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Abstract

Rado constructed a (simple) denumerable graph R with the positive in-
tegers as vertex set with the following edges: For given m and n with m < n,
m is adjacent to n if n has a 1 in the m’th position of its binary expansion.
It is well known that R is a universal graph in the set Ic of all countable
graphs (since every graph in Ic is isomorphic to an induced subgraph of R).

A brief overview of known universality results for some induced-heredi-
tary subsets of Ic is provided. We then construct a k-degenerate graph
which is universal for the induced-hereditary property of finite k-degenerate
graphs. In order to attempt the corresponding problem for the property
of countable graphs with colouring number at most k + 1, the notion of a
property with assignment is introduced and studied. Using this notion, we
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are able to construct a universal graph in this graph property and investigate
its attributes.

Keywords: countable graph, universal graph, induced-hereditary, k-degenerate
graph, graph with colouring number at most k + 1, graph property with
assignment.
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1. Introduction

For general graph theoretic notions, the notation and terminology of [7] will be
used. In particular, for any two graphs G and H = (V ′, E′), we say that G is
a subgraph of H, denoted by G ⊆ H, if there is a subset V ⊆ V ′ and a subset
E ⊆ E′ (with every edge e ∈ E an adjacency between two vertices in V ) such
that (V,E) is a graph which is isomorphic to G. We call (V,E) itself an internal

subgraph of H. G is an induced subgraph of H, denoted by G ≤ H, if G is
isomorphic to such a graph (V,E) of which E contains all and only the edges
xy ∈ E′ for which x, y ∈ V . We shall also write G ⊂ H (G < H) to denote the
fact that G is a subgraph (an induced subgraph respectively) of H which is not
isomorphic to H.

There is (up to isomorphism) clearly only one subgraph induced by a given
subset W of the vertex set V of a graph G = (V,E); this subgraph is denoted by
G[W ] and called the subgraph of G generated (or spanned) by W .

All graphs considered here for investigation are simple, undirected, unlabelled
and have countable vertex sets. When the vertex set is taken to be the set, or
some subset, of the positive integers N = {1, 2, . . .}, number-theoretic properties
of the integers may be employed in constructions and proofs. Otherwise, the
vertex set of a graph may be indexed by N or one of its subsets.

For notions related to hereditary graph properties the notation and termi-
nology of [1] will be used. For ease of reference we formulate some of the basic
definitions in this paper too. A (graph) property is an isomorphism-closed sub-
class of the class of all countable graphs. Since we have for many purposes, in a
graph property, no reason to distinguish between isomorphic copies of a graph,
we consider the class of all (simple) graphs to be a set and we use the notation Ic
to denote this set of (countable) graphs. One subset of a property P of countable
graphs (P = Pc) is also important for us and we introduce notation for it too: Pf

will denote the set of finite graphs in P. We say that the graph property P is of
finite character if whenever for a graph G we have that, for every finite H ≤ G,
H ∈ Pf , then we have G ∈ P too. In this paper we will often have occasion to
deal with two graphs that are isomorphic and, if they are, we shall refer to any
one of them as a clone of the other.
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A property P is induced-hereditary if, whenever G ∈ P and H ≤ G, then H ∈ P
too. Let P be a set of countable graphs. Following [7], we define a graph U to
be a universal graph for P if every graph in P is an induced subgraph of U ; it is
a universal graph in P if U ∈ P too. (In Section 4 we shall point out that if the
property P involves extrinsic structure linked globally to the graph and called
“assignment”—a notion defined there—then some extra care is appropriate in
the employment of these concepts, as in Section 5.) Since a universal graph U
for P is allowed to be outside P and hence, presumably, to be uncountable, the
existence of at least one such U becomes trivial: take U to be the disjoint union of
one clone from each isomorphism class in P (i.e., of a “skeleton” of P). The fact
that this U is in general uncountable follows from Lemma 1 of [4]; a countable
universal graph for any induced-hereditary graph property is constructed in that
paper too.

Rado [17] constructed the following (simple) denumerable graph on N: For
given m and n with m < n, m is adjacent to n if n has a 1 in the m’th position of
its binary expansion. We shall denote this graph by R. It is well known that R is
a universal graph in the induced-hereditary property Ic of countable graphs. A
very useful and, in fact, a characteristic property of R is that it has the extension
property : For every two finite disjoint sets U and V of vertices of R there is a
vertex not in U ∪V which is adjacent to every vertex of U and to no vertex of V .

In Section 2 we give a brief overview of known universality results for some
induced-hereditary subsets of Ic. In Section 3 we then construct a denumerable
k-degenerate graph which is universal for the induced-hereditary property of finite
k-degenerate graphs. The construction is obtained by restricting the choice of
vertices and the choice of edges used above in the construction of R.

In Section 4, graph properties with assignment are introduced. This concept
is then utilised in our study in Section 5 of universality in the property of graphs
with colouring number at most k+1. Section 6 describes some further results on
the universal graphs discussed in Sections 3 and 5.

2. Universal Graphs for and in Induced-hereditary Properties

The table below summarises some of the published results on universal graphs for
(or in) some induced-hereditary properties of countable graphs. (There is more
on (induced-)hereditary properties in [1].) Throughout this table, k is a positive
integer. In this table, S denotes a finite set of cycles and Sk denotes the set of
odd cycles {C3, C5, . . . , C2k+1}.

Given any graph H, a graph G is H-colourable if and only if there exists
an edge-preserving function f : V (G) → V (H). Such a function is called a
homomorphism and is denoted by f : G → H. For a given finite graph H and a
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given set of connected finite graphs T , the induced-hereditary graph properties
→H and −T are defined by
→H = {G ∈ If : there is a homomorphism from G into H},
−T = {G ∈ If : for each T ∈ T , T is not an induced subgraph of G}.

In [11] it is shown that there is no universal graph in any set Forb(G) of countable
graphs obtained by taking a finite, 2-connected graph G which is not complete
and requiring that the graphs in Forb(G) are exactly those not containing G as
a subgraph.

As mentioned, in [4] a construction of a countable universal graph for every
induced-hereditary property of countable graphs (even without restricting us to
simple graphs) is given; this result includes each of the properties in the table
below and also many of the well-known properties mentioned in [1].

Property Description U ∈ P? Characterisation of U? Reference(s)

Ic All graphs Yes, the Rado C ∼= R iff C has the [17]
graph R ∈ Ic extension property

Graphs with Does not [17] (accredi-
Pfin all vertices of exist in Pfin ted to N.G.

finite degree de Bruijn)
Graphs with No, in general Uk,n,
at most n ver- though finite,

Fk,n tices and degree has more than n [9]
at most k vertices and de-

gree at most k

Lk Directed label- Yes, the graph C ∼= Lk iff C has the [2]
led graphs Lk ∈ Lk k-extension property

−{Kk+2} Kk+2-free Yes, the graph C ∼= Gk iff C has an
graphs Gk ∈ −{Kk+2} adapted extension [10] and [13]

property
−{Km,n} Km,n-free Exists if and only [14]

graphs if m = 1 and n ≤ 3
−{C3} C3-free Yes, the graph Same as K3-

graphs G1 ∈ −{C3} free graphs above
−{C4} C4-free Does not exist [12]

graphs in −{C4}
−{Cn}, Cn-free Does not exist [5]
n ≥ 5 graphs in −{Cn}
−S Limited cycle- Exists in −S if [6]

free graphs and only if S = Sk

→H Hom-property Known to exist [16]
for finite H in →H

When investigating universality for, and especially in, induced-hereditary graph
properties, one stumbles across a subtle distinction between two types of prop-
erties. In the first type the property is defined in a purely intrinsic way. When
then saying that ”G has property P”, no mathematical structure outside of G
itself as a graph is involved at all. Except for “Directed labelled graphs” and the
”Hom-property for finite H”, all the properties in the table above are of this first
type, have purely intrinsic descriptions, e.g. in terms of degrees of vertices, or
the exclusion of certain induced subgraphs. Another property of this first type,
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in the focus of Section 3, is k-degeneracy, defined purely intrinsically in terms of
the minimum degree of finite induced subgraphs.

The second type of graph property of present relevance involves extrinsic

structure (linked to the graph globally) in its definition. The property of “Di-
rected labelled graphs” involves mathematical functions from the edge set to a
set of directions, and from the edge and vertex sets to sets of labels. The hom-
property “H-colourable” [3] involves a mathematical function, a homomorphism,
from the vertex set into V (H). The property ”has colouring number at most
k + 1”, in the focus of Section 5, is of the second type, involving the extrinsic
structure of a mathematical function, labelling bijection, from the vertex set to
either [n] = {1, 2, . . . , n} or N = {1, 2, . . .}, with certain properties. But before
that, in Section 4, we shall explicate more fully the nature of properties of the
second type and what this entails for universality.

3. Universality for Finite k-degenerate Graphs

We now investigate universality for k-degenerate graphs and start with the defi-
nitions we need.

Definition 1 [15]. A finite graph G is defined to be k-degenerate if the minimum
degree δ(H) of each induced subgraph H of G satisfies δ(H) ≤ k.

We now turn our attention to countable graphs.

Definition 2. The property of k-degenerate countable graphs is defined by
Dk = {G ∈ Ic : the minimum degree of every finite induced subgraph H of G
satisfies δ(H) ≤ k}.

Note that Dk is an induced-hereditary graph property; so, of course, is (Dk)f . We
now construct a universal graph Fk for (Dk)f . A corresponding construction of
a universal graph in the property of graphs with colouring number at most k+1
and a discussion of its properties is contained in Sections 5 and 6. Throughout
this and the next sections, we assume that k is a given positive integer. In the
(finite) power series n =

∑∞
i=0 ni2

i we shall refer to ni−1(i ≥ 1) as the entry in

the i’th position of the binary expansion of the positive integer n; ni−1 ∈ {0, 1}.
The graph Fk is obtained by taking a denumerable subset of N as vertex set

and restricting the choice of edges of the Rado graph R.

Definition 3. Let Nk denote the set of positive integers with at most k+1 ones
in their binary expansion. The graph Fk has Nk as its vertex set and has the
following edges: For given positive integers m and n in Nk with m < n, m is
adjacent to n if n has a one in position m and a one in position x for some x > m
of its binary expansion.
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Note that from these definitions it follows that if the vertices m and n of Fk

are adjacent and m < n, then n has at most k + 1 ones in its binary expansion;
suppose there are ℓ+1 such ones and they are in positions m1,m2, . . . ,mℓ+1 with
m1 < m2 < · · · < mℓ+1 and with ℓ ≤ k. Then there is an i, 1 ≤ i ≤ ℓ such that
m = mi, i.e., m ∈ {m1,m2, . . . ,mℓ}. Hence n is adjacent to at most ℓ vertices
with lesser value m and ℓ ≤ k. (The edge mℓ+1n ∈ E(R[Nk]) does not occur in
Fk, even if incidentally mℓ+1 ∈ Nk.) On the other hand, for each k ≥ 1, every
vertex m of Fk is adjacent to each vertex n of Fk of which the binary expansion
has a one in position m and a one in some position x with x > m; and for such
an n we necessarily have n > m. There are clearly infinitely many such vertices
n in Fk and hence each vertex of each Fk with k ≥ 1 has denumerable degree.

Theorem 4. Let k be a positive integer. Then Fk is in Dk and universal for

(Dk)f .

Proof. We first show that Fk ∈ Dk: Consider any finite induced subgraph H
of Fk and let β : H → (V,E) be an isomorphism from H onto the internal
induced subgraph (V,E) of Fk. Let n be the largest positive integer in β(V (H)),
a finite subset of Nk. The degree of n in Fk[β(V (H))] is at most k. Hence
degH(β−1(n)) ≤ k, i.e., δ(H) ≤ k as required.

Next we shall prove by complete induction on the cardinality of its vertex
set that every finite k-degenerate graph is an induced subgraph of Fk. This is
clearly true for a graph with only one vertex; assume that it is true for all k-
degenerate graphs with at most p− 1 vertices and let G be a k-degenerate graph
with p vertices. Then δ(G) ≤ k so that G has a vertex v of degree ℓ with ℓ ≤ k.
But then G − v is a k-degenerate graph with p − 1 vertices and hence G − v is
an induced subgraph of Fk; assume that m1,m2, . . . ,mℓ are the vertices of Fk

corresponding to the ℓ neighbours of v in G under an isomorphism from G − v
onto some internal induced subgraph of Fk. Then we construct a number n ∈ Nk

by choosing ℓ ones in its binary expansion in positions m1,m2, . . . ,mℓ and a one
in some position x which is large enough to ensure that

(i) x is not one of the vertices of Fk corresponding to vertices of G− v;

(ii) x > mi for every i (which also ensures that n > mi for every i); and

(iii) n is not a vertex of Fk corresponding to any vertex of G− v;

there are zeros in all the other positions of the binary expansion of n. Clearly,
this n is a vertex of Fk which can correspond to v in an isomorphism between
G and an internal induced subgraph of Fk by just adding the pair (v, n) to the
available isomorphism defined on G− v.

This completes the induction step, proving that any graph in (Dk)f is iso-
morphic to an induced subgraph of Fk.

We do not know if a denumerable graph which is universal in Dk exists, i.e., one
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into which also all the denumerable k-degenerate graphs—even those possibly
outside Ck (see Section 5)—can be isomorphically embedded.

4. Graph Properties with Assignment

In the previous section we considered the graph property Dk of k-degenerate
countable graphs and constructed a member Fk in this property which is universal
for (Dk)f . In the next section we endeavour to reach a stronger outcome for the
graph property Ck (to be described there) of countable graphs having colouring
number at most k + 1 by constructing a member of Ck which is universal for
all of Ck. The properties Ck and Dk will be seen to be closely related since
both are defined by imposing a degree restriction (see Lemma 13). But (besides
being somewhat stricter than Dk) the property Ck has a special characteristic
which entails that a number of graph-theoretic notions (like induced subgraph,
homomorphism, and universality, as described in the Introduction), occur also
in a second, stronger, form for graphs in Ck, namely that they are used with

assignment, which links extraneous mathematical structure to the graph globally.

Definition 5. Let P be a property of countable graphs. We say that P is
a property with assignment (or which has assignment) when (a part of) the
definition of P stipulates an instance of the following schema:
“For a graph G to be in P it is necessary that there exists a finite, non-empty
set A = {f1, f2, . . . , g1, g2, . . .}, where each fi is a function defined on V (G) and
each gj is a function defined on E(G), and these functions satisfy . . . ”

Here an A satisfying the stipulation will be called a P-assignment (or an assign-

ment, for short); and a G ∈ P with an assignment A will be denoted by (G,A).
For a given property P (with assignment) all P-assignments are similar, even
across graphs, with the same number of fi’s and gj ’s, each of which satisfies a
similar condition, which we call assignments of the same type.

To illustrate the idea of properties with assignment we consider some exam-
ples:

Example 6. The property of directed graphs. G is called directed if there exists
a function g1 defined on E(G) such that, for each edge (unordered pair of vertices
{v, v′} ∈ E(G)), g1({v, v

′}) is either the ordered pair (v, v′), or (v′, v); i.e., g1 :
E(G) → V (G)× V (G), with specific properties.

Example 7. Directed labelled graphs. Pick a fixed, finite set Lv of vertex-labels
and a fixed, finite set Le of edge-labels. A (countable) directed labelled graph
G has an assignment A = {f1, g1, g2} where f1 : V (G) → Lv; g1 : E(G) →
V (G) × V (G) (as in (i)); and g2 : E(G) → Le. In [2] a denumerable directed
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labelled graph (with k labels for both vertices and edges), called there Lk, is
constructed, which is universal in that property.

Example 8. H-colourable graphs. A countable graph G is H-colourable (i.e.,
belongs to the “hom-property” →Hc) if and only if there exists an f1 : V (G) →
V (H) which is a homomorphism, denoted by f1 : G → H. In [3] a universal
graph in →Hc is constructed.

Example 9. Graphs having colouring number at most k + 1, Ck. As will be
specified precisely in Definition 10 in the next section, a graph G is in Ck when
it has an assignment A = {f1} with a bijection f1 : V (G) → B where B is some
well-ordered set, with specified properties involving degree restrictions.

The general graph-theoretical notions of induced subgraph, induced-hereditary
property, and homomorphism (including isomorphism)—which co-determine uni-
versality in an induced-hereditary property—evoke kindred but slightly strength-
ened notions for graphs (G,A) with assignment, in those cases where the property
has assignment. These alternative assignment-respecting notions, which in a very
natural way dominate the next section on universality in Ck, are defined for Ck
in Definition 14.

5. Universality in Graphs with Colouring Number at most k + 1

Let V be any countable set. It is clear that the following three statements about
V are equivalent:

(i) V is well-ordered with the order type of the natural number n, n ≥ 1.

(ii) There exists a bijection from V onto [n] = {1, 2, . . . , n}.

(iii) The elements of V can be labelled as a finite sequence v1, v2, . . . , vn.

Similarly, the next three statements are also equivalent:

(i’) V is well-ordered with the order type of ω.

(ii’) There exists a bijection from V onto N.

(iii’) The elements of V can be labelled as a denumerable sequence v1, v2, . . ..

We mention this to convince the reader that our next definition, although in-
spired by the definition from Erdős and Hajnal [8], is a very special case of their
definition.

Definition 10. (i) We say that a countable graph G has finite colouring num-

ber if there exist a positive integer q and a labelling of the vertices of G as
v1, v2, . . . in such a way that for each positive integer ℓ, 1 ≤ ℓ ≤ |V (G)|, the
degree of vℓ in G[{v1, v2, . . . , vℓ}] is at most q.
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(ii) We say that a countable graph G has colouring number k + 1 (where k is a
positive integer) if G has finite colouring number and k is the least element
of the (non-empty) set of all those positive integers q for which there exists
a labelling of V (G) such that the pair (q, labelling) satisfies the stipulation
in (i).

(iii) C∗
k := {G ∈ Ic : G has colouring number k + 1}.

(iv) Ck := {G ∈ Ic : G has colouring number at most k + 1}.

We note that the different C∗
k are pairwise disjoint; that Ck = C∗

1 ∪ C∗
2 ∪ · · · ∪ C∗

k ;
and that the union of all the C∗

k (or Ck) is the induced-hereditary property (with
assignment) of all countable graphs with finite colouring number. The latter is
by no means the whole of Ic since, e.g., Kℵ0

lacks a finite colouring number.
It is easy to prove (by an inductive argument using the indices of the labelling

of the vertices of such a graph) that each graph with colouring number at most
k + 1 has chromatic number at most k + 1, explaining its naming. Furthermore,
as is well-known (and can easily be seen), each graph with colouring number at
most k+1 is k-degenerate, hence Ck ⊆ Dk. If the graphs under consideration are
restricted to be finite, then we have (by the “elementary observation” made by
Lick and White in Proposition 1 of [15]) that (Ck)f = (Dk)f , which, for the sake
of self-containedness in the context of properties with assignment, we now prove.

Lemma 11. A finite graph has colouring number at most k + 1 if and only if it

is k-degenerate.

Proof. Let G be a finite graph with colouring number at most k+1 and suppose
the vertices of G are labelled as v1, v2, . . . , vn in such a way that for each positive
integer 1 ≤ ℓ ≤ n the degree of vℓ in the subgraph of G induced by {v1, v2, . . . , vℓ}
is at most k. Then, for each induced subgraph H of G, it follows that δ(H) ≤ k.
Let namely β : H → G be an isomorphic embedding and vm the vertex of G with
the largest index (i.e. m) among the elements of β(V (H)). Then the degree of
vm in G[β(V (H))] is at most k, and hence the degree of β−1(vm) in H is at most
k.

For the converse, suppose that G is a finite k-degenerate graph of order n.
We define a labelling v1, v2, . . . , vn of the vertices of G recursively (starting with
the largest index and working downwards) by labelling any vertex of G with
degree at most k as vn—it exists by the definition of k-degenerate since G is an
induced subgraph of itself. Now suppose that the labels vn, vn−1, . . . , vm have
been allocated in such a way that each vj has degree at most k in the subgraph
induced by vj , vj−1, . . . , vm together with the as yet unlabelled vertices. Then, if
m > 1, we consider the subgraph induced by the as yet unlabelled vertices and
choose a vertex of degree at most k from it; this vertex is then labelled vm−1.
This process clearly produces the desired labelling which is needed to prove that
G has colouring number at most k + 1.
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Hence we have by Theorem 4

Corollary 12. Let k be a positive integer. Then Fk is universal for (Ck)f .

Let us now delve somewhat deeper into the attributes of and the relations between
the properties Ck and Dk, here and again briefly at the start of Section 6. Lemma
11 already told us that (Ck)f = (Dk)f .

Lemma 13. (i) C1 is a property of finite character; so is Dk for every k ≥ 1.

(ii) C1 = D1 = {G ∈ Ic : G is a forest}.

(iii) For all k ≥ 2, Ck is not of finite character and the strict inclusions Ck ⊂
Dk ⊂ C2k−1 hold.

Proof. (i) The following statement is a special case of a theorem by Erdős and
Hajnal ([8], p. 80, Theorem 9.1): If G is a countable graph with the property
that every finite induced subgraph H of G has colouring number at most k + 1
(but at least 2, i.e., k ≥ 1 and H ∈ Ck), then G itself has colouring number at
most 2k (i.e., G ∈ C2k−1). The special case k = 1 of this statement then says
that if every finite H ≤ G is in C1, then G ∈ C1, i.e., C1 is of finite character.
That Dk is of finite character follows immediately from its definition.

(ii) Just before Lemma 11 we remarked that Ck ⊆ Dk; hence C1 ⊆ D1. Next
we show that D1 lies within the property of countable forests. Let G ∈ D1; we
have to prove that G has no subgraph which is a cycle, while we know that, for
every finite H ≤ G, δ(H) ≤ 1. Suppose (contrariwise) that G contains a cycle C.
Then, since δ(C) = 2, we obtain a contradiction. Finally, let G be any countable
forest; we want to show that G ∈ C1. Let H be any finite induced subgraph of
G. Then H is a finite forest so that δ(H) ≤ 1; hence H ∈ (D1)f . By Lemma 11,
H ∈ (C1)f , and it follows by (i) that G ∈ C1.

(iii) Erdős and Hajnal’s Theorem 9.2 ([8], p. 80) establishes that the result of
their Theorem 9.1 (given above in (i)) is the best possible in the following sense:
when k ≥ 2 then 2k − 1 > k, and there exists a graph G such that every finite
induced subgraph of G has colouring number at most k+1 (is in (Ck)f ), while G
itself is in C2k−1 (in accord with their Theorem 9.1), but not in C2k−2—and hence
a fortiori not in Ck. Clearly this G demonstrates that Ck is not of finite character
and that Ck ⊂ C2k−1. Also, by Lemma 11, every finite induced subgraph of G is
k-degenerate, implying that G ∈ Dk, which demonstrates that Ck ⊂ Dk. That
Dk ⊂ C2k−1 follows from Theorem 9.1 of [8] (which establishes that Dk ⊆ C2k−1)
together with the fact that Dk is of finite character, while C2k−1 is not. To nail
this last proper inclusion down even more concretely, note that the complete
graph K2k+1 ∈ C2k−1, but K2k+1 /∈ Dk.

We note that part (iii) above establishes the following possibility: There exists
an induced-hereditary property of finite character (e.g. Dk) and a graph in that
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property (Fk ∈ Dk) which is universal for the finite members of the property
(Theorem 4) and yet not universal in the property. This is proven by the de-
numerable graph G mentioned in the proof of (iii) above which is in Dk, but is
not an induced subgraph of Fk since it has colouring number 2k while Fk has
colouring number at most k + 1—see part (i) of Theorem 15 below.

Suppose that the elements of a countable set V have been labelled v1, v2, . . .,
and that W ⊆ V . Then we may see W as “picking out” some elements of V :
W = vi1 , vi2 , . . ., with the sequence of indices i1 < i2 < · · · being a subsequence of
the indices 1, 2, . . .. It is only natural to re-label the elements of W as w1, w2, . . .,
where wj = vij for each j. We call w1, w2, . . . the labelling of W inherited from
the labelling v1, v2, . . . of V . If A denotes the assignment which is the vi-labelling
of V , while B denotes the wj-labelling of W inherited from A, then we shall write
B = A↾W .

It is clear that the property Ck is (in the terminology of Section 4) a property
with assignment, where an assignment to a graph G is a bijection f1 : V (G) →
{1, 2, . . . , n} or f1 : V (G) → N—or, equivalently, a labelling v1, v2, . . . of V (G)
in terms of which a certain degree restriction is imposed. Notions crucial for
universality now occur more naturally in a form somewhat boosted from their
standard definitions as given in Section 1. Here follow the strengthened definitions
introducing the Ck-assignment-respecting (or just assignment-respecting, “Ck-a-r”
or “a-r” for short) notions needed:

Definition 14. (i) Consider (G,A), (H,B) ∈ Ck, where A contains only a la-
belling v1, v2, . . . of V (G) and B a labelling w1, w2, . . . of V (H) which ensure
membership in Ck. Let λ : G → H be a graph homomorphism. Then we call
λ an a-r homomorphism from (G,A) to (H,B) and write λ : (G,A) → (H,B)
if also, whenever vi, vj ∈ V (G), λ(vi) = wk, λ(vj) = wℓ, and i ≤ j, we have
k ≤ ℓ, i.e., λ is also (well-)order-preserving. (Note that then we have a
surjective a-r homomorphism λ : (G,A) → (H[λ(V (G))], B ↾λ(V (G))).)

(ii) If in case (i) λ is a graph isomorphism, then λ is an a-r isomorphism from
(G,A) to (into or onto) (H,B) when i < j if and only if k < ℓ.

(iii) Consider again (G,A), (H,B) ∈ Ck with the labellings as in (i), but now G
is an induced subgraph of H, G ≤ H, β : G → H a graph isomorphism
injecting G into H. If this β is an a-r isomorphism, β : (G,A) → (H,B),
then we say that (G,A) is an a-r induced subgraph of (H,B) (with respect

to β) and write (G,A) ≤β (H,B).

We remark that if (G,A) ≤β (H,B), then β is also an a-r isomorphism from
(G,A) onto (H[β(V (G))], B ↾β(V (G))).

It is clear that Ck is an a-r induced-hereditary property in the sense that if
(H,B) ∈ Ck and (G,A) ≤ (H,B), then (G,A) ∈ Ck. For an (H,B) ∈ Ck it is
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only natural now to call (H,B) a-r universal in Ck if, for every (G,A) ∈ Ck,
(G,A) ≤ (H,B).

We now proceed to show that Fk is indeed an a-r universal graph in Ck. The
assignment that is needed to consider its properties is the bijection ι : Nk → N

defined by choosing, for any v ∈ Nk, ι(v) as the positive integer ℓ if there are
exactly ℓ− 1 vertices in Nk less than v.

In our next result we show that (Fk, ι) is a-r universal in Ck. In order to do
so, it is convenient to adopt the label vℓ for the vertex v ∈ Nk for which ι(v) = ℓ
for each ℓ ≥ 1. We may call v1, v2, . . . the ι-labelling of V (Fk).

Theorem 15. Let k be a positive integer. Then

(i) Fk has colouring number at most k + 1 and

(ii) (Fk, ι) is an a-r universal graph in Ck.

Proof. (i) Let, for the proof that Fk has colouring number at most k + 1, ℓ ≥ 2
be a positive integer and consider the subgraph induced by {v1, v2, . . . , vℓ}. Each
vertex in this subgraph which is adjacent to vℓ corresponds to a one in the binary
expansion of vℓ. But, if there is at least one such adjacency, then, since vℓ has at
most k+1 ones in its binary expansion of which at most k correspond to vertices
adjacent to vℓ, the degree of vℓ is at most k in that subgraph. Hence Fk ∈ Ck.

(ii) Next we shall prove for any pair (G, κ), where G is a countable graph
with colouring number at most k+1 and κ is a labelling of V (G) as {w1, w2, . . .}
in such a way that for each positive integer ℓ with 1 ≤ ℓ ≤ |V (G)| the degree of
wℓ in the subgraph of G induced by {w1, w2, . . . , wℓ} is at most k, that there is an
a-r isomorphic embedding of (G, κ) into (Fk, ι). This is done by constructing, by
recursion on the indices 1, 2, . . . of the κ-labels of the vertices of G, an injection
α : {w1, w2, . . .} → {v1, v2, . . .} of V (G) into V (Fk) which is an a-r isomorphic
embedding α : (G, κ) → (Fk, ι).

Define α(w1) = v1(= 1) and let Wp = {w1, w2, . . . , wp} for any p ≥ 1.
Suppose also that α(w1), α(w2), . . . , α(wp) have already been defined in such a
way that α : (G[Wp], κ|Wp) ∼=a−r (Fk[α(Wp)], ι ↾ α(Wp)). We must now define
α(wp+1) in such a way that, for the extended function (also denoted by α),
α : (G[Wp+1], κ|Wp+1) ∼=a−r (Fk[α(Wp+1)], ι↾α(Wp+1)).

Let {u1, u2, . . . , uℓ} be the set of those elements in {w1, w2, . . . , wp} which
are adjacent to wp+1 in G; we know that ℓ ≤ k. Then we construct a number
n ∈ Nk = V (Fk) by choosing ℓ+1 ones in its binary expansion in the ℓ positions
α(u1), α(u2), . . . , α(uℓ) and in some position x which is large enough to ensure
that x > α(ui) for each relevant i, and that n > α(wj) for each wj ∈ Wp (including
each ui); there are zeros in all the other positions of the binary expansion of n.
By defining α(wp+1) = n we have extended α from Wp to Wp+1 in the required
way. The recursive step can be repeated throughout V (G), whether the latter is
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finite or denumerable, to establish that α : (G, κ) → (Fk, ι) is an a-r isomorphic
embedding.

We do not know whether there exists a graph (G, η) which is not a-r isomorphic
to (Fk, ι) but which is a-r universal in Ck.

More properties of the graph Fk will be explicated in Section 6.

6. Further Properties of Fk

We start by noting that Fk, unlike R, is not self-complementary since Fk contains
arbitrary large edgeless subgraphs so that Fk contains arbitrary large complete
subgraphs, which is incompatible with having colouring number at most k + 1.
Next we remark that, for each k ≥ 2, Dk−1 ⊆ Dk and Ck−1 ⊆ Ck. Furthermore the
complete graph Kk+1, which is k-regular, satisfies Kk+1 ∈ Dk ∩ Ck and Kk+1 /∈
Dk−1 ∪ Ck−1. Hence Dk−1 ⊂ Dk and Ck−1 ⊂ Ck for each k ≥ 2. Turning to
Fk, one sees immediately that Nk−1 ⊂ Nk and that Fk[Nk−1] = Fk−1. Hence,
assuming the labellings, Fk−1 is a proper a-r induced subgraph of Fk and, using
the same argument as above, they are not isomorphic, not even if one ignores the
requirement that an isomorphism should be a-r. The sequences (Dk)k≥1, (Ck)k≥1

and (Fk)k≥1 are therefore all strictly increasing sequences.

The rest of this section investigates some further properties of Fk; note that
most of these properties of Fk do not involve assignments.

Definition 16. We say that a graph C has the k-adjoining property if for every
two finite disjoint sets U and V of vertices of C with |U | ≤ k there is a vertex
not in U ∪ V which is adjacent to every vertex of U and to no vertex of V .

This property is clearly weaker than the extension property, the characterising
property of the Rado graph R (referred to in Section 1).

The graph F1 is not homogeneous and, for k ≥ 2, Fk does not seem to be
homogeneous (in the sense defined in [13]), i.e., not every isomorphism between
two finite, isomorphic, internal induced subgraphs of Fk can be extended to an
automorphism of Fk. It does, however, possess a lesser property which we now
define.

Definition 17. We say that a graph C allows iso-extensions if C is denumer-
able and every isomorphism between two finite induced subgraphs of C has an
extension to an isomorphism between two (not necessarily different) denumerable
induced subgraphs of C.

Note that every denumerable homogeneous graph allows iso-extensions, but not
conversely.
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Lemma 18. The graph Fk has the following properties:

(i) Fk has the k-adjoining property.

(ii) For any two finite, isomorphic, internal induced subgraphs F and G of Fk

with vertex sets X and Y respectively, any vertex m of Fk not in F which

is larger than each vertex of F to which it is adjacent and any isomorphism

α from F onto G, there is a vertex n of Fk which is not in G such that the

function α ∪ {(m,n)} is an isomorphism from Fk[X ∪ {m}] to Fk[Y ∪ {n}].

(iii) Fk allows iso-extensions.

Proof. (i) Consider any two finite disjoint sets U and V of vertices of Fk with
U = {u1, u2, . . . , uℓ} and with ℓ ≤ k. Then we construct a vertex n by choosing
ℓ + 1 ones in its binary expansion in positions u1, u2, . . . , uℓ and one position x
which is large enough to ensure that x > ui for each i, that n > ui for each i,
and that n is not a vertex of V ; there are zeros in all the other positions of the
binary expansion of n. Clearly, this vertex has the required properties to prove
the k-adjoining property for Fk.

(ii) Consider any two finite, isomorphic, internal induced subgraphs F and G
of Fk with vertex sets X and Y respectively, any vertex m of Fk not in F which
is larger than each vertex of F to which it is adjacent and any isomorphism
α : X → Y from F onto G.

Consider the partition of the vertex set X of F into the disjoint subsets U
and V , which are, respectively, the subsets containing the vertices of F adjacent
to and not adjacent to m in Fk. Then the required vertex n of Fk not in Y can
be constructed using the k-adjoining property of Fk by letting n be a vertex of
Fk which is adjacent to each vertex of α(U) and to no vertex of α(V ). Then,
clearly, n is the required vertex using which we can extend the isomorphism α
with the pair (m,n).

(iii) Consider any two finite, isomorphic, induced subgraphs of Fk and in
particular their clones internal to Fk. The required extension of any isomorphism
between them can now clearly be built through a recursive process using part (ii)
of this lemma.

We remark that, in Definition 16 of the k-adjoining property, the existence of
denumerably many new vertices n could have been specified with preservation
of part (i) of Lemma 18. This strong version of the k-adjoining property for Fk

leads immediately to the next conclusion.

Corollary 19. Fk has colouring number k + 1, i.e., Fk ∈ C∗
k.

Proof. By part (i) of Theorem 15, Fk has colouring number at most k + 1. Its
colouring number is also at least k+1: Consider namely any labelling whatsoever,



Universality in Graph Properties with Degree Restrictions 491

z1, z2, . . ., of V (Fk). By the strong k-adjoining property of Fk it is possible to
select a subsequence zi1 , zi2 , . . . , zik , zik+1

of k+1 vertices with strictly increasing
indices such that for any j with 2 ≤ j ≤ k+1, zij is adjacent in Fk to each of its
predecessors in the subsequence. Hence zik+1

is adjacent to k predecessors in the
labelling; the degree of zik+1

in Fk[{zi1 , zi2 , . . . , zik+1
}] is thus k.

7. Concluding Remark

The “Rado-type” of construction for universal graphs mentioned in Section 2 and
employed in Section 3 is called a construction of type A in [4]. In that paper,
countable universal graphs for induced-hereditary graph properties of (general)
graphs are constructed recursively and that type of construction is named of
type B. The two types of construction and their concomitant properties are also
contrasted in [4].
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