
Discussiones Mathematicae
Graph Theory 33 (2013) 559–569
doi:10.7151/dmgt.1694

MAXIMUM SEMI-MATCHING PROBLEM

IN BIPARTITE GRAPHS

Ján Katrenič and Gabriel Semanǐsin

Institute of Computer Science,

P.J. Šafárik University, Faculty of Science,

Jesenná 5, 041 54 Košice, Slovak Republic

e-mail: jan.katrenic@upjs.sk
gabriel.semanisin@upjs.sk

Abstract

An (f, g)-semi-matching in a bipartite graph G = (U ∪ V,E) is a set of
edgesM ⊆ E such that each vertex u ∈ U is incident with at most f(u) edges
of M , and each vertex v ∈ V is incident with at most g(v) edges of M . In
this paper we give an algorithm that for a graph with n vertices andm edges,
n ≤ m, constructs a maximum (f, g)-semi-matching in running time O(m ·
min{

√
∑

u∈U f(u),
√

∑

v∈V g(v)}). Using the reduction of [5] our result on
maximum (f, g)-semi-matching problem directly implies an algorithm for
the optimal semi-matching problem with running time O(

√
nm log n).

Keywords: semi-matching, quasi-matching, bipartite graph, computational
complexity.

2010 Mathematics Subject Classification: 05C85, 05C70, 68Q17.

1. Introduction

We consider finite non-oriented graphs without loops and multiple edges. In gen-
eral we use standard graph theoretical concepts and notations. In particular,
deg(u) denotes the degree of a vertex u in G = (V,E). If M ⊆ E, then degM (u)
denotes the number of edges of M incident with u. If f is an integer valued
function defined for all vertices of G and X ⊆ V then f(X) stands for the sum
∑

v∈X f(v).
Let G = (U ∪ V,E) be a bipartite graph with n = |U | + |V | vertices and

m = |E| edges (throughout the paper we consider only non-trivial case with no
isolated vertices, i.e. n ≤ m + 1). A semi-matching M of G is a set of edges
M ⊆ E(G), such that each vertex of U is incident with exactly one edge of M .

http://dx.doi.org/10.7151/dmgt.1694


560 J. Katrenič and G. Semanǐsin

Semi-matching is a natural generalization of the classical matching in bipartite
graphs. Although the name of semi-matching was introduced recently in [7],
semi-matchings appear in many problems and were studied as early as 1970s [9]
with applications in wireless sensor networks [1, 13, 14, 15, 17] and a wide area
of scheduling problems [3, 6, 10, 11, 18]. For a weighted case of the problem we
refer to [4, 6, 12, 19].

The problem of finding an optimal semi-matching (see [7]) is motivated by
the following off-line load balancing scenario: We are given a set of tasks and a
set of machines, each of which can process a subset of tasks. Each task requires
one unit of processing time and must be assigned to some machine that can
process it. The tasks have to be assigned in a manner that minimizes given
optimization objective. One natural goal is to process all tasks with the minimum
total completion time. Another goal is to minimize the average completion time,
or total flow time, which is the sum of time units necessary for completion of all
jobs (including the units while a job is waiting in the queue).

Let M be a semi-matching. The cost of M , denoted by cost(M), is defined
as follows:

cost(M) =
∑

v∈V

degM (v) · (degM (v) + 1)

2
.

A semi-matching is optimal, if its cost is the smallest one among the costs of all
admissible semi-matchings. The problem of computing an optimal semi-matching
was first studied by Horn [9] and Bruno et al. [3] where an O(n3) algorithm was
presented. The problem received considerable attention in the past few years.
Harvey et al. [7] showed that by minimizing the cost of a semi-matching one
minimizes simultaneously the maximum number of tasks assigned to a machine,
the flow time and the variance of loads. The same authors provided also a char-
acterization of an optimal assignment based on cost-reducing paths and an algo-
rithm for finding an optimal semi-matching in time O(n · m). It constructs an
optimal semi-matching step by step starting with an empty semi-matching and
in each iteration finds an augmenting path from a free U -vertex to a vertex in V
with the smallest possible degree.

The semi-matchings were generalized to quasi-matchings by Bokal et al. [2].
An (f, g)-quasi-matching in a bipartite graph G = (U ∪ V,E) is a set of edges
M ⊆ E such that each vertex u ∈ U is incident with at most f(u) edges of M ,
and each vertex v ∈ V is incident with at least g(v) edges of M . Bokal et al.

provided a property of lexicographically minimum g-quasi-matching and showed
that the lexicographically minimum 1-quasi-matching equals to an optimal semi-
matching. Moreover they also designed an algorithm to compute an optimal
(lexicographically minimum) g-quasi-matching in running time O(m · g(V )).

Similarly, in [2] was defined an (f, g)-semi-matching of G = (U ∪V,E), which
is a set of edges M ⊆ E such that every element u of U has at most f(u) incident



Maximum Semi-matching Problem in Bipartite Graphs 561

edges from M , and every element v of V has at most g(v) incident edges from
M . A maximum (f, g)-semi-matching is a semi-matching that contains maximum
possible number of edges.

The complexity bound for computing an optimum semi-matching was further
improved by Fakcharoenphol et al. [4], who presented an O(

√
n ·m · logn) algo-

rithm for the optimal semi-matching problem. The algorithm uses a reduction
to the min-cost flow problem and exploits the structure of the graphs and cost
functions for an elimination of many negative cycles in a single iteration.

Recently, in [5] it was presented a reduction from the optimum semi-matching
problem to the maximum (f, g)-semi-matching, which shows that an optimal
semi-matching of G can be computed in time O((n+m+ TBDSM (n,m)) · logn)
where n = |U | + |V |, m = |E|, and TBDSM (n,m) is the time complexity of an
algorithm for computing a maximum (f, 1)-semi-matching with f(U) ≤ 2n. By a
result of [16], the algorithm designed in [5] yields to a randomized algorithm for
optimal semi-matching with a running time of O(nω), where ω is the exponent of
the best known matrix multiplication algorithm. Since ω ≤ 2.38, this algorithm
broke through O(n2.5) barrier for computing optimal semi-matching in dense
graphs [5].

In this paper we present an algorithm for finding a maximum (f, g)-semi-
matching in running time O(m · min{

√

f(U),
√

g(V )}). For the problem of
computing an (f, g)-quasi-matching it gives an algorithm with running time
O(m

√

g(V )). If we denote by TSM (n,m) the time of computing maximum (f, 1)-
semi-matching, then our result gives that TSM (n,m) ≤ O(

√
n ·m). Since in the

problem of computing maximum (f, 1)-semi-matching in [5] we have f(U) ≤ 2n,
we immediately obtain that TBDSM (n,m) ≤ TSM (n,m) and it implies a bound
O(

√
n ·m · logn) for computing an optimal semi-matching of the algorithm pre-

sented in [5].

2. Augmenting Paths and (f, g)-semi-matchings

In this chapter we introduce concepts that will be used throughout the remaining
part of the paper.

Definition. Let f : U → N and g : V → N be mappings. An (f, g)-semi-
matching in a bipartite graph G = (U ∪ V,E) is a set of edges M ⊆ E such
that degM (u) ≤ f(u) for each vertex u ∈ U , and degM (v) ≤ g(v) for each vertex
v ∈ V .

Definition. An (f, g)-semi-matching M of a graph G = (U ∪ V,E) is called
maximum, if for each (f, g)-semi-matching M ′ of G holds |M | ≥ |M ′|. An (f, g)-
semi-matching M is called perfect, if |M | = f(U).



562 J. Katrenič and G. Semanǐsin

Note, that a (1, 1)-semi-matching is a matching in a bipartite graph.

Definition. Let G = (U ∪ V,E) be a bipartite graph and H ⊆ E. A path P is
called an H-alternating path, if each internal vertex of P is incident with exactly
one edge of H ∩ P .

Definition. Let G = (U ∪ V,E) be a bipartite graph and H ⊆ E. An H-
augmenting path P is an alternating path with the first and last vertex of P not
incident with an edge of H ∩ P .

Definition. Let G = (U ∪ V,E) be a bipartite graph, H ⊆ E, P be an H-
alternating path and E(P ) be the edge set of P . We define an operator ⊕ as
follows:

H ⊕ P = (H ∪ E(P )) \ (E(P ) ∩H).

The next theorem provides a characterisation of a maximum (f, g)-semi-matching.

Theorem 1. Let M and M ′ be an (f, g)-semi-matching of a graph G, |M ′| >
|M |. Then there exists an M -augmenting path P with endvertices u ∈ U, v ∈ V ,

degM (u) < f(u) and degM (v) < g(v) such that E(P ) ⊆ M ∪M ′.

Proof. We proceed by induction on the size of |M |. Evidently, the assertion of
the theorem is true for the smallest cases. Now, we may assume that M∩M ′ = ∅,
otherwise the assertion follows from the induction hypothesis. Let us put

A = {v ∈ V : degM (v) < degM ′(v)}.
Let VA be the set of vertices of V for which there exists an M -alternating path
starting in a vertex of A with and edge ofM ′. Here a path of length 0 is considered
to be an M -alternating path, therefore A ⊆ VA.

Let UA be the set of vertices of U for which there exists an M -alternating
path starting in a vertex of A with an edge of M ′.

Let us put VB = V \ VA and UB = U \ UA. For sets X ⊆ U and Y ⊆ V we
introduce parameters m(X,Y ) = |E(G[X ∪ Y ]) ∩M | and m′(X,Y ) = |E(G[X ∪
Y ]) ∩M ′|.

From the definition of VB we get m(UA, VB) = 0 and the definition of UA

yields m′(UB, VA) = 0 (otherwise the existence of such an edge implies an exis-
tence of an M -alternating path starting at a vertex of A by an edge of M ′). This
is depicted on Figure 1.

Since |M | < |M ′|, we have m(U, V ) < m′(U, V ). Moreover m(UA, VB) = 0
and m′(UB, VA) = 0 which gives

(1) m(UA, VA)+m(UB, VA)+m(UB, VB)< m′(UA, VA)+m′(UA, VB)+m′(UB, VB).

Since A ∩ VB = ∅ and m(UA, VB) = 0, we get the inequality

(2) m(UB, VB) ≥ m′(UA, VB) +m′(UB, VB).



Maximum Semi-matching Problem in Bipartite Graphs 563

UA U r UA

VA V r VA

/∈ M ′/∈ M

Figure 1. The vertices of G are divided into 4 parts.

The edges between UB and VA cannot belong to M ′,

the edges between UA and VB cannot belong to M .

By (1) and (2) we get

(3) m(UA, VA) +m(UB, VA) < m′(UA, VA).

Trivially, we have the following

(4) m(UB, VA) ≥ −m′(UA, VB).

Combining (3) and (4) we obtain

(5) m(UA, VA) < m′(UA, VA) +m′(UA, VB).

From the inequality (5) we can conclude that UA contains a vertex u with
degM (u) < degM ′(u). By the definition of UA, it implies an existence of an
M -augmenting path with endvertex u and an endvertex from A.

Theorem 2. An (f, g)-semi-matching M of a graph G = (U ∪V,E) is maximum

if and only if there exists no M -augmenting path P with endvertices u ∈ U, v ∈ V ,

degM (u) < f(u) and degM (v) < g(v).

Proof. Suppose to the contrary that there is a maximum (f, g)-semi-matching
M and an M -augmenting path P with endvertices u ∈ U, v ∈ V and degM (u) <
f(u), degM (v) < g(v). Then obviously M ⊕ P is an (f, g)-semi-matching with
|M ⊕ P | > |M |.

The opposite direction comes from Theorem 1.

The next theorem provides more information about the structure of augmenting
paths.

Theorem 3. Let M and M ′ be (f, g)-semi-matchings of a bipartite graph G such

that |M ′| − |M | = k > 0. Then there exist k edge-disjoint M -augmenting paths

P1, P2, . . . , Pk such that M ⊕ P1 ⊕ · · · ⊕ Pk = M ′.



564 J. Katrenič and G. Semanǐsin

Proof. We prove the theorem by induction on the size of the graph G. The
assertion obviously holds for the smallest possible cases. If M ∩ M ′ 6= ∅, then
G \ (M ∩M ′) and M \M ′, M ′ \M is an instance of theorem of smaller size and
the claim follows from induction hypothesis.

Suppose now M ∩M ′ = ∅. Using Theorem 1, there exists an M -augmenting
path P such that its edges alternatively belongs to M ′ and M . Therefore |M ′ \
E(P )|− |M \E(P )| = k−1 and (M⊕P )∩E(P ) = M ′∩E(P ). Consider now the
graphG\E(P ) and edge setsM\E(P ), M ′\E(P ). From the induction hypothesis
there exist k − 1 edge disjoint paths P1, . . . , Pk−1 such that (M \ E(P )) ⊕ P1 ⊕
· · ·Pk−1 = (M ′ \ E(P )). Clearly, P is edge disjoint with P1, . . . , Pk−1 and

M ′ = (M ′ ∩ E(P )) ∪ (M ′ \ E(P ))

= ((M ⊕ P ) ∩ E(P )) ∪ ((M \ E(P ))⊕ P1 ⊕ · · ·Pk−1)

= M ⊕ P1 ⊕ · · ·Pk−1 ⊕ P.

Corollary 4. Let M and M ′ be (f, 1)-semi-matchings of a bipartite graph G such

that |M ′| − |M | = k > 0. Then there exist k M -augmenting paths P1, P2, . . . , Pk

such that M ′ = M ⊕ P1 ⊕ · · · ⊕ Pk and E(Pi) ∩ E(Pj) = ∅, for each i, j ∈
{1, 2, . . . , k}, i 6= j.

Proof. It follows from Theorem 3 and the fact degM (v) ≤ 1, v ∈ V that no two
of those M -augmenting paths may overlap in a vertex v ∈ V .

Let M be an (f, g)-semi-matching of a bipartite graph G = (U ∪ V,E). Denote
by V g

M = {v ∈ V : degM (v) < g(v)}. We set adistM (x) to be the length of a
shortest M -alternating path starting in any vertex of V g

M and ending in x. If no
such M -alternating path exists, we put adistM (x) = +∞.

Theorem 5. Let M be an (f, g)-semi-matching of a bipartite graph G = (U ∪
V,E) and P be a shortest M -augmenting path. Then adistM (x) ≤ adistM⊕P (x)
for each vertex x ∈ U ∪ V .

Proof. Assume to the contrary that there exists at least one vertex x such that
adistM (x) > adistM⊕P (x). Let us choose such a vertex x with the smallest
possible value of adistM (x). It means that for each vertex y with adistM (y) <
adistM (x) the inequality adistM (y) ≤ adistM⊕P (x) is valid.

Clearly adistM⊕P (x) cannot be 0, because in such a case x is a vertex of V
for which degM⊕P (x) < g(x) and that is why adistM (x) must be zero as well.

Thus, adistM⊕P (x) is at least 1. Let y be the predecessor of x in a shortest
(M⊕P )-alternating path starting in a vertex of V g

M⊕P . Obviously adistM⊕P (y)+
1 = adistM⊕P (x). It also holds that adistM (y) ≤ adistM⊕P (y) (otherwise



Maximum Semi-matching Problem in Bipartite Graphs 565

x was not chosen correctly), what together with the previous equation gives
adistM (y) < adistM⊕P (x). Together with the initial inequality for y we ob-
tain adistM (y) < adistM⊕P (x) < adistM (x). This implies that the edge xy
was changed, i.e. xy ∈ P (otherwise the edge xy could be used to violate the
inequality adistM (v) > adistM⊕P (v)). Let us distinguish now two cases:

Case 1. x ∈ U and y ∈ V . As y is the predecessor of x in an (M ⊕ P )-
alternating path starting at V g

M⊕P , it implies that the edge yx /∈ M ⊕ P and
yx ∈ M . Now let us consider the path P . The path P was the shortest M -
alternating path starting at V g

M . Since adistM (y) < adistM (x) and xy ∈ P
the path P must visit the vertex y before x. However, in such a case, by the
definition of an alternating path starting at V , the edge going from V to U must
be unmatched, a contradiction.

Case 2. x ∈ V and y ∈ U . As y is a predecessor of x in an (M ⊕ P )-
alternating path started at V g

M⊕P , it implies that yx /∈ M ⊕ P , consequently
yx /∈ M . The path P was the shortest M -alternating path started at V g

M . Since
adistM (y) < adistM (x) and xy ∈ P the path P must first visit the vertex y
and then x. However, in such a case, from the definition of an alternating path
starting at V , the edge going from V to U must be matched, a contradiction

3. The Algorithm for Finding a Maximum (f, g)-semi-matching

In this section we describe an algorithm for solving the following problem:

Problem 6. Given a bipartite graphG = (U∪V,E) and two mappings f : U → N

and g : V → N. Find a maximum (f, g)-semi-matching of G.

In order to simplify the notation, for an (f, g)-semi-matching M of a bipartite
graph G = (U∪V,E) and for each vertex of u ∈ U∪V we introduce the parameter
cM (u) as follows:

cM (u) =

{

f(u)− degM (u) if u ∈ U ,

g(u)− degM (u) if u ∈ V .

We denote by Mf,g-augmenting path an M -augmenting path with endvertices
u ∈ U , v ∈ V , such that cM (u) > 0 and cM (v) > 0.

Our algorithm applies the same scheme as the well-known algorithm of Hop-
croft-Karp [8]. We start with an empty (f, g)-semi-matching M and in each
iteration we extend M by several augmenting paths. The length of a shortest
Mf,g-augmenting path increases after each iteration and each iteration of the
algorithm consumes O(m) time.



566 J. Katrenič and G. Semanǐsin

L0

L1

L2

L3

L4

Figure 2. The vertices of G classified into layers.

One iteration of the algorithm finds the smallest number t for which an Mf,g-
augmenting path of length t exists. Next, the algorithm extends M by several
augmenting paths in a single iteration, while there is an augmenting path of
length t. More precisely:

1. Let L0 = {v ∈ V : cM (v) > 0}.

2. In terms of Breadth-First Search algorithm, classify vertices of G into layers
L1, L2, . . . , Ln such that Li = {v ∈ U ∪ V : adistM (v) = i}. This can be
implemented as follows:

For each i = 0, 2, 4, . . . , 2⌊n/2⌋ do

Li+1 = {u ∈ U : u /∈ L0, . . . , Li−1 and there exists v ∈ Li : uv /∈ M},
Li+2 = {v ∈ V : v /∈ L0, . . . , Li−1 and there exists u ∈ Li+1 : uv ∈ M}

3. Let t > 0 be the smallest odd number such that there exists u ∈ Lt :
cM (u) > 0. If no such t exists, by Theorem 2 there is no Mf,g-augmenting
path. The algorithm stops and M is a maximum (f, g)-semi-matching,
otherwise continues by step 4.

4. For each vertex u ∈ Lt while cM (u) > 0 do

(i) Find an arbitrary Mf,g-augmenting path P of length t starting in u
such that V (P ) ⊆ L0, L1, . . . , Lt.

(ii) If such a path P exists, set M := M ⊕ P and recalculate values of cM
along the path P .

Theorem 7. The length of the shortest augmenting path increases after each

iteration of the algorithm.



Maximum Semi-matching Problem in Bipartite Graphs 567

Proof. An iteration which processes an (f, g)-semi-matchingM stops when there
is no Mf,g-augmenting path consisting of vertices of L0∪L1∪· · ·∪Lt. It remains
to prove, that after such an iteration there is no augmenting path of length t in
the graph G (a path of length less than t cannot appear due to Theorem 5 and
the fact that all vertices in layers L1, L2, . . . , Lt−1 have zero capacity).

Suppose to the contrary, that after the iteration there is an M ′

f,g-augmenting

path P = {v0, v1, . . . , vt} of order t in G. Since all the vertices of V g
M ′ are located

in L0, v0 ∈ L0. Since P is an alternating path starting by a vertex of L0, then
adistM ′(vi) ≤ i, for each i = 0, 1, . . . , t. According to Theorem 5, the value
of adist cannot decrease after iteration, i.e. adistM (vi) ≤ adistM ′(vi) for each
i = 0, 1, . . . , t. Hence, each vertex of P appears in L0 ∪ L1 ∪ · · ·Lt and such an
augmenting path was not processed during the iteration of the algorithm, which
is a contradiction.

3.1. The running time

Let n be the number of vertices in a given graph G and m be the number of its
edges, assume that m ≥ n−1 since isolated vertices can be erased from the graph
in linear time.

The algorithm starts with an empty (f, g)-semi-matchingM and then iterates
several times until at least one augmenting path is found. In the search loop,
the algorithm classifies the vertices into layers L0, L1, . . . , Lt and modifies M
by augmenting paths using vertices of L0, L1, . . . , Lt. This step consumes O(m)
time, since each edge is manipulated at most once during one iteration. No more
iteration is performed whenever no augmenting path was found in the actual
loop.

The key part of the complexity analysis is to enumerate the number of loops
of the algorithm. Let s be the size of a maximum (f, g)-semi-matching M∗. After
performing

√
s iterations of the algorithm, according to Theorem 7, the shortest

M -augmenting path consists of at least
√
s vertices. According to Theorem 3

there exist s − |M | edge disjoint M -augmenting paths that can simultaneously
extend M to size s and those paths consist only of edges of M ∪ M∗. As each
such a path must be of length at least

√
s and |M ∪ M∗| is at most 2s, these

imply that s − |M | ≤ 2
√
s. Since in each loop the algorithm finds at least one

augmenting path, the algorithm surely stops after at most 2
√
s loops. Hence,

the total number of performed loops is O(
√
s) and the algorithm runs in time

O(m · √s).

Moreover s ≤ f(U) and s ≤ g(V ) and we get that the algorithm computes a

maximum semi-matching in running time O
(

m ·min{
√

f(U),
√

g(V )}
)

. For the

case of (f, 1)-semi-matching this gives the complexity upper bound O(
√
n ·m).

In order to find an arbitrary (f, g)-quasi-matching one can use the algorithm



568 J. Katrenič and G. Semanǐsin

for maximum (f, g)-semi-matching problem which computes a maximum (f, g)-
semi-matching M . Clearly, if |M | < f(U) then no (f, g)-quasi-matching exists,
otherwise M is an (f, g)-quasi-matching. Moreover, for an (f, g)-quasi-matching
we may assume f(U) ≥ g(V ) (otherwise no (f, g)-quasi matching exists), we get
the algorithm with running time O(m

√

g(V )).

Acknowledgement

The research of both authors was partially supported by Slovak APVV grants
APVV-0035-10 and SK-SI-0014-10. The research of the second author was par-
tially supported by Slovak VEGA grant 1/0479/12 as well. The infrastructure
for the research was donated by the Agency of the Slovak Ministry of Education
for the Structural Funds of the EU, under project ITMS:26220120007.

References

[1] P. Biró and E. McDermid, Matching with sizes (or scheduling with processing set

restrictions), Electron. Notes Discrete Math. 36 (2010) 335–342.
doi:10.1016/j.endm.2010.05.043

[2] D. Bokal, B. Brešar and J. Jerebic, A generalization of Hungarian method and

Hall’s theorem with applications in wireless sensor networks , Discrete Appl. Math.
160 (2012) 460–470.
doi:10.1016/j.dam.2011.11.007

[3] J. Bruno, E.G. Coffman, Jr. and R. Sethi, Scheduling independent tasks to reduce

mean finishing time, Commun. ACM 17 (1974) 382–387.
doi:10.1145/361011.361064

[4] J. Fakcharoenphol, B. Laekhanukit, and D. Nanongkai, Faster algorithms for semi-

matching problems , in: ICALP 2010, Lecture Notes in Comput. Sci. 6198, S. Abram-
sky, C. Gavoille, C. Kirchner, F. M. auf der Heide, P. G. Spirakis (Ed(s)), (Springer,
2010) 176–187.
doi:10.1007/978-3-642-14165-2 16

[5] F. Galč́ık, J. Katrenič, and G. Semanǐsin, On computing an optimal semi-matching ,
in: WG 2011, Lecture Notes in Comput. Sci. 6986,, P. Kolman and J. Kratochv́ıl
(Ed(s)), (Springer, 2011) 250–261.
doi:10.1007/978-3-642-25870-1 23

[6] T. Gu, L. Chang, and Z. Xu, A novel symbolic algorithm for maximum weighted

matching in bipartite graphs , IJCNS 4 (2011) 111–121.
doi:10.4236/ijcns.2011.42014

[7] N.J.A. Harvey, R.E. Ladner, L. Lovász, and T. Tamir, Semi-matchings for bipartite

graphs and load balancing , J. Algorithms 59 (2006) 53–78.
doi:10.1016/j.jalgor.2005.01.003

[8] J.E. Hopcroft and R.M. Karp, An n5/2 algorithm for maximum matchings in bipar-

tite graphs , SIAM J. Comput. 2 (1973) 225–231.
doi:10.1137/0202019

http://dx.doi.org/10.1016/j.endm.2010.05.043
http://dx.doi.org/10.1016/j.dam.2011.11.007
http://dx.doi.org/10.1145/361011.361064
http://dx.doi.org/10.1007/978-3-642-14165-2_16
http://dx.doi.org/10.1007/978-3-642-25870-1_23
http://dx.doi.org/10.4236/ijcns.2011.42014
http://dx.doi.org/10.1016/j.jalgor.2005.01.003
http://dx.doi.org/10.1137/0202019


Maximum Semi-matching Problem in Bipartite Graphs 569

[9] W.A. Horn, Minimizing average flow time with parallel machines , Oper. Res. 21
(1973) 846–847.
doi:10.1287/opre.21.3.846

[10] S. Kravchenko and F. Werner, Parallel machine problems with equal processing

times: a survey , J. Sched. 14 (2011) 435–444.
doi:10.1007/s10951-011-0231-3

[11] K. Lee, J. Leung, and M. Pinedo, Scheduling jobs with equal processing times subject

to machine eligibility constraints , J. Sched. 14 (2011) 27–38.
doi:10.1007/s10951-010-0190-0

[12] K. Lee, J.Y.T. Leung and M. Pinedo, A note on “an approximation algorithm for the

load-balanced semi-matching problem in weighted bipartite graphs“ , Inform. Process.
Lett. 109 (2009) 608–610.
doi:10.1016/j.ipl.2009.02.010

[13] D. Luo, X. Zhu, X. Wu, and G. Chen, Maximizing lifetime for the shortest path

aggregation tree in wireless sensor networks , in: INFOCOM 2011, K. Gopalan and
A.D. Striegel (Ed(s)), (IEEE, 2011) 1566–1574.
doi:10.1109/INFCOM.2011.5934947

[14] R. Machado and S. Tekinay, A survey of game-theoretic approaches in wireless sen-

sor networks , Computer Networks 52 (2008) 3047–3061.
doi:10.1016/j.gaceta.2008.07.003

[15] B. Malhotra, I. Nikolaidis, and M.A. Nascimento, Aggregation convergecast schedul-

ing in wireless sensor networks , Wirel. Netw. 17 (2011) 319–335.
doi:10.1007/s11276-010-0282-y

[16] M. Mucha and P. Sankowski, Maximum matchings via gaussian elimination, in:
FOCS 2004, E. Upfal (Ed(s)), (IEEE Computer Society, 2004) 248–255.
doi:10.1109/FOCS.2004.40

[17] N. Sadagopan, M. Singh, and B. Krishnamachari, Decentralized utility-based sensor

network design, Mobile Networks and Applications 11 (2006) 341–350.
doi:10.1007/s11036-006-5187-8

[18] L.-H. Su., Scheduling on identical parallel machines to minimize total completion

time with deadline and machine eligibility constraints , The International Journal of
Advanced Manufacturing Technology 40 (2009) 572–581.
doi:10.1007/s00170-007-1369-1

[19] H. Yuta, O. Hirotaka, S. Kunihiko, and Y. Masafumi, Optimal balanced semi-

matchings for weighted bipartite graphs , IPSJ Digital Courier 3 (2007) 693–702.
doi:10.2197/ipsjdc.3.693

Received 2 February 2012
Revised 25 June 2012

Accepted 25 June 2012

http://dx.doi.org/10.1287/opre.21.3.846
http://dx.doi.org/10.1007/s10951-011-0231-3
http://dx.doi.org/10.1007/s10951-010-0190-0
http://dx.doi.org/10.1016/j.ipl.2009.02.010
http://dx.doi.org/10.1109/INFCOM.2011.5934947
http://dx.doi.org/10.1016/j.gaceta.2008.07.003
http://dx.doi.org/10.1007/s11276-010-0282-y
http://dx.doi.org/10.1109/FOCS.2004.40
http://dx.doi.org/10.1007/s11036-006-5187-8
http://dx.doi.org/10.1007/s00170-007-1369-1
http://dx.doi.org/10.2197/ipsjdc.3.693


Powered by TCPDF (www.tcpdf.org)

http://www.tcpdf.org

