2(n1−1)(n2−1)
∏n1

i=2

√

λn2−1
i

∏n2
j=2

√

µn1−1
j .

We now multiply and divide the last expression by
√
n1

n2−1n2
n2−1 and obtain:

2(n1−1)(n2−1)
√
n1

n2−1n2
n1−1

∏n1
i=2

√

λ
n2−1
i√

n1
n2−1

∏n2
j=2

√

µ
n1−1
j√

n2
n1−1

which, according to (1), equals

2(n1−1)(n2−1)(τ(G1)n1)
n2−1

2 (τ(G2)n2)
n1−1

2 .

The stated inequality now follows after combining the derived result with equation
(3).

We now examine the cases in which equality holds. If G1 or G2 is not con-
nected, then equality clearly holds as τ(G1�G2) = 0. Therefore, let us assume
G1 and G2 are connected. As we derived our inequality using the inequality
of arithmetic and geometric means it follows that equality holds if and only if
λi = µj for every i = 2, . . . , n1 and j = 2, . . . , n2. The later holds if and only if

λ2 = · · · = λn1 = µ2 = · · · = µn2 ,
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which means that Q(G1) and Q(G2) have eigenvalues of multiplicity n1 − 1 and
n2 − 1, respectively. As the only graph of order k whose Laplacian matrix has
an eigenvalue of multiplicity k − 1 is Kk, it follows, that n1 = n2 and thus
G1 ≃ Kn1 ≃ G2.

In the proof of Theorem 1 we applied the inequality of arithmetic and geometric
means to each summand of (3) individually. Observe that the same inequality
can be applied to the factors of equation (3). In the next theorem we use this
observation and the fact that

∑n1
i=2 λi = 2m1 and

∑n2
i=2 µi = 2m2 in order to

derive an upper bound for τ(G1�G2).

Theorem 2. τ(G1�G2) ≤ τ(G1)τ(G2)
[

2m1
n1−1 + 2m2

n2−1

](n1−1)(n2−1)
, where equality

holds if and only if G1 or G2 is not connected or G1 ≃ Kn1 and G2 ≃ Kn2 .

Proof. As observed, we can bound equation (3) by applying the inequality of
geometric and arithmetic means on its factors. We then obtain

τ(G1�G2) = τ(G1)τ(G2)
∏n1

i=2

∏n2
j=2(λi + µj)

≤ τ(G1)τ(G2)

[

∑n1
i=2

∑n2
j=2(λi+µj)

(n1−1)(n2−1)

](n1−1)(n2−1)

,

which we further simplify to

τ(G1)τ(G2)

[

(n2 − 1)
∑n1

i=2 λi + (n1 − 1)
∑n2

j=2 µj

(n1 − 1)(n2 − 1)

](n1−1)(n2−1)

.

Applying the identity for the summation of the eigenvalues of the Laplacian
matrix we obtain

τ(G1)τ(G2)

[

2m1

n1 − 1
+

2m2

n2 − 1

](n1−1)(n2−1)

,

which is what we wanted to show.
Observe now, that if G1 or G2 is not connected, equality in the stated bound

clearly holds. Thus, let us assume G1 and G2 are connected. Equality will then
hold if and only if

λi + µj = λi′ + µj′ for i, i′ = 1, . . . , n1 and j, j′ = 1, . . . , n2.

The later holding if and only if

λ2 = · · · = λn1 and µ2 = · · · = µn2 ,

which means G1 ≃ Kn1 and G2 ≃ Kn2 as these are the only graphs of order n1

and n2 having eigenvalues of multiplicity n1 − 1 and n2 − 1, respectively.
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The statements of Theorems 1 and 2 simplify substantialy if G1 and G2 are trees.
In this case we can write the implications of Theorem 1 and Theorem 2 as the
following corollary.

Corollary 3. If G1 and G2 are trees of order n1 ≥ 3 and n2 ≥ 3 respectively,

then

2(n1−1)(n2−1)n1

n2−1
2 n2

n1−1
2 < τ(G1�G2) < 22(n1−1)(n2−1).

As we saw in Theorem 2, the derived bound for τ(G1�G2) is tight whenever
G1 ≃ Kn1 and G2 ≃ Kn2 . This, in combination with equation (2), readily gives
an exact formula for the number of spanning trees of Kn1�Kn2 :

Corollary 4. τ(Kn1�Kn2) = n1
n1−2n2

n2−2(n1 + n2)
(n1−1)(n2−1).

Observe, that the same argument as used in Theorems 1 and 2 could be applied
to the other standard graph products provided that a similar characterisation of
their Laplacian spectrum is known. At present no result of this type was known
to the author, hence we leave it as future work to investigate upper and lower
bounds for the other graph products.
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