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Abstract

We call the digraph D an m-coloured digraph if its arcs are coloured
with m colours. If D is an m-coloured digraph and a ∈ A(D), colour(a)
will denote the colour has been used on a. A path (or a cycle) is called
monochromatic if all of its arcs are coloured alike. A γ-cycle in D is a
sequence of vertices, say γ = (u0, u1, . . . , un), such that ui 6= uj if i 6= j and
for every i ∈ {0, 1, . . . , n} there is a uiui+1-monochromatic path in D and
there is no ui+1ui-monochromatic path in D (the indices of the vertices will
be taken modn+1). A set N ⊆ V (D) is said to be a kernel by monochromatic

paths if it satisfies the following two conditions: (i) for every pair of different
vertices u, v ∈ N there is no monochromatic path between them and; (ii)
for every vertex x ∈ V (D) \N there is a vertex y ∈ N such that there is an
xy-monochromatic path.

Let D be a finite m-coloured digraph. Suppose that {C1, C2} is a parti-
tion of C, the set of colours of D, and Di will be the spanning subdigraph
of D such that A(Di) = {a ∈ A(D) | colour(a) ∈ Ci}. In this paper, we
give some sufficient conditions for the existence of a kernel by monochro-
matic paths in a digraph with the structure mentioned above. In particular
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we obtain an extension of the original result by B. Sands, N. Sauer and R.
Woodrow that asserts: Every 2-coloured digraph has a kernel by monochro-
matic paths. Also, we extend other results obtained before where it is proved
that under some conditions an m-coloured digraph has no γ-cycles.

Keywords: digraph, kernel, kernel by monochromatic paths, γ-cycle.
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1. Introduction

For general concepts we refer the reader to [1, 2]. Let D be a digraph, and let
V (D) and A(D) denote the sets of vertices and arcs of D, respectively. We recall
that a subdigraph D1 of D is a spanning subdigraph if V (D1) = V (D). If S is
a nonempty subset of V (D) then the subdigraph of D induced by S, denoted by
D[S], is the digraph where V (D[S]) = S and whose arcs are all those arcs of D
joining vertices of S. An arc u1u2 of D will be called an S1S2-arc of D whenever
u1 ∈ S1 and u2 ∈ S2.

A set I ⊆ V (D) is independent if A(D[I]) = ∅. A kernel N of D is an
independent set of vertices such that for each z ∈ V (D) \N there is an zN -arc in
D, that is an arc from z toward some vertex in N . A digraph D is called a kernel

perfect digraph when every induced subdigraph of D has a kernel. Sufficient
conditions for the existence of kernels in a digraph have been investigated by
several authors, Von Neumann and Morgenstern [26]; Duchet and Meyniel [8];
Duchet [6, 7] and Galeana-Sánchez and Neumann-Lara [14, 15]. The concept of
kernel has found many applications, see for example [23, 24, 25].

In this paper all the walks, paths and cycles will be directed and we consider
that each digraph has a (fixed) colouring of the arcs.

A path (or a cycle) is called monochromatic if all of its arcs are coloured alike.
A cycle is called a quasi-monochromatic cycle if, with at most one exception,
all of its arcs are coloured alike. A set N ⊆ V (D) is said to be a kernel by

monochromatic paths if it satisfies the following two conditions: (i) for every pair of
different vertices u, v ∈ N there is no monochromatic path between them (N is an
independent set by monochromatic paths) and; (ii) for every vertex x ∈ V (D) \N
there is a vertex y ∈ N such that there is a xy-monochromatic path (N is an
absorbing set by monochromatic paths).

The definition of kernel by monochromatic paths was introduced by Galeana-
Sánchez [9], even though the research on kernels by monochromatic paths goes
back to the classical paper of Sands et al. [27], kernel by monochromatic paths
clearly, is a generalization of the concept of kernel. The closure of D, denoted
by C (D) is the m-coloured multidigraph defined as follows: V (C (D)) = V (D),
A(C (D)) = A(D)∪{(u, v) with colour i | there is a uv-path coloured i contained
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in D}. Notice that for any digraph D, C (C (D)) ∼= C (D) and D has a kernel by
monochromatic paths if and only if C (D) has a kernel.

In [27] Sands et al. have proven that any 2-coloured digraph D has a kernel by
monochromatic paths; in particular they proved that any 2-coloured tournament
T has a kernel by monochromatic paths. They also raised the following problem:
Let T be a 3-coloured tournament such that every cycle of length 3 is a quasi-
monochromatic cycle; must T have a kernel by monochromatic paths? (This
question still remains open.)

In [28] Shen Minggang proved that if T is a m-coloured tournament such that
every triangle (that is, a transitive tournament of order 3 or a cycle of length 3)
is a quasimonochromatic subdigraph of T , then T has a kernel by monochromatic
paths. He also proved that this result is the best possible for m ≥ 5. In [16] H.
Galeana-Sánchez and R. Rojas Monroy proved that the result of Shen Minggang
is the best possible for m ≥ 4.

In [13] H. Galeana-Sánchez, R. Rojas-Monroy and G. Gaytán-Gómez proved
that if D is a finite m-coloured digraph that admits a partition {C1, C2} of the set
of colours of D such that for each i ∈ {1, 2} every cycle in the subdigraph D[Ci]
spanned by the arcs with colours in Ci is monochromatic, C (D) does not contain

neither rainbow triangles (all of its arcs have different colours) nor rainbow
−→
P3

(path of length 3) involving colours of both C1 and C2; then D has a kernel by
monochromatic paths.

The known sufficient conditions for the existence of a kernel by monochro-
matic paths (k.m.p.) in m-coloured (m ≥ 3) tournaments or nearly tournaments
(such as digraphs obtained from a tournament by the deletion of a single arc,
quasi-transitive digraphs, k-partite tournaments) ask for the monochromaticity
or quasi-monochromaticity of small subdigraphs such as directed cycles or tran-
sitive tournaments of order 3. Other interesting results about the existence of
k.m.p. in digraphs can be found in [9, 10, 11, 12, 17, 22, 29, 30].

If W = (z0, z1, . . . , zn) is a walk, we say that the length of W is n and we
will denote it by ℓ(W). If P is a path and zi, zj ∈ V (P) with i ≤ j we denote by
(zi,P, zj) the zizj-path contained in P, and ℓ(zi,P, zj) will denote its length.

We will need the following basic elementary results.

Lemma 1. Let D be a digraph, u, v ∈ V (D). Then every uv-monochromatic walk

in D contains a uv-monochromatic path.

Lemma 2. Every closed walk in a digraph D contains a cycle.

And the following theorem.

Theorem 3 [3]. If D is a digraph such that every cycle of D has at least one

symmetrical arc, then D is a kernel-perfect digraph.
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2. Main Results

Definition. Let D be a m-coloured digraph, a γ-cycle in D is a sequence of
vertices γ = (u0, u1, . . . , un) such that

1. ui 6= uj for each i 6= j,

2. for each i ∈ {0, 1, . . . , n} there is a uiui+1-monochromatic path in D (the
indices are taken modn+ 1), and

3. for each i ∈ {0, 1, . . . , n} there is no ui+1ui-monochromatic path.

We will say that the length of γ is ℓ(γ) = n.

A digraph D is called transitive by monochromatic paths if the existence of an
xy-monochromatic path and a yz-monochromatic path in D imply that there is
an xz-monochromatic path in D.

The following lemmas will be useful in the proof of our main result.

Lemma 4. Let D be a m-coloured and transitive by monochromatic paths digraph,

then D has no γ-cycles.

Proof. Let C = (u0, u1, . . . , un−1, u0) be a sequence of vertices such that ui 6= uj
for each i 6= j, and for every i ∈ {0, 1, . . . , n−1} there is a uiui+1-monochromatic
path in D (the indices of the vertices will be taken modn). We can prove, by
induction and from transitivity by monochromatic paths that there exists a u0uk-
monochromatic path in D for each k ∈ {2, . . . , n− 1}.

Then, there is a u0un−1-monochromatic path in D. We conclude that D has
no γ-cycles.

Lemma 5. Let D be a m-coloured digraph such that has no γ-cycles. Then there

is no sequence of vertices (x0, x1, x2, . . . ) such that for every i there is an xixi+1-

monochromatic path in D and there is no xi+1xi-monochromatic path in D.

Proof. It follows immediately from the finiteness of D.

Definition. Let D be an m-coloured digraph. A set S ⊆ V (D) is a semikernel

by monochromatic paths of D if the following conditions are fulfilled:

1. S is an independent set by monochromatic paths, and

2. for each z ∈ V (D) \ S such that there exists an Sz-monochromatic path,
then there exists a zS-monochromatic path in D.

Lemma 6. Let D be an m-coloured digraph such that has no γ-cycles. Then there

exists x0 ∈ V (D) such that {x0} is a semikernel by monochromatic paths of D.
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Proof. If there exists no vertex that satisfies the affirmation of Lemma 6, it is
straightforward to build a vertex sequence that contradicts Lemma 5.

From now on, D will denote a finite m-coloured digraph and {C1, C2} will be a
partition of C, the set of colours of D. Also, Di will be the spanning subdigraph
of D such that A(Di) = {a ∈ A(D) | colour(a) ∈ Ci}. If W = (u0, . . . , uk =
v0, . . . , vm = w0, . . . , wn = u0) is a cycle, we say that W is a 3-coloured (C1, C, C2)

subdivision of
−→
C3 (cycle of length 3) if T1 = (u0, . . . , uk) is a monochromatic path

of colour a and it is contained in D1, T2 = (v0, . . . , vm) is a monochromatic path of
colour b and it is contained in D, and T3 = (w0, . . . , wn) is a monochromatic path
of colour c and it is contained in D2 with a 6= b, b 6= c, and a 6= c. And, if P =
(u0, . . . , uk = v0, . . . , vm = w0, . . . , wn) is a directed path, we say that P is a 3-

coloured (C1, C, C2) subdivision of
−→
P3 if T1 = (u0, . . . , uk) is a monochromatic path

of colour a and it is contained in D1, T2 = (v0, . . . , vm) is a monochromatic path
of colour b and it is contained in D, and T3 = (w0, . . . , wn) is a monochromatic
path of colour c and it is contained in D2 with a 6= b, b 6= c, and a 6= c. In

particular, we say that a cycle (u0, u1, u2, u0) is a 3-coloured (C1, C1, C2) −
−→
C3 if

a = colour((u0, u1)) ∈ C1, b = colour((u1, u2)) ∈ C1 and c = colour((u2, u0)) ∈
C2 with a 6= b, b 6= c, and a 6= c. We say that a path (u0, u1, u2, u3) is a 3-coloured

(C1, C1, C2) −
−→
P3 if a = colour((u0, u1)) ∈ C1, b = colour((u1, u2)) ∈ C1 and

c = colour((u2, u0)) ∈ C2 with a 6= b, b 6= c, and a 6= c. We say that v ∈ V (D)
is a vertex with 3-coloured (C1, C1, C2) in-neighbourhood if there exists w, x and
z in V (D) such that {(w, v), (x, v), (z, v)} ⊆ A(D) and a = colour((w, v)) ∈ C1,
b = colour((x, v)) ∈ C1 and c = colour((z, v)) ∈ C2 with a 6= b, b 6= c, and a 6= c.

Definition. Let S ⊆ V (D). We will say that S is a semikernel by monochromatic

paths modulo D2 of D if S is independent by monochromatic paths and for every
z ∈ V (D) \ S, if there is an Sz-monochromatic path contained in D1 then there
is a zS-monochromatic path contained in D.

Lemma 7. Suppose that D1 has no γ-cycles. Then there exists x0 ∈ V (D) such

that {x0} is a semikernel by monochromatic paths modulo D2 of D.

Proof. Since D1 has no γ-cycles, then it follows from Lemma 6 that there exists
x0 ∈ V (D1) such that {x0} is a semikernel by monochromatic paths of D1. From
the definition of semikernel by monochromatic paths modulo D2 of D, we have
that {x0} is a semikernel by monochromatic paths modulo D2 of D.

Let ς = {∅ 6= S ⊆ V (D) | S is a semikernel by monochromatic paths modulo D2

of D}.
Whenever ς 6= ∅, we will denote by Dς the digraph defined as follows:

V (Dς) = ς (i.e, for every element of ς we consider a vertex in Dς) and (S1, S2) ∈
A(Dς) if and only if for every s1 ∈ S1 there exists s2 ∈ S2 such that s1 = s2
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or there is an s1s2-monochromatic path contained in D2 and there is no s2S1-
monochromatic path contained in D.

Lemma 8. Suppose that:

(1) D1 has no γ-cycles, and

(2) D2 is transitive by monochromatic paths.

Then Dς is an acyclic digraph.

Proof. First we will prove that Dς is transitive and anti-symmetric.

Transitive. Suppose that (S, T ) ∈ A(Dς) and (T,W ) ∈ A(Dς), and let s ∈ S.
If s /∈ W , we may suppose s /∈ T as well from (T,W ) ∈ A(Dς), and so there
is a monochromatic path contained in D2 from s to some t ∈ T . If t ∈ W , we
are done. Otherwise there is a monochromatic path contained in D2 from t to
some w ∈ W . Then since D2 is transitive by monochromatic paths there is a
monochromatic path from s to w. Then (S,W ) ∈ A(Dς).

Anti-symmetric. Suppose that (S, T ) ∈ A(Dς) and (T, S) ∈ A(Dς) we will
prove that S = T . Proceeding by contradiction, suppose, without loss of gener-
ality, that s ∈ S \ T . Then there is a monochromatic path contained in D2 from
s to some t ∈ T and there is no tS-monochromatic path contained in D. Since
(T, S) ∈ A(Dς) then t must belong to S, a contradiction because s ∈ S, t ∈ S
and S is independent by monochromatic paths. Then S = T .

Now assume, for a contradiction, that Dς has a cycle, say C=(S0, S1, . . . , Sn−1,
S0), with n ≥ 2. Since C is a cycle, we have that Si 6= Sj if i 6= j. We
can prove, by induction and from transitivity that (Si+1, Si) ∈ A(Dς) for each
i ∈ {0, 1, . . . , n − 1} (the indices of the vertices will be taken modn). Since Dς

is anti-symmetric we have Si = Sj , a contradiction. We conclude that Dς is an
acyclic digraph.

Lemma 9. Suppose that α1 is a uz-monochromatic path in D1, α2 is a zw-

monochromatic path in D1 and α3 is a wx-monochromatic path in D2, such that

colour(α1) 6= colour(α2), colour(α1) 6= colour(α3) and colour(α2) 6= colour(α3).
Additionally, assume that D has no uw-monochromatic path, no zx-monochroma-

tic path, and no zu-monochromatic path. Then each one of the two following con-

ditions imply that there is a ux-path which is a 3-coloured (C1, C1, C2) subdivision

of
−→
P3 or there is a 3-coloured (C1, C1, C2) subdivision of

−→
C3:

(a) Each cycle of D contained in D1 is monochromatic and D2 is transitive by

monochromatic paths.

(b) D has no vertex with 3-coloured (C1, C1, C2) in-neighbourhood.

Proof. From the hypothesis, we have immediately the following assertions:

(1) u /∈ V (α2).
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(2) z /∈ V (α3).

(3) w /∈ V (α1).

(4) x /∈ V (α2).

Case I. V (α1) ∩ V (α2) = {z}.

Subcase I.1. V (α2) ∩ V (α3) = {w}.

Subcase I.1.1. V (α1) ∩ V (α3) = ∅. In this case, we have that α1 ∪ α2 ∪ α3 is

a ux-path which is a 3-coloured (C1, C1, C2) subdivision of
−→
P3.

Subcase I.1.2. V (α1) ∩ V (α3) 6= ∅. Let y be the last vertex of α1 which
is in α3. We have that y 6= z and w 6= y (from assertions 2 and 3). Then

(y, α1, z) ∪ α2 ∪ (w,α3, y) is a 3-coloured (C1, C1, C2) subdivision of
−→
C3.

Subcase I.2. (V (α2) ∩ V (α3)) \ {w} 6= ∅.

Subcase I.2.1. V (α1) ∩ V (α3) = ∅. Let y be the first vertex of α2 that
is in α3. We have that y 6= z and y 6= x (from assertions 2 and 4). Then
α1∪(z, α2, y)∪(y, α3, x) is a ux-path which is a 3-coloured (C1, C1, C2) subdivision

of
−→
P3.

Subcase I.2.2. V (α1)∩V (α3) 6= ∅. Let y be the first vertex of α3 that is in α1

or in α2 and let e be the last vertex of α3 which is in α1 or in α2. If y ∈ V (α1)
then we have that y 6= z (from assertion 2) and we may suppose that y 6= w
(from assertion 3). Then (y, α1, z) ∪ α2 ∪ (w,α3, y) is a 3-coloured (C1, C1, C2)

subdivision of
−→
C3. Suppose that y /∈ V (α1), then y ∈ V (α2). If e ∈ V (α1) then

y 6= e. Let a be the last vertex of α3 which is in α2 and let b be the first vertex
of (a, α3, x) that is in α1. We have that b 6= z and a 6= z (from assertion 2), and
a 6= x (from assertion 4), a 6= u (from assertion 1) and b 6= w (from assertion 3).
Also, a 6= b, otherwise (a, α1, z) ∪ (z, α2, a) contains a non-monochromatic cycle
contained in D1 and a is a vertex with 3-coloured (C1, C1, C2) in-neighbourhood,
a contradiction. Then (b, α1, z)∪ (z, α2, a)∪ (a, α3, b) is a 3-coloured (C1, C1, C2)

subdivision of
−→
C3. Now, assume that e ∈ V (α2). We have that z 6= e and e 6= x

(from assertions 2 and 4). Then α1 ∪ (z, α2, e)∪ (e, α3, x) is a ux-path which is a

3-coloured (C1, C1, C2) subdivision of
−→
P3.

Case II. (V (α1) ∩ V (α2)) \ {z} 6= ∅. Suppose that D satisfies (a), (V (α1) ∩
V (α2)) \ {z} 6= ∅ implies that there is a non-monochromatic cycle contained in
α1 ∪ α2 ⊆ D1, a contradiction. Therefore, D satisfies (b).

Subcase II.1. V (α2) ∩ V (α3) = {w}.

Subcase II.1.1 V (α1) ∩ V (α3) = ∅. Let y be the first vertex of α1 that
is in α2. We have that y 6= u and y 6= w (from assertions 1 and 3). Then
(u, α1, y)∪(y, α2, w)∪α3 is a 3-coloured ux-path which is a (C1, C1, C2) subdivision

of
−→
P3.
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Subcase II.1.2. V (α1) ∩ V (α3) 6= ∅. Let y be the first vertex of α1 that
is in α2 or α3 and let e be the last vertex of α1 that is in α2 or α3. If y ∈
V (α2) then we have that u 6= y and y 6= w (from assertions 1 and 3). Then
(u, α1, y)∪(y, α2, w)∪α3 is a ux-path which is a 3-coloured (C1, C1, C2) subdivision

of
−→
P3. Suppose that y ∈ V (α3). If e ∈ V (α2), let a be the last vertex of α1 that

is in α3 and let b be the first vertex of (a, α1, z) that is in α2. We have that
b 6= w and a 6= w (from assertion 3), a 6= b (because V (α2) ∩ V (α3) = {w}), and
a 6= z (from assertion 2). Then (a, α1, b) ∪ (b, α2, w) ∪ (w,α3, a) is a 3-coloured

(C1, C1, C2) subdivision of
−→
C3. So, assume that e ∈ V (α3). We have that e 6= z

and e 6= w (from assertions 2 and 3). Then (e, α1, z)∪α2∪(w,α3, e) is a 3-coloured

(C1, C1, C2) subdivision of
−→
C3.

Subcase II.2. (V (α2) ∩ V (α3)) \ {w} 6= ∅.

Subcase II.2.1. V (α1)∩V (α3) = ∅. Let y be the first vertex of α2 that is in α1

or α3 and let e be the last vertex of α2 that is in α1 or α3. If y ∈ V (α3) then we
have that y 6= z and y 6= x (from assertions 2 and 4). Then α1∪(z, α2, y)∪(y, α3, x)

is a ux-path which is a 3-coloured (C1, C1, C2) subdivision of
−→
P3. Suppose that

y ∈ V (α1). If e ∈ V (α1) then u 6= e and e 6= w (from assertions 1 and 3).
Then, (u, α1, e) ∪ (e, α2, w) ∪ α3 is a ux-path which is a 3-coloured (C1, C1, C2)

subdivision of
−→
P3. If e ∈ V (α2), then let a be the last vertex of α2 that is in

α1 and let b be the first vertex of (a, α2, w) that is in α3. We have that u 6= a
and b 6= x (from assertions 1 and 4), and a 6= b (V (α1) ∩ V (α3) = ∅). Then
(u, α1, a) ∪ (a, α2, b) ∪ (b, α3, x) is a ux-path which is a 3-coloured (C1, C1, C2)

subdivision of
−→
P3.

Subcase II.2.2. V (α1) ∩ V (α3) 6= ∅. Let a be the first vertex of α1 that is
in α2 and let b be the first vertex of (a, α2, w) which is in α3. Then, we have
that u 6= a and b 6= x (from assertions 1 and 4), a 6= w (from assertion 3), and
b 6= z (from assertion 2). Also, a 6= b, otherwise (a, α1, z) ∪ (z, α2, b) contains
a non-monochromatic cycle in D1 and a is a vertex with 3-coloured (C1, C1, C2)
in-neighbourhood, a contradiction. Suppose that [V ((b, α3, x))∩V ((u, α1, a)] = ∅.
Then, (u, α1, a)∪(a, α2, b)∪(b, α3, x) is a ux-path which is a 3-coloured (C1, C1, C2)

subdivision of
−→
P3. If [V ((b, α3, x)) ∩ V ((u, α1, a)] 6= ∅, let c be the first vertex of

(b, α3, x) that is in (u, α1, a). Since a 6= b then the definitions of a and b imply that
c 6= a and c 6= b. Then (c, α1, a)∪ (a, α2, b)∪ (b, α3, c) is a 3-coloured (C1, C1, C2)

subdivision of
−→
C3.

Definition. We say that the digraph D satisfies the property A if:

(1) D1 has no γ-cycles, and

(2) C (D) possesses the following two conditions:

(i) every 3-coloured (C1, C1, C2)−
−→
C3 has at least two symmetrical arcs,
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(ii) if (u, z, w, x) is a 3-coloured (C1, C1, C2)−
−→
P3 then (u, x) ∈ A(C (D)).

Definition. We say that the digraph D satisfies the property B if:
(1) Every cycle contained in D1 is monochromatic,

(2) D contains no 3-coloured (C1, C1, C2) subdivisions of
−→
C3, and

(3) If (u, z, w, x) is a 3-coloured (C1, C1, C2) subdivision of
−→
P3 then there is a

monochromatic path between u and x in D.

Definition. We say that the digraph D satisfies the property C if:
(1) D1 has no γ-cycles,

(2) D has no vertices with 3-coloured (C1, C1, C2) in-neighbourhood,

(3) D contains no 3-coloured (C1, C1, C2) subdivisions of
−→
C3, and

(4) If (u, z, w, x) is a 3-coloured (C1, C1, C2) subdivision of
−→
P3 then there is a

monochromatic path between u and x in D.

Theorem 10. Suppose that D2 is transitive by monochromatic paths. If D sat-

isfies one of the properties A, B or C, then D has a k.m.p.

Proof. Consider the digraph Dς . Note that if every cycle in a digraph is mono-
chromatic then such digraph contains no γ-cycles. So, in any case D1 has no
γ-cycles. Thus, Lemma 8 implies that Dς is acyclic. Then Dς contains at least
one vertex with zero outdegree. Let S ∈ V (Dς) be such that δ+Dς

(S) = 0. We will
prove, by contradiction, that S is a k.m.p. of D.

Since S ∈ V (Dς), then S is independent by monochromatic paths. If S is
not a k.m.p., then S is not absorbent by monochromatic paths. Let X = {z ∈
V (D) | there is no zS-monochromatic path in D}. From our assumption we
obtain X 6= ∅. Given that D[X] is an induced subdigraph of D, we have that
D[X] satisfies the hypothesis of Theorem 10 and the subdigraph of D1 contained
in D[X] satisfies the hypothesis of Lemma 7. It follows that there exists x0 ∈ X
such that {x0} is a semikernel by monochromatic paths modulo D2 of D[X].

Let T = {z ∈ S | there is no zx0-monochromatic path in D2}. From the
definition of T , we have that for each z ∈ S \ T there is a zx0-monochromatic
path contained in D2.

Note that each monochromatic path of D is contained either in D1 or in D2.

Claim 1. T ∪ {x0} is independent by monochromatic paths.

Proof. T is independent by monochromatic paths because T ⊆ S and S ∈ ς.
There is no Tx0-monochromatic path contained in D. Otherwise, from the

definition of T , such path must be contained in D1. Since T ⊆ S ∈ ς then there
is a x0S-monochromatic path, but this contradicts the definition of X.

There is no x0T -monochromatic path. It follows from the definition of X.
We conclude that T ∪ {x0} is independent by monochromatic paths.
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Claim 2. If there is a (T ∪ {x0})z-monochromatic path contained in D1 then

there is a z(T ∪ {x0})-monochromatic path.

Proof. We have two cases.

Case 1. There is a Tz-monochromatic path contained in D1. Since T ⊆ S
and S ∈ Dς , it follows that there is a zS-monochromatic path contained in D.
We may suppose that such path is a z(S \ T )-monochromatic path. Let α1 be
a uz-monochromatic path contained in D1 with u ∈ T and let α2 be a zw-
monochromatic path contained in D with w ∈ S \ T . Since w ∈ S \ T , the
definition of T implies that there is a wx0-monochromatic path contained in D2,
say α3. First, suppose that α2 ⊆ D2, since D2 is transitive by monochromatic
paths then there is a zx0-monochromatic path contained in D2. So, we may
suppose that α2 ⊆ D1. If colour(α1) = colour(α2), then α1 ∪ α2 contains a
uw-monochromatic path, a contradiction as {u,w} ⊆ S and S ∈ ς. Hence,
colour(α1) 6= colour(α2). Moreover, colour(α1) 6= colour(α3) (α1 ⊆ D1 and
α3 ⊆ D2) and colour(α2) 6= colour(α3) (α2 ⊆ D1 and α3 ⊆ D2).

If D satisfy the property A, then (u, z, w, x0) is a path in C (D) which is a

3-coloured (C1, C1, C2) −
−→
P3. By hypothesis (u, x0) ∈ A(C (D)), then, we have a

ux0-monochromatic path in D; a clear contradiction because u ∈ T and T ∪{x0}
is independent by monochromatic paths. So, assume that D satisfies one of the
properties B or C.

Now, note that: There is no uw-monochromatic path. It follows from {u,w}⊆
S and S is independent by monochromatic paths.

We may suppose that there is no zx0-monochromatic path and there is no
zu-monochromatic path, otherwise there is a z(T ∪ {x0})-monochromatic path.

Then D,α1, α2 and α3 satisfies the hypothesis of Lemma 9. In any case:

• there is a ux0-path which is a 3-coloured (C1, C1, C2) subdivision of
−→
P3 or

• there is a 3-coloured (C1, C1, C2) subdivision of
−→
C3.

In the first case, we have that there is a monochromatic path between u and x0 in
D. But, this contradicts the fact that T ∪{x0} is independent by monochromatic
paths. The second case is not possible since D contains no 3-coloured (C1, C1, C2)

subdivision of
−→
C3.

Case 2. There is an x0z-monochromatic path contained in D1. Let α1 be
an x0z-monochromatic path contained in D1. From the choice of x0 we may
suppose that z 6∈ X. Then, the definition of X implies that there is a zS-
monochromatic path contained in D, say α2. Suppose that α2 ends in w. If
w ∈ T then α2 is a z(T∪{x0})-monochromatic path in D. Then, suppose that w ∈
S \T . From the definition of T it follows that there is a wx0-monochromatic path
contained in D2, call α3 such path. Assume that α2 ⊆ D2, since D2 is transitive
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by monochromatic paths then there is a zx0-monochromatic path contained in
D2. So, we may suppose that α2 ⊆ D1. If colour(α1) = colour(α2) then α1 ∪ α2

contains an x0w-monochromatic path, a contradiction with the definition of X.
Hence, colour(α1) 6= colour(α2). Furthermore, colour(α1) 6= colour(α3) (α1 ⊆
D1 and α3 ⊆ D2) and colour(α2) 6= colour(α3) (α2 ⊆ D1 and α3 ⊆ D2).

Suppose that D satisfies the property A, then C (D) contains a 3-coloured

(C1, C1, C2) −
−→
C3 (to be explicit: (x0, z, w, x0)), then this

−→
C3 has at least two

symmetrical arcs. Then (z, x0) ∈ A(C (D)) or (x0, w) ∈ A(C (D)). If (z, x0) ∈
A(C (D)), then we have a zx0-monochromatic path in D and Claim 2 is proved. If
(x0, w) ∈ A(C (D)), then we have a x0w-monochromatic path in D, contradicting
the definition of X.

Now, suppose that D satisfies one of the properties B or C. Let u = x0, note
that: there is no uw-monochromatic path. It follows from the definition of X.

We may suppose that there is no zu-monochromatic path.
Then D,α1, α2 and α3 satisfies the hypothesis of Lemma 9. In any case: there

is a ux0-path which is a 3-coloured (C1, C1, C2) subdivision of
−→
P3 or

There is a 3-coloured (C1, C1, C2) subdivision of
−→
C3.

The first case is not possible as u = x0. The second case is not possible since

D contains no 3-coloured (C1, C1, C2) subdivision of
−→
C3.

It follows from Claim 1 and Claim 2 that (T ∪{x0}) ∈ ς, so, (T ∪{x0}) ∈ V (Dς).
Now, since T ⊆ S, x0 ∈ X and for each s ∈ S such that s 6∈ T there is

an sx0-monochromatic path contained in D2 and there is no x0S-monochromatic
path contained in D then (S, T ∪{x0}) ∈ A(Dς). We obtain a contradiction with
the assumption δ+Dς

(S) = 0.
We conclude that S is a k.m.p. of D.

Remark 11. Notice that Theorem 10 generalizes the theorem of Sands, Sauer
and Woodrow since:
(1) A 2-coloured digraph can be divided in two monochromatic spanning sub-

digraphs D1 = D[{a ∈ A(D) | colour(a) = colour 1}] and D2 = D[{a ∈
A(D) | colour(a) = colour 2}].

(2) Every directed cycle in D1 is monochromatic since D1 is monochromatic.

(3) D1 has no γ-cycles since D1 is monochromatic.

(4) D2 is transitive by monochromatic paths since D2 is monochromatic.

Now, since only two colours are used on D, then we have the following assertions.
(5) C (D) satisfies the following two conditions:

(i) all 3-coloured
−→
C3 − (C1, C1, C2) has at least two symmetrical arcs,

(ii) if (u, v, w, x) is a 3-coloured
−→
P3 − (C1, C1, C2) then (u, x) ∈ A(C (D)).

(6) D has no vertices with 3-coloured (C1, C1, C2) in-neighbourhood.
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(7) D contains no 3-coloured (C1, C1, C2) subdivisions of
−→
C3.

(8) if (u, v, w, x) is a 3-coloured (C1, C1, C2) subdivision of
−→
P3 then there is a

monochromatic path in D between u and x.

Therefore, every 2-coloured digraph D fulfils the hypotheses of our main theorem,
furthermore it satisfies the three properties A, B and C. We conclude that theorem
generalizes the theorem of Sands, Sauer and Woodrow.

With Theorem 10 we can generate new theorems, for example, let D1 be a tourna-
ment that satisfies the hypothesis of Shen Minggang’s theorem, then it is possible
to prove that D1 has no γ-cycles. Then we obtain the following new theorem.

Theorem 12. Let D be an m-coloured digraph such that:

(1) D1 is a tournament such that every triangle is a quasi-monochromatic sub-

digraph of D1.

(2) D2 is transitive by monochromatic paths.

(3) C (D) has the following two conditions:

(i) every 3-coloured (C1, C1, C2)−
−→
C3 has at least two symmetrical arcs,

(ii) if (u, v, w, x) is a 3-coloured (C1, C1, C2)−
−→
P3 then (u, x) ∈ A(C (D)).

Then D has a k.m.p.

Similarly, it is possible to generate new theorems if D1 is one of the following
digraphs:

• (H. Galeana-Sánchez and J.J. García-Ruvalcaba, [11]) An m-coloured di-
graph resulting from the deletion of the single arc (x, y) from some m-
coloured tournament such that every triangle is quasi-monochromatic.

• (H. Galeana-Sánchez, R. Rojas Monroy, [17]) An m-coloured bipartite tour-
nament such that every directed cycle of length 4 is monochromatic.

• (H. Galeana-Sánchez and R. Rojas Monroy, [19]) An m-coloured k-par-
tite tournament with each cycle of length 3 and each cycle of length 4
monochromatic.

• (Gena Hahn, Pierre Ille and Robert E. Woodrow, [22]) A finite k-coloured
tournament satisfying:

– every tournament on 3 vertices is quasi-monochromatic, and

– for s ≥ 4, each cycle of length s is quasi-monochromatic and no cycle
of length less than s has at least three colours on its arcs.
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Other conditions which imply that an m-coloured digraph has no γ-cycles can be
found in [4, 5, 18, 20, 21].

Acknowledgement

We thank the anonymous referees for carefully reading the original manuscript
and for their useful suggestions which improved the rewriting of this paper.

References

[1] J. Bang-Jensen and G. Gutin, Digraphs: Theory, Algorithms and Applications
(Springer, London, 2001).

[2] C. Berge, Graphs (North-Holland, Amsterdam, 1985).

[3] C. Berge and P. Duchet, Recent problems and results about kernels in directed graphs,
Discrete Math. 86 (1990) 27–31.
doi:10.1016/0012-365X(90)90346-J

[4] P. Delgado-Escalante and H. Galena-Sánchez, Kernels and cycles’ subdivisions in

arc-colored tournaments, Discuss. Math. Graph Theory 29 (2009) 101–117.
doi:10.7151/dmgt.1435

[5] P. Delgado-Escalante and H. Galena-Sánchez, On monochromatic paths and bi-

colored subdigraphs in arc-colored tournaments, Discuss. Math. Graph Theory 31

(2011) 791–820.
doi:10.7151/dmgt.1580

[6] P. Duchet, Graphes noyau - parfaits, Ann. Discrete Math. 9 (1980) 93–101.
doi:10.1016/S0167-5060(08)70041-4

[7] P. Duchet, Classical perfect graphs, An introduction with emphasis on triangulated

and interval graphs, Ann. Discrete Math. 21 (1984) 67–96.

[8] P. Duchet and H. Meynel, A note on kernel-critical graphs, Discrete Math. 33 (1981)
103–105.
doi:10.1016/0012-365X(81)90264-8

[9] H. Galena-Sánchez, On monochromatic paths and monochromatic cycles in edge

coloured tournaments, Discrete Math. 156 (1996) 103–112.
doi:10.1016/0012-365X(95)00036-V

[10] H. Galena-Sánchez, Kernels in edge-coloured digraphs, Discrete Math. 184 (1998)
87–99.
doi:10.1016/S0012-365X(97)00162-3

[11] H. Galena-Sánchez and J.J. García-Ruvalcaba, Kernels in the closure of coloured

digraphs, Discuss. Math. Graph Theory 20 (2000) 243–254.
doi:10.7151/dmgt.1123

[12] H. Galeana-Sánchez, J.J. García-Ruvalcaba, On graphs all of whose {C3, T3}-free
arc colorations are kernel perfect, Discuss. Math. Graph Theory 21 (2001) 77–93.
doi:10.7151/dmgt.1134

http://dx.doi.org/10.1016/0012-365X\(90\)90346-J
http://dx.doi.org/10.7151/dmgt.1435
http://dx.doi.org/10.7151/dmgt.1580
http://dx.doi.org/10.1016/S0167-5060\(08\)70041-4
http://dx.doi.org/10.1016/0012-365X\(81\)90264-8
http://dx.doi.org/10.1016/0012-365X\(95\)00036-V
http://dx.doi.org/10.1016/S0012-365X\(97\)00162-3
http://dx.doi.org/10.7151/dmgt.1123
http://dx.doi.org/10.7151/dmgt.1134


506 E. Casas-Bautista, H. Galeana Sánchez and R. Rojas-Monroy

[13] H. Galena-Sánchez, G. Gaytán-Gómez and R. Rojas-Monroy, Monochromatic cycles

and monochromatic paths in arc-coloured digraphs, Discuss. Math. Graph Theory
31 (2011) 283–292.
doi:10.7151/dmgt.1545

[14] H. Galena-Sánchez, V. Neumann-Lara, On kernels and semikernels of digraphs, Dis-
crete Math. 48 (1984) 67–76.
doi:10.1016/0012-365X(84)90131-6

[15] H. Galeana-Sánchez, V. Neumann-Lara, On kernel-perfect critical digraphs, Discrete
Math. 59 (1986) 257–265.
doi:10.1016/0012-365X(86)90172-X

[16] H. Galeana-Sánchez and R. Rojas-Monroy, A counterexample to a conjecture on

edge-coloured tournaments, Discrete Math. 282 (2004) 275–276.
doi:10.1016/j.disc.2003.11.015

[17] H. Galeana-Sánchez and R. Rojas-Monroy, On monochromatic paths and monochro-

matic 4-cycles in edge coloured bipartite tournaments, Discrete Math. 285 (2004)
313–318.
doi:10.1016/j.disc.2004.03.005

[18] H. Galeana-Sánchez, R. Rojas-Monroy, Independent domination by monochromatic

paths in arc coloured bipartite tournaments, AKCE J. Graphs. Combin. 6 (2009)
267–285.

[19] H. Galeana-Sánchez and R. Rojas-Monroy, Monochromatic paths and monochro-

matic cycles in edge-coloured k-partite tournaments, Ars Combin. 97A (2010) 351–
365.

[20] H. Galena-Sánchez, R. Rojas-Monroy and B. Zavala, Monochromatic paths and

monochromatic sets of arcs in 3-quasitransitive digraphs, Discuss. Math. Graph The-
ory 29 (2009) 337–347.
doi:10.7151/dmgt.1450

[21] H. Galena-Sánchez, R. Rojas-Monroy and B. Zavala, Monochromatic paths and

monochromatic sets of arcs in quasi-transitive digraphs, Discuss. Math. Graph The-
ory 30 (2010) 545–553.
doi:10.7151/dmgt.1512

[22] G. Hahn, P. Ille and R. Woodrow, Absorbing sets in arc-coloured tournaments,
Discrete Math. 283 (2004) 93–99.
doi:10.1016/j.disc.2003.10.024

[23] J.M. Le Bars, Counterexample of the 0− 1 law for fragments of existential second-

order logic; an overview, Bull. Symbolic Logic 6 (2000) 67–82.
doi:10.2307/421076

[24] J.M. Le Bars, The 0−1 law fails for frame satisfiability of propositional model logic,
in: Proceedings of the 17th Symposium on Logic in Computer Science (2002) 225–
234.
doi:10.1109/LICS.2002.1029831

http://dx.doi.org/10.7151/dmgt.1545
http://dx.doi.org/10.1016/0012-365X\(84\)90131-6
http://dx.doi.org/10.1016/0012-365X\(86\)90172-X
http://dx.doi.org/10.1016/j.disc.2003.11.015
http://dx.doi.org/10.1016/j.disc.2004.03.005
http://dx.doi.org/10.7151/dmgt.1450
http://dx.doi.org/10.7151/dmgt.1512
http://dx.doi.org/10.1016/j.disc.2003.10.024
http://dx.doi.org/10.2307/421076
http://dx.doi.org/10.1109/LICS.2002.1029831


γ-cycles and Transitivity by Monochromatic Paths in Digraphs 507

[25] J. von Leeuwen, Having a Grundy numbering is NP-complete, Report 207 Computer
Science Department, Pennsylvania State University, University Park, PA (1976).

[26] J. von Neumann and O. Morgenstern, Theory of Games and Economic Behavior
(Princeton University Press, Princeton, 1944).

[27] B. Sands, N. Sauer and R. Woodrow, On monochromatic paths in edge-coloured

digraphs, J. Combin. Theory (B) 33 (1982) 271–275.
doi:10.1016/0095-8956(82)90047-8

[28] S. Minggang, On monochromatic paths in m-coloured tournaments, J. Combin, The-
ory (B) 45 (1988) 108–111.
doi:10.1016/0095-8956(88)90059-7

[29] I. Włoch, On kernels by monochromatic paths in the corona of digraphs, Cent. Eur.
J. Math. 6 (2008) 537–542.
doi:10.2478/s11533-008-0044-6

[30] I. Włoch, On imp-sets and kernels by monochromatic paths in duplication, Ars Com-
bin. 83 (2007) 93–99.

Received 31 January 2012
Revised 15 April 2013

Accepted 15 April 2013

http://dx.doi.org/10.1016/0095-8956\(82\)90047-8
http://dx.doi.org/10.1016/0095-8956\(88\)90059-7
http://dx.doi.org/10.2478/s11533-008-0044-6


Powered by TCPDF (www.tcpdf.org)

http://www.tcpdf.org

