
Discussiones Mathematicae
Graph Theory 33 (2013) 665–676
doi:10.7151/dmgt.1697

GENERALIZED FRACTIONAL TOTAL COLORINGS

OF COMPLETE GRAPHS
1

Gabriela Karafová

Institute of Mathematics,
P.J. Šafárik University, Jesenná 5,

040 01 Košice, Slovakia

e-mail: gabriela.karafova@student.upjs.sk

Abstract

An additive and hereditary property of graphs is a class of simple graphs
which is closed under unions, subgraphs and isomorphism. Let P and Q be
two additive and hereditary graph properties and let r, s be integers such that
r ≥ s. Then an r

s
-fractional (P,Q)-total coloring of a finite graph G = (V,E)

is a mapping f , which assigns an s-element subset of the set {1, 2, . . . , r} to
each vertex and each edge, moreover, for any color i all vertices of color
i induce a subgraph of property P, all edges of color i induce a subgraph
of property Q and vertices and incident edges have assigned disjoint sets
of colors. The minimum ratio r

s
of an r

s
-fractional (P,Q)-total coloring of

G is called fractional (P,Q)-total chromatic number χ′′
f,P,Q(G) = r

s
. Let

k = sup{i : Ki+1 ∈ P} and l = sup{i : Ki+1 ∈ Q}. We show for a complete
graph Kn that if l ≥ k+2 then χ′′

f,P,Q(Kn) =
n

k+1 for a sufficiently large n.
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1. Introduction

Let G = (V,E) be a finite simple graph with the vertex set V and edge set E.
We denote by n the number of vertices of G and by m the number of edges of G.
By elements we will mean the vertices and the edges of a graph G.

A total coloring of a graph G is a coloring of the vertices and the edges, such
that each two elements which are adjacent or incident obtain distinct colors. The

1This work was supported by the Slovak VEGA Grant under the contract No.VEGA
1/0428/10 and VVGS PF 46/2010/M.
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minimum number of colors of a total coloring of G is called total chromatic number

χ′′(G) of G. There are some papers about this topic, for example [1, 3, 6].

The following conjecture is known as the Total Colouring Conjecture and
was formulated independently in the 1960s by Behzad [1] and Vizing [9]. It has
been verified for several special classes of graphs, including for example complete
graphs (see [2, 6] for surveys).

Conjecture 1. If G is a graph with maximum degree ∆(G), then χ′′(G) ≤ ∆(G)+
2.

An r
s
-fractional total coloring of a graph G is a coloring of the vertices and the

edges such that each vertex and each edge has been assigned an s-element subset
of the set {1, 2, . . . , r} and each two adjacent or incident elements receive disjoint
sets of colors. The fractional total chromatic number χ′′

f (G) of G is the infimum
ratio r

s
of an r

s
-fractional total coloring of G. Kilakos and Reed [8] proved that

χ′′
f (G) ≤ ∆(G) + 2 for any graph G.

In this paper we deal with generalized fractional total colorings of graphs.
We denote the class of all finite simple graphs by I. A graph property P is a
non-empty isomorphism-closed subclass of I. A property P is called additive if
G ∪ H ∈ P whenever G ∈ P and H ∈ P . A property P is called hereditary if
G ∈ P and H ⊆ G implies H ∈ P .

We use the following standard notations for specific hereditary properties:

O = {G ∈ I : E(G) = ∅},
Ok = {G ∈ I : χ(G) ≤ k},
Dk = {G ∈ I : each subgraph of G contains a vertex of degree at most k},
T = {G ∈ I : G is a planar graph},

Ik = {G ∈ I : G does not contain Kk+2},
Ok = {G ∈ I : each component of G has at most k + 1 vertices},
Sk = {G ∈ I : ∆(G) ≤ k},

where χ(G) is the chromatic number and ∆(G) the maximum degree of the graph
G.

In the following we will use only additive and hereditary graph properties.

Let c(P) = sup{i : Ki+1 ∈ P} be the completeness of the property P . Note
that c(Ok) = c(Ik) = c(Ok) = c(Dk) = c(Sk) = k and c(T ) = 3.

Borowiecki and Mihók [5] dealt with graph properties and showed that the set
of all additive and hereditary properties is a complete distributive lattice (La,⊆),
where O is the smallest element of it and I is the greatest one. The set of
properties P ∈ La with c(P) = k, k ∈ N, is also a complete distributive lattice
(La

k,⊆) with the smallest element Ok and the greatest element Ik.
Let P and Q be two graph properties. We consider a total coloring of a

graph G such that adjacent elements can obtain the same color but we require
that subgraphs of G induced by the set of vertices of the same color to be of
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property P and subgraphs of G induced by the set of edges of the same color to
be of property Q and incident elements cannot have assigned the same color. For
example, if P = O and Q = O1, then it is an ordinary total coloring of a graph
G. Such properties have also been studied by Borowiecki et al. in [3, 5].

An r
s
-fractional (P,Q)-total coloring of a finite graph G = (V,E) is a mapping

f , which assigns an s-element subset of the set {1, 2, . . . , r} to each vertex and each

edge
(

f : V ∪ E →
(

{1,2,...,r}
s

)

)

, moreover, for any color i all vertices of the color

i induce a subgraph of property P , all edges of the color i induce a subgraph of
property Q and vertices and incident edges have assigned disjoint sets of colors.
The infimum ratio r

s
of an r

s
-fractional (P,Q)-total coloring of G is called the

fractional (P,Q)-total chromatic number χ′′
f,P,Q(G) = r

s
.

We deal with r
s
-fractional (P,Q)-total colorings of complete graphs by using

linear programming and the simplex method. The fractional (P,Q)-total chro-
matic number can be obtained as a solution of a linear program with |V | + |E|
inequalities. The main result is that this linear program for complete graphs is
equivalent with another one, which has only two inequalities and we can easily
solve this problem by the simplex method.

2. General Graphs

As we know, there are two equivalent definitions of the fractional coloring of a
graph. This is also true for generalized (P,Q)-total coloring of G which has been
shown in [7], and so we state here both these definitions.

Definition 1. Let G be a simple graph. Let r, s ∈ N and s ≤ r. An r
s
-fractional

(P ,Q)-total coloring of G is a mapping f : V ∪E →
(

{1,2,...,r}
s

)

such that for each
color i all vertices of color i induce a subgraph of property P , all edges of color i

induce a subgraph of property Q, moreover, each incident vertex and edge have
assigned disjoint sets of colors. The fractional (P ,Q)-total chromatic number is
χ′′
1,f,P,Q(G) = inf{ r

s
: G has an r

s
-fractional (P,Q)-total coloring}.

Note that if E 6= ∅, then r ≥ 2s in every r
s
-fractional (P,Q)-total coloring of a

graph G.

Definition 2. A (P ,Q)-independent set is a subset of V ∪E such that the vertices
in this set induce a graph of property P , the edges induce a graph of property Q
and, moreover, vertices and edges are not incident.

Definition 3. Let I1, I2, . . . , It, t ∈ N be all (maximal) (P ,Q)-independent sets
in G. A fractional (P ,Q)-total coloring of G is a mapping g, which assigns to each
set Ij , j = 1, . . . , t a non-negative weight g(Ij) such that

∑

u∈Ij
g(Ij) ≥ 1 for each
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element u ∈ V ∪ E. The fractional (P ,Q)-total chromatic number χ′′
2,f,P,Q(G) of

G is the least total weight of the fractional (P ,Q)-total coloring of G.

As we mentioned above, Definitions 1 and 3 of the fractional total chromatic
number χ′′

f,P,Q(G) are equivalent.

For determining χ′′
f,P,Q(G) according to Definition 3, we have to solve the

following linear program:

(1)

∑t
j=1 f(Ij) → min

∑

u∈Ij
f(Ij) ≥ 1, for each u ∈ V ∪ E

f(Ij) ≥ 0, for each j = 1, . . . , t.

Let P ⊇ O and Q ⊇ O1 be two additive and hereditary graph properties and
G be a graph with n vertices and m edges. Let k = c(P). Take an r

s
-fractional

(P ,Q)-total coloring ϕ(G) of a graph G, where r is the number of used colors,
from which we choose an s-element subset for every element of the graph G. We
denote the subset of vertices colored with color c by Vc(G) and the number of
colors used for exactly i vertices by xi, i ∈ {0, . . . , k + 1} (xi = |{c : |Vc| = i}|).
Consider an induced subraph of G on the vertices without color c and denote it
by G[V (G) \ Vc(G)]. We choose a subgraph of G [V (G) \ Vc(G)] of a property
Q with the maximum number of edges and denote this number by ai(G,ϕ(G)),
because it depends on the graph G and the coloring ϕ(G) of G and it holds that
ai(G,ϕ(G)) ≤ ai(Kn, ϕ(Kn)) = a(n − i,Q) = ai. It means that we can use the
same color i we used for xi vertices at most for ai edges in G. It is easy to see
that the sequence (ai)

k+1
i=0 is decreasing. In the following we will often use only

the notation ai.

The cardinality of the multiset of all colors used for a fractional total coloring
of a graph G is (n+m)s, otherwise, we do not have sufficient number of multicolors
(colors with their multiplicities) for a correct coloring. Therefore we need ns

multicolors for the vertices and ms for the edges. We get the following two
inequalities sufficient for determining r for fixed s.

(2)

h :
∑k+1

i=0 xi → min
∑k+1

i=0 ixi ≥ ns
∑k+1

i=0 aixi ≥ ms

xi ∈ N0, for each i = 0, . . . , k + 1.

It means that the value r
s

is a lower bound for χ′′
f,P,Q(G). Now let x′i =

xi

s
. Then

we can reformulate the problem (2) as follows:
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(3)

h′ :
∑k+1

i=0 x′i → min
∑k+1

i=0 ix′i ≥ n

∑k+1
i=0 aix

′
i ≥ m

x′i ∈ Q+
0 , for each i = 0, . . . , k + 1.

The linear programs (2) and (3) are equivalent in the following sense: If (x′0, x
′
1, . . . ,

x′k+1) is an optimal solution of (3) and s is the least common multiple of the

denominators of x′i, i = 1, 2, . . . , k + 1, then
∑k+1

i=0 x′i = r
s

with r ∈ N0 and

(x′0.s, x
′
1.s, . . . , x

′
k+1.s) is an optimal solution of (2) for fixed s and

∑k+1
i=0 x′i.s =

∑k+1
i=0 xi = r. Moreover, since for each s r

s
from the solution of (2) is a lower

bound for χ′′
f,P,Q, then a solution of (3) is also a lower bound for χ′′

f,P,Q(G). Fi-
nally we want to show that this lower bound is the exact value of χ′′

f,P,Q(G). Now
we show that (1) implies (3) for all graphs and in the following section we show
that for complete graphs also (3) implies (1).

Theorem 2. Let G be a simple graph, P, Q be two additive and hereditary graph

properties and k = c(P). Then for each optimal solution of the linear program

(1) f(I) = (f(I1), f(I2), . . . , f(It)), t ∈ N there exists a feasible solution x′ =
(x′0, x

′
1, . . . , x

′
k+1) of the linear program (3), moreover, h′(x′) = h(f(I)).

Proof. Let I1, . . . , It, t ∈ N be all (P,Q)-independent subsets of V ∪E. Suppose
that there exists an optimal solution of problem (1) f(I)=(f(I1), f(I2), . . . , f(It)),
t ∈ N. Let x′i =

∑

|Ij∩V |=i f(Ij). According to the assumptions it holds that for
each u ∈ V ∪ E

∑

u∈Ij
f(Ij) ≥ and f(Ij) ≥ 0,

from which we obtain the following inequality
∑

v∈V

∑

Ij∋v
f(Ij) ≥ n.

Then the first inequality that we need holds:

∑k+1

i=0
ix′i =

∑k+1

i=0
i
∑

|Ij∩V |=i
f(Ij) =

∑

v∈V

∑

Ij∋v
f(Ij) ≥ n.

The last equality holds because on both sides there is the sum of all weights over
all vertices.

Analogously we show the inequality for the edges where we have the following
constraints from the previous:

∑

e∈E

∑

Ij∋e
f(Ij) ≥ m.
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Let I i be a set of all (P,Q)-independent sets Ij with exactly i vertices and we
denote its elements by I ib, where 1 ≤ b ≤

∣

∣Ii
∣

∣. The definition of ai implies
ai ≥

∣

∣E(Iib)
∣

∣ for each b ∈
[

1,
∣

∣Ii
∣

∣

]

∑k+1

i=0
aix

′
i =

∑k+1

i=0
ai
∑

|Ij∩V |=i
f(Ij) =

∑k+1

i=0
ai

∑|Ii|

b=1
f(Iib)

≥
∑k+1

i=0

∑|Ii|

b=1

∣

∣E(Iib)
∣

∣ f(Iib) =
∑

e∈E

∑

Ij∋e
f(Ij) ≥ m.

The values of the objective functions of problems (1) and (3) are equal:

h(f(I)) =
∑t

j=1
f(Ij) =

∑k+1

i=0

∑

|Ij∩V |=i
f(Ij)

=
∑k+1

i=0
f(Ii) =

∑k+1

i=0
x′i = h′(x′).

3. Complete Graphs

The results in the Theorem 2 and the following theorem mean that it is sufficient
to solve problem (3) with only two inequalities to determine the fractional (P,Q)-
total chromatic number of a complete graph.

Theorem 3. Let G be a complete graph, P, Q be two additive and hereditary

graph properties and k = c(P). Then for each optimal solution of the linear

program (3) x′ = (x′0, x
′
1, . . . , x

′
k+1) there exists a feasible solution of the linear

program (1) f(I) = (f(I1), f(I2), . . . , f(It)), t ∈ N, moreover, h′(x′) = h(f(I)).

Proof. Suppose that we have an optimal solution of problem (3) x′ = (x′0, x
′
1, . . . ,

x′k+1) and according to the previous we know that
∑k+1

i=0 ix′i ≥ n and
∑k+1

i=0 x′iai ≥
(

n
2

)

.

Denote Ii := {Ij : |Ij ∩ V | = i ∧ |Ij ∩ E| = ai}, mi :=
∣

∣Ii
∣

∣ and let

f(Ij) =

{

x′

i

mi
, if Ij ∈ Ii,

0, otherwise.

Then the following statement holds for each v ∈ V :

∑

Ij∋v
f(Ij) =

∑k+1

i=0

∑

Ij∈Ii:Ij∋v

x′i
mi

=
∑k+1

i=0

x′i
mi

·
imi

n
≥ 1.

The last equality holds, because when we count all vertices over all Ij from Ii we
get a number imi and independent sets in Ii are symmetric. Therefore we know
that each vertex v ∈ V belongs to imi

n
subsets Ij ∈ Ii for each i ∈ {0, 1, . . . , k+1}.
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Analogously we count all edges over all sets Ij ∈ Ii with non-zero weights and
again we use the fact that these sets are symmetric. Consequently each edge
belongs to aimi

(n2)
subsets Ij ∈ I i for each i ∈ {0, 1, . . . , k + 1} and so the following

statement is also satisfied for each e ∈ E:

∑

Ij∋e
f(Ij) =

∑k+1

i=0

∑

Ij∈Ii:Ij∋e

x′i
mi

=
∑k+1

i=0

x′i
mi

·
aimi
(

n
2

) ≥ 1.

The values of the objective functions are equal:

h′(x′)=
∑k+1

i=0
x′i=

∑k+1

i=0
f(Ii)=

k+1
∑

i=0

∑

|Ij∩V |=i
f(Ij)=

∑t

j=1
f(Ij)= h(f(I)).

We should consider all maximal independent sets Ij in one direction of the last
proof, but we can see that it is sufficient to consider only all maximum from
maximal sets.

Obviously ai ≥ ⌊n−i
l+1 ⌋

(

l+1
2

)

+
(n−i−⌊n−i

l+1
⌋(l+1)

2

)

for complete graphs, because
when we use color c for i vertices, we get n − i vertices without color c. Divide
these n− i vertices according to the property Q into ⌊n−i

l+1 ⌋ sets with l+1 vertices.

These arising subgraphs have at most
(

l+1
2

)

edges. So all subgraphs consist of at

most ⌊n−i
l+1 ⌋

(

l+1
2

)

edges, which induce a subgraph belonging to Q. The number of

the residual edges is
(n−i−⌊n−i

l+1
⌋(l+1)

2

)

. The equality holds for Q = Ol and Ol is
the smallest graph property for edges. It means that for other properties strict
inequality holds.

In the following two theorems we show that for an arbitrary additive and
hereditary property P it holds that χ′′

f,P,Q(Kn) =
n

c(P)+1 if Q = Il or if Q is also

arbitrary and hereditary property with c(Q) ≥ c(P) + 2. We use the previous
observations about ai for complete graphs.

Theorem 4. Let P,Q be two additive and hereditary properties such that c(Q) ≥
c(P) + 2. Then there exists a T (P,Q) such that χ′′

f,P,Q(Kn) =
n

c(P)+1 holds for

each n ≥ T (P,Q).

Proof. Let k = c(P) and l = c(Q). According to the previous theorem it is
sufficient to solve problem (3) in order to determine χ′′

f,P,Q(Kn) and therefore to
prove this theorem. We rewrite this linear program to the standard form. We
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need to use two slack variables p1, p2 ≥ 0:

(4)

h′ :
∑k+1

i=0 x′i → min

−
∑k+1

i=0 ix′i + p1 = −n

−
∑k+1

i=0 aix
′
i + p2 = −n(n−1)

2

p1, p2, x
′
i ≥ 0, for each i = 0, . . . , k + 1.

We can see that the variables p1 and p2 are in the basis and we are able to solve
the dual problem:

x′
0 x′

1 x′
2 . . . x′

k−1 x′
k x′

k+1 p1 p2

1 1 1 . . . 1 1 1 0 0 0

p1 0 -1 -2 . . . −(k − 1) −k −(k + 1) 1 0 −n

p2 −a0 −a1 −a2 . . . −ak−1 −ak −ak+1 0 1 −n(n−1)
2

A pivot in the first row of this table is −(k + 1). We need to get a number 1
instead of the pivot and zeros instead of other numbers in the column with pivot.

x′
0 x′

1 . . . x′
k x′

k+1 p1 p2

1 k
k+1 . . . 1

k+1 0 1
k+1 0 − n

k+1

x′
k+1 0 1

k+1 . . . k
k+1 1 − 1

k+1 0 n
k+1 ≥ 0

p2 −a0
ak+1

k+1 − a1 . . .
kak+1

k+1 − ak 0 −ak+1

k+1 1 nak+1

k+1 − n(n−1)
2

If
nak+1

k+1 − n(n−1)
2 ≥ 0 then the optimal value is h′(x′∗0 , . . . , x

′∗
k+1) = h′(0, . . . , 0, n

k+1)
= n

k+1 . Now we want to find a relation between c(P) = k and c(Q) = l such that

ak+1 ≥
(k+1)(n−1)

2 . We know that

(

n− (k + 1)−
⌊

n−(k+1)
l+1

⌋

(l + 1)

2

)

≥ 0,

ak+1 ≥

⌊

n− (k + 1)

l + 1

⌋(

l + 1

2

)

+

(

n− (k + 1)−
⌊

n−(k+1)
l+1

⌋

(l + 1)

2

)

≥

⌊

n− (k + 1)

l + 1

⌋(

l + 1

2

)

>

(

n− (k + 1)

l + 1
− 1

)(

l + 1

2

)

,

therefore

ak+1 >
(n− (k + 1)− (l + 1))l

2
.

So we want to show that (n−(k+1)−(l+1))l
2 ≥ (k+1)(n−1)

2 if l ≥ k + 2:
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(n− (k + 1)− (l + 1))l

2
≥

(k + 1)(n− 1)

2
⇔ n(l−k−1)− l(k+2)− l2+k+1 ≥ 0.

If l ≥ k+2, i.e. l−k−1 > 0 then we get n ≥ l2+l(k+2)−k−1
l−k−1 . We can take this lower

bound as T (P,Q) but the exact value of T (P,Q) can be lower. If l − k − 1 < 0

we get n <
l2+l(k+2)−k−1

l−k−1 < 0 and so this case cannot occur. If l− k− 1 = 0 then

the last inequality is equivalent to the expression −2l2 ≥ 0 for each n therefore
this case cannot occur, too.

We get (k+2)-tuple h′(x′∗0 , . . . , x
′∗
k+1) = h′(0, . . . , 0, n

k+1) as an optimal solution of
linear program in the previous proof. It means that we use each color for exactly
k+1 vertices and exactly ak+1 edges. If we do not get any optimal solution after
the first step of the simplex method, we get two nonzero variables x′∗k+1 = n

k+1
and some x′∗i > 0. In this case we use only colors, which are used exactly for k+1
vertices and colors that are used for exactly i vertices. If we consider r

s
-coloring,

the number of used colors exactly for i vertices is x′∗i .s.

Corollary 5. Let P,Q be two additive and hereditary properties such that c(Q) ≥
c(P)+2. Then χ′′

f,P,Q(Kn) =
n

c(P)+1 if and only if there exists a graph of property

Q on n− (c(P) + 1) vertices with at least
(n−1)(c(P)+1)

2 edges.

The result in the following theorem was proved by A. Kemnitz et al. in [7] by
the construction of coloring. We prove this result by using the results from this
paper.

Theorem 6. Let P be additive and hereditary property and Q = Il. There exists

T (P, Il) such that for each n ≥ T (P, Il) it holds that χ′′
f,P,Il

(Kn) =
n

c(P)+1 .

Proof. Denote k = c(P). This proof is similar to the proof of Theorem 4, but
we know the precise value of ai for 0 ≤ i ≤ k+1 by using the well known Turan’s
theorem. Whereas each (l + 1)−partite graph does not contain any complete
graph on l+2 vertices as a subgraph, we can divide all vertices into l+1 equable

sets. We have n− i− (l + 1)
⌊

n−i
l+1

⌋

< l + 1 sets with
⌈

n−i
l+1

⌉

vertices and l + 1−
(

n− i− (l + 1)
⌊

n−i
l+1

⌋)

sets with
⌊

n−i
l+1

⌋

vertices. Therefore ai is the number of

edges in such complete (l + 1)- partite graph:

ai =

⌈

n− i

l + 1

⌉n−i−(l+1)⌊n−i
l+1 ⌋

.

⌊

n− i

l + 1

⌋l+1−(n−i−(l+1)⌊n−i
l+1 ⌋)

.

According to the previous proof we need to find out whether
nak+1

k+1 − n(n−1)
2 ≥ 0.

We want to know whether there exists T (P, Il) for each l and k such that for each
n ≥ T (P, Il) the following inequality is satisfied:
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⌈

n− (k + 1)

l + 1

⌉n−(k+1)−(l+1)
⌊

n−(k+1)
l+1

⌋

.

⌊

n− (k + 1)

l + 1

⌋l+1−
(

n−(k+1)−(l+1)
⌊

n−(k+1)
l+1

⌋)

≥
(n− 1)(k + 1)

2
.

We know that the following inequalities hold:

⌈

n− (k + 1)

l + 1

⌉n−(k+1)−(l+1)
⌊

n−(k+1)
l+1

⌋

.

⌊

n− (k + 1)

l + 1

⌋l+1−
(

n−(k+1)−(l+1)
⌊

n−(k+1)
l+1

⌋)

≥

⌊

n− (k + 1)

l + 1

⌋l+1

≥

(

n− (k + 1)

l + 1
− 1

)l+1

=

(

n− (k + 1)− (l + 1)

l + 1

)l+1

≥
(n− 1)(k + 1)

2
.

The last inequality is obvious, because there exists T (P, Il) such that for each
n ≥ T (P, Il) this polynomial of unknown n is non-negative since l ≥ 1.

A. Kemnitz et al. in [7] proved that chi′′f,D1,D1
(Kn) =

n(n+1)
2(n−1) for odd n and they

determined the lower and upper bound for even n. In the following theorem we
show that it is the same number for n ≥ 3.

Theorem 7. χ′′
f,D1,D1

(Kn) =
n(n+1)
2(n−1) for each integer n ≥ 3.

Proof. Here we have ai = (n− i)− 1 for i = 0, 1, 2, because the graph property
D1 is a class of forests. Every ai is non-negative. According to the previous we
solve the following linear program:

x′0 + x′1 + x′2 → min

x′1 + 2x′2 ≥ n

(n− 1)x′0 + (n− 2)x′1 + (n− 3)x′2 ≥
n(n−1)

2

x′0, x
′
1, x

′
2 ≥ 0.

x′
0 x′

1 x′
2 p1 p2

1 1 1 0 0 0

p1 0 -1 -2 1 0 -n

p2 1− n 2− n 3− n 0 1 −n(n−1)
2

After pivoting according to −2 in the p1-row:
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x′
0 x′

1 x′
2 p1 p2

1 1
2 0 1

2 0 -n2
x′
2 0 1

2 1 - 12 0 n
2

p2 1− n 1−n
2 0 3−n

2 1 -n

After second pivoting according to 1− n in p2-row:

x′
0 x′

1 x′
2 p1 p2

0 0 0 1
n−1

1
n−1 −n(n+1)

2(n−1)

x′
2 0 1

2 1 − 1
2 0 n

2

x′
0 1 1

2 0 3−n
2(1−n)

1
1−n

n
n−1

For n ≥ 3 all conditions, which are required for the table in optimum, are met.
It is easy to see that χ′′

f,D1,D1
(Kn) = n(n−1)

2(n−1) . It means that we can choose s =

2(n−1). Furthermore, from the last column in this table, we can say that we need
n
2 s = n(n− 1) colors, which will be used for exactly two vertices and a2 = n− 3
edges and n

n−1s = 2n colors for no vertex and a0 = n− 1 edges.
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