Discussiones Mathematicae Graph Theory 33 (2013) 493–507 doi:10.7151/dmgt.1695

γ -CYCLES AND TRANSITIVITY BY MONOCHROMATIC PATHS IN ARC-COLOURED DIGRAPHS

ENRIQUE CASAS-BAUTISTA⁽¹⁾

HORTENSIA GALEANA-SÁNCHEZ⁽²⁾

AND

Rocío Rojas-Monroy⁽¹⁾

⁽¹⁾ Facultad de Ciencias, Universidad Autónoma del Estado de México Instituto Literario No. 100, Centro, 50000 Toluca, Edo. de México, México

> (2) Instituto de Matemáticas Universidad Nacional Autónoma de México Ciudad Universitaria, México, D.F. 04510, México

> > e-mail: ecasasb@uaemex.mx hgaleana@matem.unam.mx mrrm@uaemex.mx

Abstract

We call the digraph D an *m*-coloured digraph if its arcs are coloured with *m* colours. If D is an *m*-coloured digraph and $a \in A(D)$, colour(a) will denote the colour has been used on a. A path (or a cycle) is called *monochromatic* if all of its arcs are coloured alike. A γ -cycle in D is a sequence of vertices, say $\gamma = (u_0, u_1, \ldots, u_n)$, such that $u_i \neq u_j$ if $i \neq j$ and for every $i \in \{0, 1, \ldots, n\}$ there is a $u_i u_{i+1}$ -monochromatic path in D and there is no $u_{i+1}u_i$ -monochromatic path in D (the indices of the vertices will be taken mod n+1). A set $N \subseteq V(D)$ is said to be a *kernel by monochromatic paths* if it satisfies the following two conditions: (i) for every pair of different vertices $u, v \in N$ there is no monochromatic path between them and; (ii) for every vertex $x \in V(D) \setminus N$ there is a vertex $y \in N$ such that there is an xy-monochromatic path.

Let D be a finite m-coloured digraph. Suppose that $\{C_1, C_2\}$ is a partition of C, the set of colours of D, and D_i will be the spanning subdigraph of D such that $A(D_i) = \{a \in A(D) \mid colour(a) \in C_i\}$. In this paper, we give some sufficient conditions for the existence of a kernel by monochromatic paths in a digraph with the structure mentioned above. In particular

494 E. CASAS-BAUTISTA, H. GALEANA SÁNCHEZ AND R. ROJAS-MONROY

we obtain an extension of the original result by B. Sands, N. Sauer and R. Woodrow that asserts: Every 2-coloured digraph has a kernel by monochromatic paths. Also, we extend other results obtained before where it is proved that under some conditions an *m*-coloured digraph has no γ -cycles. **Keywords:** digraph, kernel, kernel by monochromatic paths, γ -cycle. **2010 Mathematics Subject Classification:** 05C20, 05C38, 05C69.

1. INTRODUCTION

For general concepts we refer the reader to [1, 2]. Let D be a *digraph*, and let V(D) and A(D) denote the sets of *vertices* and *arcs* of D, respectively. We recall that a subdigraph D_1 of D is a *spanning* subdigraph if $V(D_1) = V(D)$. If S is a nonempty subset of V(D) then the subdigraph of D *induced* by S, denoted by D[S], is the digraph where V(D[S]) = S and whose arcs are all those arcs of D joining vertices of S. An arc u_1u_2 of D will be called an S_1S_2 -arc of D whenever $u_1 \in S_1$ and $u_2 \in S_2$.

A set $I \subseteq V(D)$ is independent if $A(D[I]) = \emptyset$. A kernel N of D is an independent set of vertices such that for each $z \in V(D) \setminus N$ there is an zN-arc in D, that is an arc from z toward some vertex in N. A digraph D is called a kernel perfect digraph when every induced subdigraph of D has a kernel. Sufficient conditions for the existence of kernels in a digraph have been investigated by several authors, Von Neumann and Morgenstern [26]; Duchet and Meyniel [8]; Duchet [6, 7] and Galeana-Sánchez and Neumann-Lara [14, 15]. The concept of kernel has found many applications, see for example [23, 24, 25].

In this paper all the walks, paths and cycles will be directed and we consider that each digraph has a (fixed) colouring of the arcs.

A path (or a cycle) is called *monochromatic* if all of its arcs are coloured alike. A cycle is called a *quasi-monochromatic* cycle if, with at most one exception, all of its arcs are coloured alike. A set $N \subseteq V(D)$ is said to be a *kernel by* monochromatic paths if it satisfies the following two conditions: (i) for every pair of different vertices $u, v \in N$ there is no monochromatic path between them (N is an *independent set by monochromatic paths*) and; (ii) for every vertex $x \in V(D) \setminus N$ there is a vertex $y \in N$ such that there is a xy-monochromatic path (N is an *absorbing set by monochromatic paths*).

The definition of kernel by monochromatic paths was introduced by Galeana-Sánchez [9], even though the research on kernels by monochromatic paths goes back to the classical paper of Sands *et al.* [27], kernel by monochromatic paths clearly, is a generalization of the concept of kernel. The *closure* of D, denoted by $\mathscr{C}(D)$ is the *m*-coloured multidigraph defined as follows: $V(\mathscr{C}(D)) = V(D)$, $A(\mathscr{C}(D)) = A(D) \cup \{(u, v) \text{ with colour } i \mid \text{there is a } uv\text{-path coloured } i \text{ contained} \}$

in D. Notice that for any digraph D, $\mathscr{C}(\mathscr{C}(D)) \cong \mathscr{C}(D)$ and D has a kernel by monochromatic paths if and only if $\mathscr{C}(D)$ has a kernel.

In [27] Sands *et al.* have proven that any 2-coloured digraph D has a kernel by monochromatic paths; in particular they proved that any 2-coloured tournament T has a kernel by monochromatic paths. They also raised the following problem: Let T be a 3-coloured tournament such that every cycle of length 3 is a quasi-monochromatic cycle; must T have a kernel by monochromatic paths? (This question still remains open.)

In [28] Shen Minggang proved that if T is a m-coloured tournament such that every triangle (that is, a transitive tournament of order 3 or a cycle of length 3) is a quasimonochromatic subdigraph of T, then T has a kernel by monochromatic paths. He also proved that this result is the best possible for $m \ge 5$. In [16] H. Galeana-Sánchez and R. Rojas Monroy proved that the result of Shen Minggang is the best possible for $m \ge 4$.

In [13] H. Galeana-Sánchez, R. Rojas-Monroy and G. Gaytán-Gómez proved that if D is a finite *m*-coloured digraph that admits a partition $\{C_1, C_2\}$ of the set of colours of D such that for each $i \in \{1, 2\}$ every cycle in the subdigraph $D[C_i]$ spanned by the arcs with colours in C_i is monochromatic, $\mathscr{C}(D)$ does not contain neither *rainbow* triangles (all of its arcs have different colours) nor rainbow \overrightarrow{P}_3 (path of length 3) involving colours of both C_1 and C_2 ; then D has a kernel by monochromatic paths.

The known sufficient conditions for the existence of a kernel by monochromatic paths (k.m.p.) in *m*-coloured $(m \ge 3)$ tournaments or nearly tournaments (such as digraphs obtained from a tournament by the deletion of a single arc, quasi-transitive digraphs, *k*-partite tournaments) ask for the monochromaticity or quasi-monochromaticity of small subdigraphs such as directed cycles or transitive tournaments of order 3. Other interesting results about the existence of k.m.p. in digraphs can be found in [9, 10, 11, 12, 17, 22, 29, 30].

If $\mathcal{W} = (z_0, z_1, \ldots, z_n)$ is a walk, we say that the length of \mathcal{W} is n and we will denote it by $\ell(\mathcal{W})$. If \mathcal{P} is a path and $z_i, z_j \in V(\mathcal{P})$ with $i \leq j$ we denote by (z_i, \mathcal{P}, z_j) the $z_i z_j$ -path contained in \mathcal{P} , and $\ell(z_i, \mathcal{P}, z_j)$ will denote its length.

We will need the following basic elementary results.

Lemma 1. Let D be a digraph, $u, v \in V(D)$. Then every uv-monochromatic walk in D contains a uv-monochromatic path.

Lemma 2. Every closed walk in a digraph D contains a cycle.

And the following theorem.

Theorem 3 [3]. If D is a digraph such that every cycle of D has at least one symmetrical arc, then D is a kernel-perfect digraph.

2. Main Results

Definition. Let D be a m-coloured digraph, a γ -cycle in D is a sequence of vertices $\gamma = (u_0, u_1, \ldots, u_n)$ such that

- 1. $u_i \neq u_j$ for each $i \neq j$,
- 2. for each $i \in \{0, 1, ..., n\}$ there is a $u_i u_{i+1}$ -monochromatic path in D (the indices are taken mod n + 1), and
- 3. for each $i \in \{0, 1, ..., n\}$ there is no $u_{i+1}u_i$ -monochromatic path.

We will say that the *length* of γ is $\ell(\gamma) = n$.

A digraph D is called *transitive by monochromatic paths* if the existence of an xy-monochromatic path and a yz-monochromatic path in D imply that there is an xz-monochromatic path in D.

The following lemmas will be useful in the proof of our main result.

Lemma 4. Let D be a m-coloured and transitive by monochromatic paths digraph, then D has no γ -cycles.

Proof. Let $\mathcal{C} = (u_0, u_1, \ldots, u_{n-1}, u_0)$ be a sequence of vertices such that $u_i \neq u_j$ for each $i \neq j$, and for every $i \in \{0, 1, \ldots, n-1\}$ there is a $u_i u_{i+1}$ -monochromatic path in D (the indices of the vertices will be taken mod n). We can prove, by induction and from transitivity by monochromatic paths that there exists a $u_0 u_k$ -monochromatic path in D for each $k \in \{2, \ldots, n-1\}$.

Then, there is a u_0u_{n-1} -monochromatic path in D. We conclude that D has no γ -cycles.

Lemma 5. Let D be a m-coloured digraph such that has no γ -cycles. Then there is no sequence of vertices $(x_0, x_1, x_2, ...)$ such that for every i there is an $x_i x_{i+1}$ -monochromatic path in D and there is no $x_{i+1}x_i$ -monochromatic path in D.

Proof. It follows immediately from the finiteness of D.

Definition. Let D be an m-coloured digraph. A set $S \subseteq V(D)$ is a semikernel by monochromatic paths of D if the following conditions are fulfilled:

- 1. S is an independent set by monochromatic paths, and
- 2. for each $z \in V(D) \setminus S$ such that there exists an Sz-monochromatic path, then there exists a zS-monochromatic path in D.

Lemma 6. Let D be an m-coloured digraph such that has no γ -cycles. Then there exists $x_0 \in V(D)$ such that $\{x_0\}$ is a semikernel by monochromatic paths of D.

 γ -cycles and Transitivity by Monochromatic Paths in Digraphs 497

Proof. If there exists no vertex that satisfies the affirmation of Lemma 6, it is straightforward to build a vertex sequence that contradicts Lemma 5.

From now on, D will denote a finite m-coloured digraph and $\{C_1, C_2\}$ will be a partition of C, the set of colours of D. Also, D_i will be the spanning subdigraph of D such that $A(D_i) = \{a \in A(D) \mid colour(a) \in C_i\}$. If $W = (u_0, \ldots, u_k)$ $v_0, \ldots, v_m = w_{0,1}, \ldots, w_n = u_0$ is a cycle, we say that W is a 3-coloured (C_1, C, C_2) subdivision of C'_3 (cycle of length 3) if $T_1 = (u_0, \ldots, u_k)$ is a monochromatic path of colour a and it is contained in $D_1, T_2 = (v_0, \ldots, v_m)$ is a monochromatic path of colour b and it is contained in D, and $T_3 = (w_0, \ldots, w_n)$ is a monochromatic path of colour c and it is contained in D_2 with $a \neq b, b \neq c$, and $a \neq c$. And, if P = $(u_0,\ldots,u_k=v_0,\ldots,v_m=w_0,\ldots,w_n)$ is a directed path, we say that P is a 3coloured (C_1, C, C_2) subdivision of $\overrightarrow{P_3}$ if $T_1 = (u_0, \ldots, u_k)$ is a monochromatic path of colour a and it is contained in $D_1, T_2 = (v_0, \ldots, v_m)$ is a monochromatic path of colour b and it is contained in D, and $T_3 = (w_0, \ldots, w_n)$ is a monochromatic path of colour c and it is contained in D_2 with $a \neq b$, $b \neq c$, and $a \neq c$. In particular, we say that a cycle (u_0, u_1, u_2, u_0) is a 3-coloured $(C_1, C_1, C_2) - C'_3$ if $a = colour((u_0, u_1)) \in C_1, b = colour((u_1, u_2)) \in C_1 \text{ and } c = colour((u_2, u_0)) \in C_1$ C_2 with $a \neq b, b \neq c$, and $a \neq c$. We say that a path (u_0, u_1, u_2, u_3) is a 3-coloured $(C_1, C_1, C_2) - \overline{P'_3}$ if $a = colour((u_0, u_1)) \in C_1$, $b = colour((u_1, u_2)) \in C_1$ and $c = colour((u_2, u_0)) \in C_2$ with $a \neq b, b \neq c$, and $a \neq c$. We say that $v \in V(D)$ is a vertex with 3-coloured (C_1, C_1, C_2) in-neighbourhood if there exists w, x and z in V(D) such that $\{(w, v), (x, v), (z, v)\} \subseteq A(D)$ and $a = colour((w, v)) \in C_1$, $b = colour((x, v)) \in C_1$ and $c = colour((z, v)) \in C_2$ with $a \neq b, b \neq c$, and $a \neq c$.

Definition. Let $S \subseteq V(D)$. We will say that S is a semikernel by monochromatic paths modulo D_2 of D if S is independent by monochromatic paths and for every $z \in V(D) \setminus S$, if there is an Sz-monochromatic path contained in D_1 then there is a zS-monochromatic path contained in D.

Lemma 7. Suppose that D_1 has no γ -cycles. Then there exists $x_0 \in V(D)$ such that $\{x_0\}$ is a semikernel by monochromatic paths modulo D_2 of D.

Proof. Since D_1 has no γ -cycles, then it follows from Lemma 6 that there exists $x_0 \in V(D_1)$ such that $\{x_0\}$ is a semikernel by monochromatic paths of D_1 . From the definition of semikernel by monochromatic paths modulo D_2 of D, we have that $\{x_0\}$ is a semikernel by monochromatic paths modulo D_2 of D.

Let $\varsigma = \{ \emptyset \neq S \subseteq V(D) \mid S \text{ is a semikernel by monochromatic paths modulo } D_2 \text{ of } D \}.$

Whenever $\varsigma \neq \emptyset$, we will denote by D_{ς} the digraph defined as follows: $V(D_{\varsigma}) = \varsigma$ (i.e, for every element of ς we consider a vertex in D_{ς}) and $(S_1, S_2) \in A(D_{\varsigma})$ if and only if for every $s_1 \in S_1$ there exists $s_2 \in S_2$ such that $s_1 = s_2$ or there is an s_1s_2 -monochromatic path contained in D_2 and there is no s_2S_1 monochromatic path contained in D.

Lemma 8. Suppose that:

 D₁ has no γ-cycles, and
 D₂ is transitive by monochromatic paths. Then D₅ is an acyclic digraph.

Proof. First we will prove that D_{ς} is transitive and anti-symmetric.

Transitive. Suppose that $(S,T) \in A(D_{\varsigma})$ and $(T,W) \in A(D_{\varsigma})$, and let $s \in S$. If $s \notin W$, we may suppose $s \notin T$ as well from $(T,W) \in A(D_{\varsigma})$, and so there is a monochromatic path contained in D_2 from s to some $t \in T$. If $t \in W$, we are done. Otherwise there is a monochromatic path contained in D_2 from t to some $w \in W$. Then since D_2 is transitive by monochromatic paths there is a monochromatic path from s to w. Then $(S,W) \in A(D_{\varsigma})$.

Anti-symmetric. Suppose that $(S,T) \in A(D_{\varsigma})$ and $(T,S) \in A(D_{\varsigma})$ we will prove that S = T. Proceeding by contradiction, suppose, without loss of generality, that $s \in S \setminus T$. Then there is a monochromatic path contained in D_2 from s to some $t \in T$ and there is no tS-monochromatic path contained in D. Since $(T,S) \in A(D_{\varsigma})$ then t must belong to S, a contradiction because $s \in S, t \in S$ and S is independent by monochromatic paths. Then S = T.

Now assume, for a contradiction, that D_{ς} has a cycle, say $\mathbb{C} = (S_0, S_1, \ldots, S_{n-1}, S_0)$, with $n \geq 2$. Since \mathbb{C} is a cycle, we have that $S_i \neq S_j$ if $i \neq j$. We can prove, by induction and from transitivity that $(S_{i+1}, S_i) \in A(D_{\varsigma})$ for each $i \in \{0, 1, \ldots, n-1\}$ (the indices of the vertices will be taken mod n). Since D_{ς} is anti-symmetric we have $S_i = S_j$, a contradiction. We conclude that D_{ς} is an acyclic digraph.

Lemma 9. Suppose that α_1 is a uz-monochromatic path in D_1 , α_2 is a zwmonochromatic path in D_1 and α_3 is a wx-monochromatic path in D_2 , such that $colour(\alpha_1) \neq colour(\alpha_2)$, $colour(\alpha_1) \neq colour(\alpha_3)$ and $colour(\alpha_2) \neq colour(\alpha_3)$. Additionally, assume that D has no uw-monochromatic path, no zx-monochromatic path, and no zu-monochromatic path. Then each one of the two following conditions imply that there is a ux-path which is a 3-coloured (C_1, C_1, C_2) subdivision of $\overrightarrow{P_3}$ or there is a 3-coloured (C_1, C_1, C_2) subdivision of $\overrightarrow{C_3}$:

- (a) Each cycle of D contained in D_1 is monochromatic and D_2 is transitive by monochromatic paths.
- (b) D has no vertex with 3-coloured (C_1, C_1, C_2) in-neighbourhood.
- **Proof.** From the hypothesis, we have immediately the following assertions: (1) $u \notin V(\alpha_2)$.

 γ -cycles and Transitivity by Monochromatic Paths in Digraphs 499

- (2) $z \notin V(\alpha_3)$.
- (3) $w \notin V(\alpha_1)$.
- (4) $x \notin V(\alpha_2)$.
- Case I. $V(\alpha_1) \cap V(\alpha_2) = \{z\}.$

Subcase I.1. $V(\alpha_2) \cap V(\alpha_3) = \{w\}.$

Subcase I.1.1. $V(\alpha_1) \cap V(\alpha_3) = \emptyset$. In this case, we have that $\alpha_1 \cup \alpha_2 \cup \alpha_3$ is a *ux*-path which is a 3-coloured (C_1, C_1, C_2) subdivision of $\overrightarrow{P_3}$.

Subcase I.1.2. $V(\alpha_1) \cap V(\alpha_3) \neq \emptyset$. Let y be the last vertex of α_1 which is in α_3 . We have that $y \neq z$ and $w \neq y$ (from assertions 2 and 3). Then $(y, \alpha_1, z) \cup \alpha_2 \cup (w, \alpha_3, y)$ is a 3-coloured (C_1, C_1, C_2) subdivision of $\overrightarrow{C_3}$.

Subcase I.2. $(V(\alpha_2) \cap V(\alpha_3)) \setminus \{w\} \neq \emptyset$.

Subcase I.2.1. $V(\alpha_1) \cap V(\alpha_3) = \emptyset$. Let y be the first vertex of α_2 that is in α_3 . We have that $y \neq z$ and $y \neq x$ (from assertions 2 and 4). Then $\alpha_1 \cup (z, \alpha_2, y) \cup (y, \alpha_3, x)$ is a *ux*-path which is a 3-coloured (C_1, C_1, C_2) subdivision of $\overrightarrow{P_3}$.

Subcase I.2.2. $V(\alpha_1) \cap V(\alpha_3) \neq \emptyset$. Let y be the first vertex of α_3 that is in α_1 or in α_2 and let e be the last vertex of α_3 which is in α_1 or in α_2 . If $y \in V(\alpha_1)$ then we have that $y \neq z$ (from assertion 2) and we may suppose that $y \neq w$ (from assertion 3). Then $(y, \alpha_1, z) \cup \alpha_2 \cup (w, \alpha_3, y)$ is a 3-coloured (C_1, C_1, C_2) subdivision of $\overrightarrow{C_3}$. Suppose that $y \notin V(\alpha_1)$, then $y \in V(\alpha_2)$. If $e \in V(\alpha_1)$ then $y \neq e$. Let a be the last vertex of α_3 which is in α_2 and let b be the first vertex of (a, α_3, x) that is in α_1 . We have that $b \neq z$ and $a \neq z$ (from assertion 2), and $a \neq x$ (from assertion 4), $a \neq u$ (from assertion 1) and $b \neq w$ (from assertion 3). Also, $a \neq b$, otherwise $(a, \alpha_1, z) \cup (z, \alpha_2, a)$ contains a non-monochromatic cycle contained in D_1 and a is a vertex with 3-coloured (C_1, C_1, C_2) in-neighbourhood, a contradiction. Then $(b, \alpha_1, z) \cup (z, \alpha_2, a) \cup (a, \alpha_3, b)$ is a 3-coloured (C_1, C_1, C_2) subdivision of $\overrightarrow{C_3}$. Now, assume that $e \in V(\alpha_2)$. We have that $z \neq e$ and $e \neq x$ (from assertions 2 and 4). Then $\alpha_1 \cup (z, \alpha_2, e) \cup (e, \alpha_3, x)$ is a ux-path which is a 3-coloured (C_1, C_1, C_2) subdivision of $\overrightarrow{P_3}$.

Case II. $(V(\alpha_1) \cap V(\alpha_2)) \setminus \{z\} \neq \emptyset$. Suppose that D satisfies (a), $(V(\alpha_1) \cap V(\alpha_2)) \setminus \{z\} \neq \emptyset$ implies that there is a non-monochromatic cycle contained in $\alpha_1 \cup \alpha_2 \subseteq D_1$, a contradiction. Therefore, D satisfies (b).

Subcase II.1. $V(\alpha_2) \cap V(\alpha_3) = \{w\}.$

Subcase II.1.1 $V(\alpha_1) \cap V(\alpha_3) = \emptyset$. Let y be the first vertex of α_1 that is in α_2 . We have that $y \neq u$ and $y \neq w$ (from assertions 1 and 3). Then $(u, \alpha_1, y) \cup (y, \alpha_2, w) \cup \alpha_3$ is a 3-coloured ux-path which is a (C_1, C_1, C_2) subdivision of $\overrightarrow{P_3}$.

500 E. CASAS-BAUTISTA, H. GALEANA SÁNCHEZ AND R. ROJAS-MONROY

Subcase II.1.2. $V(\alpha_1) \cap V(\alpha_3) \neq \emptyset$. Let y be the first vertex of α_1 that is in α_2 or α_3 and let e be the last vertex of α_1 that is in α_2 or α_3 . If $y \in V(\alpha_2)$ then we have that $u \neq y$ and $y \neq w$ (from assertions 1 and 3). Then $(u, \alpha_1, y) \cup (y, \alpha_2, w) \cup \alpha_3$ is a ux-path which is a 3-coloured (C_1, C_1, C_2) subdivision of $\overrightarrow{P_3}$. Suppose that $y \in V(\alpha_3)$. If $e \in V(\alpha_2)$, let a be the last vertex of α_1 that is in α_3 and let b be the first vertex of (a, α_1, z) that is in α_2 . We have that $b \neq w$ and $a \neq w$ (from assertion 3), $a \neq b$ (because $V(\alpha_2) \cap V(\alpha_3) = \{w\}$), and $a \neq z$ (from assertion 2). Then $(a, \alpha_1, b) \cup (b, \alpha_2, w) \cup (w, \alpha_3, a)$ is a 3-coloured (C_1, C_1, C_2) subdivision of $\overrightarrow{C_3}$. So, assume that $e \in V(\alpha_3)$. We have that $e \neq z$ and $e \neq w$ (from assertions 2 and 3). Then $(e, \alpha_1, z) \cup \alpha_2 \cup (w, \alpha_3, e)$ is a 3-coloured (C_1, C_1, C_2) subdivision of $\overrightarrow{C_3}$.

Subcase II.2. $(V(\alpha_2) \cap V(\alpha_3)) \setminus \{w\} \neq \emptyset$.

Subcase II.2.1. $V(\alpha_1) \cap V(\alpha_3) = \emptyset$. Let y be the first vertex of α_2 that is in α_1 or α_3 and let e be the last vertex of α_2 that is in α_1 or α_3 . If $y \in V(\alpha_3)$ then we have that $y \neq z$ and $y \neq x$ (from assertions 2 and 4). Then $\alpha_1 \cup (z, \alpha_2, y) \cup (y, \alpha_3, x)$ is a ux-path which is a 3-coloured (C_1, C_1, C_2) subdivision of $\overrightarrow{P_3}$. Suppose that $y \in V(\alpha_1)$. If $e \in V(\alpha_1)$ then $u \neq e$ and $e \neq w$ (from assertions 1 and 3). Then, $(u, \alpha_1, e) \cup (e, \alpha_2, w) \cup \alpha_3$ is a ux-path which is a 3-coloured (C_1, C_1, C_2) subdivision of $\overrightarrow{P_3}$. If $e \in V(\alpha_2)$, then let a be the last vertex of α_2 that is in α_1 and let b be the first vertex of (a, α_2, w) that is in α_3 . We have that $u \neq a$ and $b \neq x$ (from assertions 1 and 4), and $a \neq b$ $(V(\alpha_1) \cap V(\alpha_3) = \emptyset$). Then $(u, \alpha_1, a) \cup (a, \alpha_2, b) \cup (b, \alpha_3, x)$ is a ux-path which is a 3-coloured (C_1, C_1, C_2) subdivision of $\overrightarrow{P_3}$.

Subcase II.2.2. $V(\alpha_1) \cap V(\alpha_3) \neq \emptyset$. Let a be the first vertex of α_1 that is in α_2 and let b be the first vertex of (a, α_2, w) which is in α_3 . Then, we have that $u \neq a$ and $b \neq x$ (from assertions 1 and 4), $a \neq w$ (from assertion 3), and $b \neq z$ (from assertion 2). Also, $a \neq b$, otherwise $(a, \alpha_1, z) \cup (z, \alpha_2, b)$ contains a non-monochromatic cycle in D_1 and a is a vertex with 3-coloured (C_1, C_1, C_2) in-neighbourhood, a contradiction. Suppose that $[V((b, \alpha_3, x)) \cap V((u, \alpha_1, a)] = \emptyset$. Then, $(u, \alpha_1, a) \cup (a, \alpha_2, b) \cup (b, \alpha_3, x)$ is a ux-path which is a 3-coloured (C_1, C_1, C_2) subdivision of $\overrightarrow{P_3}$. If $[V((b, \alpha_3, x)) \cap V((u, \alpha_1, a)] \neq \emptyset$, let c be the first vertex of (b, α_3, x) that is in (u, α_1, a) . Since $a \neq b$ then the definitions of a and b imply that $c \neq a$ and $c \neq b$. Then $(c, \alpha_1, a) \cup (a, \alpha_2, b) \cup (b, \alpha_3, c)$ is a 3-coloured (C_1, C_1, C_2) subdivision of $\overrightarrow{C_3}$.

Definition. We say that the digraph D satisfies the property A if:

- (1) D_1 has no γ -cycles, and
- (2) $\mathscr{C}(D)$ possesses the following two conditions:
 - (i) every 3-coloured $(C_1, C_1, C_2) \overrightarrow{C_3}$ has at least two symmetrical arcs,

 γ -cycles and Transitivity by Monochromatic Paths in Digraphs 501

(ii) if (u, z, w, x) is a 3-coloured $(C_1, C_1, C_2) - \overrightarrow{P_3}$ then $(u, x) \in A(\mathscr{C}(D))$.

Definition. We say that the digraph D satisfies the property B if:

- (1) Every cycle contained in D_1 is monochromatic,
- (2) D contains no 3-coloured (C_1, C_1, C_2) subdivisions of $\overrightarrow{C_3}$, and
- (3) If (u, z, w, x) is a 3-coloured (C_1, C_1, C_2) subdivision of $\overrightarrow{P_3}$ then there is a monochromatic path between u and x in D.

Definition. We say that the digraph D satisfies the property C if:

- (1) D_1 has no γ -cycles,
- (2) D has no vertices with 3-coloured (C_1, C_1, C_2) in-neighbourhood,
- (3) D contains no 3-coloured (C_1, C_1, C_2) subdivisions of $\overrightarrow{C_3}$, and
- (4) If (u, z, w, x) is a 3-coloured (C_1, C_1, C_2) subdivision of $\overrightarrow{P_3}$ then there is a monochromatic path between u and x in D.

Theorem 10. Suppose that D_2 is transitive by monochromatic paths. If D satisfies one of the properties A, B or C, then D has a k.m.p.

Proof. Consider the digraph D_{ς} . Note that if every cycle in a digraph is monochromatic then such digraph contains no γ -cycles. So, in any case D_1 has no γ -cycles. Thus, Lemma 8 implies that D_{ς} is acyclic. Then D_{ς} contains at least one vertex with zero outdegree. Let $S \in V(D_{\varsigma})$ be such that $\delta^+_{D_{\varsigma}}(S) = 0$. We will prove, by contradiction, that S is a k.m.p. of D.

Since $S \in V(D_{\varsigma})$, then S is independent by monochromatic paths. If S is not a k.m.p., then S is not absorbent by monochromatic paths. Let $X = \{z \in V(D) \mid \text{there is no } zS\text{-monochromatic path in } D\}$. From our assumption we obtain $X \neq \emptyset$. Given that D[X] is an induced subdigraph of D, we have that D[X] satisfies the hypothesis of Theorem 10 and the subdigraph of D_1 contained in D[X] satisfies the hypothesis of Lemma 7. It follows that there exists $x_0 \in X$ such that $\{x_0\}$ is a semikernel by monochromatic paths modulo D_2 of D[X].

Let $T = \{z \in S \mid \text{there is no } zx_0\text{-monochromatic path in } D_2\}$. From the definition of T, we have that for each $z \in S \setminus T$ there is a $zx_0\text{-monochromatic path contained in } D_2$.

Note that each monochromatic path of D is contained either in D_1 or in D_2 .

Claim 1. $T \cup \{x_0\}$ is independent by monochromatic paths.

Proof. T is independent by monochromatic paths because $T \subseteq S$ and $S \in \varsigma$.

There is no Tx_0 -monochromatic path contained in D. Otherwise, from the definition of T, such path must be contained in D_1 . Since $T \subseteq S \in \varsigma$ then there is a x_0S -monochromatic path, but this contradicts the definition of X.

There is no x_0T -monochromatic path. It follows from the definition of X. We conclude that $T \cup \{x_0\}$ is independent by monochromatic paths.

Claim 2. If there is a $(T \cup \{x_0\})z$ -monochromatic path contained in D_1 then there is a $z(T \cup \{x_0\})$ -monochromatic path.

Proof. We have two cases.

Case 1. There is a Tz-monochromatic path contained in D_1 . Since $T \subseteq S$ and $S \in D_{\varsigma}$, it follows that there is a zS-monochromatic path contained in D. We may suppose that such path is a $z(S \setminus T)$ -monochromatic path. Let α_1 be a *uz*-monochromatic path contained in D_1 with $u \in T$ and let α_2 be a zwmonochromatic path contained in D with $w \in S \setminus T$. Since $w \in S \setminus T$, the definition of T implies that there is a wx_0 -monochromatic path contained in D_2 , say α_3 . First, suppose that $\alpha_2 \subseteq D_2$, since D_2 is transitive by monochromatic paths then there is a zx_0 -monochromatic path contained in D_2 . So, we may suppose that $\alpha_2 \subseteq D_1$. If $colour(\alpha_1) = colour(\alpha_2)$, then $\alpha_1 \cup \alpha_2$ contains a uw-monochromatic path, a contradiction as $\{u, w\} \subseteq S$ and $S \in \varsigma$. Hence, $colour(\alpha_1) \neq colour(\alpha_2)$. Moreover, $colour(\alpha_1) \neq colour(\alpha_3)$ ($\alpha_1 \subseteq D_1$ and $\alpha_3 \subseteq D_2$) and $colour(\alpha_2) \neq colour(\alpha_3)$ ($\alpha_2 \subseteq D_1$ and $\alpha_3 \subseteq D_2$).

If D satisfy the property A, then (u, z, w, x_0) is a path in $\mathscr{C}(D)$ which is a 3-coloured $(C_1, C_1, C_2) - \overrightarrow{P_3}$. By hypothesis $(u, x_0) \in A(\mathscr{C}(D))$, then, we have a ux_0 -monochromatic path in D; a clear contradiction because $u \in T$ and $T \cup \{x_0\}$ is independent by monochromatic paths. So, assume that D satisfies one of the properties B or C.

Now, note that: There is no uw-monochromatic path. It follows from $\{u, w\} \subseteq S$ and S is independent by monochromatic paths.

We may suppose that there is no zx_0 -monochromatic path and there is no zu-monochromatic path, otherwise there is a $z(T \cup \{x_0\})$ -monochromatic path.

Then D, α_1, α_2 and α_3 satisfies the hypothesis of Lemma 9. In any case:

- there is a ux_0 -path which is a 3-coloured (C_1, C_1, C_2) subdivision of $\overrightarrow{P_3}$ or
- there is a 3-coloured (C_1, C_1, C_2) subdivision of $\overrightarrow{C_3}$.

In the first case, we have that there is a monochromatic path between u and x_0 in D. But, this contradicts the fact that $T \cup \{x_0\}$ is independent by monochromatic paths. The second case is not possible since D contains no 3-coloured (C_1, C_1, C_2) subdivision of $\overrightarrow{C_3}$.

Case 2. There is an x_0z -monochromatic path contained in D_1 . Let α_1 be an x_0z -monochromatic path contained in D_1 . From the choice of x_0 we may suppose that $z \notin X$. Then, the definition of X implies that there is a zSmonochromatic path contained in D, say α_2 . Suppose that α_2 ends in w. If $w \in T$ then α_2 is a $z(T \cup \{x_0\})$ -monochromatic path in D. Then, suppose that $w \in$ $S \setminus T$. From the definition of T it follows that there is a wx_0 -monochromatic path contained in D_2 , call α_3 such path. Assume that $\alpha_2 \subseteq D_2$, since D_2 is transitive by monochromatic paths then there is a zx_0 -monochromatic path contained in D_2 . So, we may suppose that $\alpha_2 \subseteq D_1$. If $colour(\alpha_1) = colour(\alpha_2)$ then $\alpha_1 \cup \alpha_2$ contains an x_0w -monochromatic path, a contradiction with the definition of X. Hence, $colour(\alpha_1) \neq colour(\alpha_2)$. Furthermore, $colour(\alpha_1) \neq colour(\alpha_3)$ ($\alpha_1 \subseteq D_1$ and $\alpha_3 \subseteq D_2$) and $colour(\alpha_2) \neq colour(\alpha_3)$ ($\alpha_2 \subseteq D_1$ and $\alpha_3 \subseteq D_2$).

Suppose that D satisfies the property A, then $\mathscr{C}(D)$ contains a 3-coloured $(C_1, C_1, C_2) - \overrightarrow{C_3}$ (to be explicit: (x_0, z, w, x_0)), then this $\overrightarrow{C_3}$ has at least two symmetrical arcs. Then $(z, x_0) \in A(\mathscr{C}(D))$ or $(x_0, w) \in A(\mathscr{C}(D))$. If $(z, x_0) \in A(\mathscr{C}(D))$, then we have a zx_0 -monochromatic path in D and Claim 2 is proved. If $(x_0, w) \in A(\mathscr{C}(D))$, then we have a x_0w -monochromatic path in D, contradicting the definition of X.

Now, suppose that D satisfies one of the properties B or C. Let $u = x_0$, note that: there is no *uw*-monochromatic path. It follows from the definition of X.

We may suppose that there is no zu-monochromatic path.

Then D, α_1, α_2 and α_3 satisfies the hypothesis of Lemma 9. In any case: there is a ux_0 -path which is a 3-coloured (C_1, C_1, C_2) subdivision of $\overrightarrow{P_3}$ or

There is a 3-coloured (C_1, C_1, C_2) subdivision of $\overline{C'_3}$.

The first case is not possible as $u = x_0$. The second case is not possible since D contains no 3-coloured (C_1, C_1, C_2) subdivision of $\overrightarrow{C_3}$.

It follows from Claim 1 and Claim 2 that $(T \cup \{x_0\}) \in \varsigma$, so, $(T \cup \{x_0\}) \in V(D_{\varsigma})$.

Now, since $T \subseteq S$, $x_0 \in X$ and for each $s \in S$ such that $s \notin T$ there is an sx_0 -monochromatic path contained in D_2 and there is no x_0S -monochromatic path contained in D then $(S, T \cup \{x_0\}) \in A(D_{\varsigma})$. We obtain a contradiction with the assumption $\delta^+_{D_{\varsigma}}(S) = 0$.

We conclude that S is a k.m.p. of D.

Remark 11. Notice that Theorem 10 generalizes the theorem of Sands, Sauer and Woodrow since:

- (1) A 2-coloured digraph can be divided in two monochromatic spanning subdigraphs $D_1 = D[\{a \in A(D) \mid colour(a) = colour 1\}]$ and $D_2 = D[\{a \in A(D) \mid colour(a) = colour 2\}].$
- (2) Every directed cycle in D_1 is monochromatic since D_1 is monochromatic.
- (3) D_1 has no γ -cycles since D_1 is monochromatic.
- (4) D_2 is transitive by monochromatic paths since D_2 is monochromatic.

Now, since only two colours are used on D, then we have the following assertions. (5) $\mathscr{C}(D)$ satisfies the following two conditions:

(i) all 3-coloured $\overrightarrow{C}_3 - (C_1, C_1, C_2)$ has at least two symmetrical arcs,

(ii) if (u, v, w, x) is a 3-coloured $\overrightarrow{P_3} - (C_1, C_1, C_2)$ then $(u, x) \in A(\mathscr{C}(D))$.

(6) D has no vertices with 3-coloured (C_1, C_1, C_2) in-neighbourhood.

- (7) D contains no 3-coloured (C_1, C_1, C_2) subdivisions of $\overrightarrow{C_3}$.
- (8) if (u, v, w, x) is a 3-coloured (C_1, C_1, C_2) subdivision of $\overrightarrow{P_3}$ then there is a monochromatic path in D between u and x.

Therefore, every 2-coloured digraph D fulfils the hypotheses of our main theorem, furthermore it satisfies the three properties A, B and C. We conclude that theorem generalizes the theorem of Sands, Sauer and Woodrow.

With Theorem 10 we can generate new theorems, for example, let D_1 be a tournament that satisfies the hypothesis of Shen Minggang's theorem, then it is possible to prove that D_1 has no γ -cycles. Then we obtain the following new theorem.

Theorem 12. Let D be an m-coloured digraph such that:

- (1) D_1 is a tournament such that every triangle is a quasi-monochromatic subdigraph of D_1 .
- (2) D_2 is transitive by monochromatic paths.
- (3) C(D) has the following two conditions:
 (i) every 3-coloured (C₁, C₁, C₂) − C₃ has at least two symmetrical arcs,

(ii) if (u, v, w, x) is a 3-coloured $(C_1, C_1, C_2) - \overrightarrow{P_3}$ then $(u, x) \in A(\mathscr{C}(D))$. Then D has a k.m.p.

Similarly, it is possible to generate new theorems if D_1 is one of the following digraphs:

- (H. Galeana-Sánchez and J.J. García-Ruvalcaba, [11]) An *m*-coloured digraph resulting from the deletion of the single arc (x, y) from some *m*coloured tournament such that every triangle is quasi-monochromatic.
- (H. Galeana-Sánchez, R. Rojas Monroy, [17]) An *m*-coloured bipartite tournament such that every directed cycle of length 4 is monochromatic.
- (H. Galeana-Sánchez and R. Rojas Monroy, [19]) An *m*-coloured *k*-partite tournament with each cycle of length 3 and each cycle of length 4 monochromatic.
- (Gena Hahn, Pierre Ille and Robert E. Woodrow, [22]) A finite k-coloured tournament satisfying:
 - every tournament on 3 vertices is quasi-monochromatic, and
 - for $s \ge 4$, each cycle of length s is quasi-monochromatic and no cycle of length less than s has at least three colours on its arcs.

 $\gamma\text{-}\mathrm{CYCLES}$ and Transitivity by Monochromatic Paths in Digraphs 505

Other conditions which imply that an *m*-coloured digraph has no γ -cycles can be found in [4, 5, 18, 20, 21].

Acknowledgement

We thank the anonymous referees for carefully reading the original manuscript and for their useful suggestions which improved the rewriting of this paper.

References

- J. Bang-Jensen and G. Gutin, Digraphs: Theory, Algorithms and Applications (Springer, London, 2001).
- [2] C. Berge, Graphs (North-Holland, Amsterdam, 1985).
- C. Berge and P. Duchet, Recent problems and results about kernels in directed graphs, Discrete Math. 86 (1990) 27–31. doi:10.1016/0012-365X(90)90346-J
- P. Delgado-Escalante and H. Galena-Sánchez, Kernels and cycles' subdivisions in arc-colored tournaments, Discuss. Math. Graph Theory 29 (2009) 101–117. doi:10.7151/dmgt.1435
- P. Delgado-Escalante and H. Galena-Sánchez, On monochromatic paths and bicolored subdigraphs in arc-colored tournaments, Discuss. Math. Graph Theory 31 (2011) 791–820. doi:10.7151/dmgt.1580
- [6] P. Duchet, Graphes noyau parfaits, Ann. Discrete Math. 9 (1980) 93–101. doi:10.1016/S0167-5060(08)70041-4
- [7] P. Duchet, Classical perfect graphs, An introduction with emphasis on triangulated and interval graphs, Ann. Discrete Math. 21 (1984) 67–96.
- [8] P. Duchet and H. Meynel, A note on kernel-critical graphs, Discrete Math. 33 (1981) 103-105. doi:10.1016/0012-365X(81)90264-8
- H. Galena-Sánchez, On monochromatic paths and monochromatic cycles in edge coloured tournaments, Discrete Math. 156 (1996) 103–112. doi:10.1016/0012-365X(95)00036-V
- [10] H. Galena-Sánchez, Kernels in edge-coloured digraphs, Discrete Math. 184 (1998) 87–99. doi:10.1016/S0012-365X(97)00162-3
- [11] H. Galena-Sánchez and J.J. García-Ruvalcaba, Kernels in the closure of coloured digraphs, Discuss. Math. Graph Theory 20 (2000) 243–254. doi:10.7151/dmgt.1123
- [12] H. Galeana-Sánchez, J.J. García-Ruvalcaba, On graphs all of whose {C₃, T₃}-free arc colorations are kernel perfect, Discuss. Math. Graph Theory **21** (2001) 77–93. doi:10.7151/dmgt.1134

- [13] H. Galena-Sánchez, G. Gaytán-Gómez and R. Rojas-Monroy, Monochromatic cycles and monochromatic paths in arc-coloured digraphs, Discuss. Math. Graph Theory 31 (2011) 283–292. doi:10.7151/dmgt.1545
- H. Galena-Sánchez, V. Neumann-Lara, On kernels and semikernels of digraphs, Discrete Math. 48 (1984) 67–76. doi:10.1016/0012-365X(84)90131-6
- H. Galeana-Sánchez, V. Neumann-Lara, On kernel-perfect critical digraphs, Discrete Math. 59 (1986) 257–265. doi:10.1016/0012-365X(86)90172-X
- [16] H. Galeana-Sánchez and R. Rojas-Monroy, A counterexample to a conjecture on edge-coloured tournaments, Discrete Math. 282 (2004) 275–276. doi:10.1016/j.disc.2003.11.015
- [17] H. Galeana-Sánchez and R. Rojas-Monroy, On monochromatic paths and monochromatic 4-cycles in edge coloured bipartite tournaments, Discrete Math. 285 (2004) 313–318. doi:10.1016/j.disc.2004.03.005
- [18] H. Galeana-Sánchez, R. Rojas-Monroy, Independent domination by monochromatic paths in arc coloured bipartite tournaments, AKCE J. Graphs. Combin. 6 (2009) 267–285.
- [19] H. Galeana-Sánchez and R. Rojas-Monroy, Monochromatic paths and monochromatic cycles in edge-coloured k-partite tournaments, Ars Combin. 97A (2010) 351– 365.
- [20] H. Galena-Sánchez, R. Rojas-Monroy and B. Zavala, Monochromatic paths and monochromatic sets of arcs in 3-quasitransitive digraphs, Discuss. Math. Graph Theory 29 (2009) 337–347. doi:10.7151/dmgt.1450
- [21] H. Galena-Sánchez, R. Rojas-Monroy and B. Zavala, Monochromatic paths and monochromatic sets of arcs in quasi-transitive digraphs, Discuss. Math. Graph Theory 30 (2010) 545–553. doi:10.7151/dmgt.1512
- [22] G. Hahn, P. Ille and R. Woodrow, Absorbing sets in arc-coloured tournaments, Discrete Math. 283 (2004) 93–99. doi:10.1016/j.disc.2003.10.024
- [23] J.M. Le Bars, Counterexample of the 0-1 law for fragments of existential secondorder logic; an overview, Bull. Symbolic Logic 6 (2000) 67–82. doi:10.2307/421076
- [24] J.M. Le Bars, The 0-1 law fails for frame satisfiability of propositional model logic, in: Proceedings of the 17th Symposium on Logic in Computer Science (2002) 225– 234. doi:10.1109/LICS.2002.1029831

- [25] J. von Leeuwen, Having a Grundy numbering is NP-complete, Report 207 Computer Science Department, Pennsylvania State University, University Park, PA (1976).
- [26] J. von Neumann and O. Morgenstern, Theory of Games and Economic Behavior (Princeton University Press, Princeton, 1944).
- [27] B. Sands, N. Sauer and R. Woodrow, On monochromatic paths in edge-coloured digraphs, J. Combin. Theory (B) 33 (1982) 271–275. doi:10.1016/0095-8956(82)90047-8
- [28] S. Minggang, On monochromatic paths in m-coloured tournaments, J. Combin, Theory (B) 45 (1988) 108–111. doi:10.1016/0095-8956(88)90059-7
- I. Włoch, On kernels by monochromatic paths in the corona of digraphs, Cent. Eur. J. Math. 6 (2008) 537–542. doi:10.2478/s11533-008-0044-6
- [30] I. Włoch, On imp-sets and kernels by monochromatic paths in duplication, Ars Combin. 83 (2007) 93–99.

Received 31 January 2012 Revised 15 April 2013 Accepted 15 April 2013