# INTERVAL EDGE-COLORINGS OF CARTESIAN PRODUCTS OF GRAPHS I 

Petros A. Petrosyan<br>Department of Informatics and Applied Mathematics, Yerevan State University, 0025, Armenia<br>Institute for Informatics and Automation Problems, National Academy of Sciences, 0014, Armenia<br>e-mail: pet_petros@ipia.sci.am<br>Hrant H. Khachatrian<br>Department of Informatics and Applied Mathematics, Yerevan State University, 0025, Armenia<br>e-mail: hrant@egern.net

AND

Hovhannes G. Tananyan
Department of Applied Mathematics and Informatics, Russian-Armenian State University, 0051, Armenia
e-mail: HTananyan@yahoo.com


#### Abstract

A proper edge-coloring of a graph $G$ with colors $1, \ldots, t$ is an interval $t$-coloring if all colors are used and the colors of edges incident to each vertex of $G$ form an interval of integers. A graph $G$ is interval colorable if it has an interval $t$-coloring for some positive integer $t$. Let $\mathfrak{N}$ be the set of all interval colorable graphs. For a graph $G \in \mathfrak{N}$, the least and the greatest values of $t$ for which $G$ has an interval $t$-coloring are denoted by $w(G)$ and $W(G)$, respectively. In this paper we first show that if $G$ is an $r$-regular graph and $G \in \mathfrak{N}$, then $W\left(G \square P_{m}\right) \geq W(G)+W\left(P_{m}\right)+(m-1) r(m \in \mathbb{N})$ and $W\left(G \square C_{2 n}\right) \geq W(G)+W\left(C_{2 n}\right)+n r(n \geq 2)$. Next, we investigate interval edge-colorings of grids, cylinders and tori. In particular, we prove that if $G \square H$ is planar and both factors have at least 3 vertices, then $G \square H \in \mathfrak{N}$ and $w(G \square H) \leq 6$. Finally, we confirm the first author's conjecture on the $n$-dimensional cube $Q_{n}$ and show that $Q_{n}$ has an interval $t$-coloring if and only if $n \leq t \leq \frac{n(n+1)}{2}$.


Keywords: edge-coloring, interval coloring, grid, cylinder, torus, $n$-dimensional cube.
2010 Mathematics Subject Classification: 05C15.

## 1. Introduction

A proper edge-coloring of a graph $G$ with colors $1, \ldots, t$ is an interval $t$-coloring if all colors are used and the colors of edges incident to each vertex of $G$ form an interval of integers. A graph $G$ is interval colorable if it has an interval $t$-coloring for some positive integer $t$. Let $\mathfrak{N}$ be the set of all interval colorable graphs [1, 14]. For a graph $G \in \mathfrak{N}$, the least and the greatest values of $t$ for which $G$ has an interval $t$-coloring are denoted by $w(G)$ and $W(G)$, respectively. The concept of interval edge-coloring was introduced by Asratian and Kamalian [1]. In [1], they proved the following:

Theorem 1. Let $G$ be a regular graph. Then
(1) $G \in \mathfrak{N}$ if and only if $\chi^{\prime}(G)=\Delta(G)$.
(2) If $G \in \mathfrak{N}$ and $w(G) \leq t \leq W(G)$, then $G$ has an interval $t$-coloring.

In [2], Asratian and Kamalian investigated interval edge-colorings of connected graphs. In particular, they obtained the following two results.

Theorem 2. If $G$ is a connected graph and $G \in \mathfrak{N}$, then

$$
W(G) \leq(\operatorname{diam}(G)+1)(\Delta(G)-1)+1
$$

Theorem 3. If $G$ is a connected bipartite graph and $G \in \mathfrak{N}$, then

$$
W(G) \leq \operatorname{diam}(G)(\Delta(G)-1)+1
$$

Recently, Kamalian and the first author [16] showed that these upper bounds cannot be significantly improved.

In [13], Kamalian investigated interval colorings of complete bipartite graphs and trees. In particular, he proved the following:

Theorem 4. For any $r, s \in \mathbb{N}$, the complete bipartite graph $K_{r, s}$ is interval colorable, and
(1) $w\left(K_{r, s}\right)=r+s-\operatorname{gcd}(r, s)$,
(2) $W\left(K_{r, s}\right)=r+s-1$,
(3) if $w\left(K_{r, s}\right) \leq t \leq W\left(K_{r, s}\right)$, then $K_{r, s}$ has an interval $t$-coloring.

In [21], the first author investigated interval colorings of complete graphs and $n$-dimensional cubes. In particular, he obtained the following two results.

Theorem 5. If $n=p 2^{q}$, where $p$ is odd and $q$ is nonnegative, then

$$
W\left(K_{2 n}\right) \geq 4 n-2-p-q .
$$

Theorem 6. If $n \in \mathbb{N}$, then $W\left(Q_{n}\right) \geq \frac{n(n+1)}{2}$.
The $N P$-completeness of the problem of the existence of an interval edge-coloring of an arbitrary bipartite graph was shown in [24]. A similar result for regular graphs was obtained in [1, 2]. In [19, 22, 23], interval edge-colorings of various products of graphs were investigated. Some interesting results on interval colorings were also obtained in $[3,4,6,7,8,9,10,14,15,16,17,18,19,20]$. Surveys on this topic can be found in some books $[3,12,19]$.

In this paper we focus only on interval edge-colorings of Cartesian products of graphs.

## 2. Notations, Definitions and Auxiliary Results

Throughout this paper all graphs are finite, undirected, and have no loops or multiple edges. Let $V(G)$ and $E(G)$ denote the sets of vertices and edges of graph $G$, respectively. The degree of a vertex $v$ in $G$ is denoted by $d_{G}(v)$, the maximum degree of $G$ by $\Delta(G)$, and the chromatic index of $G$ by $\chi^{\prime}(G)$. If $G$ is a connected graph, then the distance between two vertices $u$ and $v$ in $G$, we denote by $d(u, v)$, and the diameter of $G$ by $\operatorname{diam}(G)$. We use the standard notations $P_{n}, C_{n}, K_{n}$ and $Q_{n}$ for the path, cycle, complete graph on $n$ vertices and the $n$ dimensional cube, respectively. A partial edge-coloring of a graph $G$ is a coloring of some edges of $G$ such that no two adjacent edges receive the same color. If $\alpha$ is a partial edge-coloring of $G$ and $v \in V(G)$, then $S(v, \alpha)$ denotes the set of colors appearing on colored edges incident to $v$. Clearly, if $\alpha$ is a proper edge-coloring of a graph $G$, then $|S(v, \alpha)|=d_{G}(v)$ for every $v \in V(G)$.

Let $[t]$ denote the set of the first $t$ natural numbers. Let $\lfloor a\rfloor(\lceil a\rceil)$ denote the largest (least) integer less (greater) than or equal to $a$. For two positive integers $a$ and $b$ with $a \leq b$, the set $\{a, \ldots, b\}$ is denoted by $[a, b]$. The terms and concepts that we do not define can be found in [25].

Let $G$ and $H$ be graphs. The Cartesian product $G \square H$ is defined as follows: $V(G \square H)=V(G) \times V(H), E(G \square H)=\left\{\left(u_{1}, v_{1}\right)\left(u_{2}, v_{2}\right): u_{1}=u_{2}\right.$ and $v_{1} v_{2} \in$ $E(H)$ or $v_{1}=v_{2}$ and $\left.u_{1} u_{2} \in E(G)\right\}$.

Let $V(G)=\left\{u_{1}, \ldots, u_{n}\right\}$ and $V(H)=\left\{w_{1}, \ldots, w_{m}\right\}$. We use the following notation for vertex and edge sets of the Cartesian product $G \square H: V(G \square H)=$ $\bigcup_{i=1}^{m} V^{i}$, where $V^{i}=\left\{v_{j}^{(i)}: 1 \leq j \leq n\right\}$ and $E(G \square H)=\bigcup_{i=1}^{m} E^{i} \cup \bigcup_{j=1}^{n} E_{j}$, where $E^{i}=\left\{v_{j}^{(i)} v_{k}^{(i)}: u_{j} u_{k} \in E(G)\right\}$ and $E_{j}=\left\{v_{j}^{(i)} v_{j}^{(k)}: w_{i} w_{k} \in E(H)\right\}$.

We define subgraphs $G^{i}$ of $G$ as follows: $G^{i}=\left(V^{i}, E^{i}\right)$. Clearly, $G^{i}$ is isomorphic to $G$ for $1 \leq i \leq m$.

Clearly, if $G$ and $H$ are connected graphs, then $G \square H$ is connected, too. Moreover, $\Delta(G \square H)=\Delta(G)+\Delta(H)$ and $\operatorname{diam}(G \square H)=\operatorname{diam}(G)+\operatorname{diam}(H)$.

The $k$-dimensional grid $G\left(n_{1}, \ldots, n_{k}\right), n_{i} \in \mathbb{N}$, is the Cartesian product of paths $P_{n_{1}} \square P_{n_{2}} \square \cdots \square P_{n_{k}}$. The cylinder $C\left(n_{1}, n_{2}\right)$ is the Cartesian product $P_{n_{1}} \square C_{n_{2}}$, and the torus $T\left(n_{1}, n_{2}\right)$ is the Cartesian product of cycles $C_{n_{1}} \square C_{n_{2}}$.

We also need the following two lemmas.
Lemma 7. If $\alpha$ is an edge-coloring of a connected graph $G$ with colors $1, \ldots, t$ such that the edges incident to each vertex $v \in V(G)$ are colored by distinct and consecutive colors, and $\min _{e \in E(G)}\{\alpha(e)\}=1, \max _{e \in E(G)}\{\alpha(e)\}=t$, then $\alpha$ is an interval $t$-coloring of $G$.
Proof. For the proof of the lemma, it suffices to show that all colors are used in the coloring $\alpha$ of $G$.

Let $u$ and $w$ be vertices such that $1 \in S(u, \alpha)$ and $t \in S(w, \alpha)$. Also, let $P=v_{1}, \ldots, v_{k}$, where $u=v_{1}$ and $v_{k}=w$ be a $u, w$-path in $G$. If $k=1$, then $t \in S(u, \alpha)$ and all colors appear on edges incident to $u$. Assume that $k \geq 2$. The sets $S\left(v_{i}, \alpha\right)$ for $v_{i} \in V(P)$ are intervals, and for $2 \leq i \leq k$, intervals $S\left(v_{i-1}, \alpha\right)$ and $S\left(v_{i}, \alpha\right)$ share a color. Thus, the sets $S\left(v_{1}, \alpha\right), \ldots, S\left(v_{k}, \alpha\right)$ cover $[1, t]$.

The next lemma was proved by Behzad and Mahmoodian in [5].
Lemma 8. If both $G$ and $H$ have at least 3 vertices, then the Cartesian product $G \square H$ is planar if and only if $G \square H=G(m, n)$ or $G \square H=C(m, n)$.

## 3. The Cartesian Product of Regular Graphs

Interval edge-colorings of Cartesian products of graphs were first investigated by Giaro and Kubale in [7], where they proved the following:
Theorem 9. If $G \in \mathfrak{N}$, then $G \square P_{m} \in \mathfrak{N}(m \in \mathbb{N})$ and $G \square C_{2 n} \in \mathfrak{N}(n \geq 2)$.
It is well-known that $P_{m}, C_{2 n} \in \mathfrak{N}$ and $W\left(P_{m}\right)=m-1, W\left(C_{2 n}\right)=n+1$ for $m \in \mathbb{N}$ and $n \geq 2$. Later, Giaro and Kubale [9,19] proved a more general result.
Theorem 10. If $G, H \in \mathfrak{N}$, then $G \square H \in \mathfrak{N}$. Moreover, $w(G \square H) \leq w(G)+$ $w(H)$ and $W(G \square H) \geq W(G)+W(H)$.
Let us note that if $G \in \mathfrak{N}$ and $H=P_{m}$ or $H=C_{2 n}$, then, by Theorem 10, we obtain $w(G \square H) \leq w(G)+2$ and $W\left(G \square P_{m}\right) \geq W(G)+m-1, W\left(G \square C_{2 n}\right) \geq$ $W(G)+n+1$. Now we improve the lower bound in Theorem 10 for $W\left(G \square P_{m}\right)$ and $W\left(G \square C_{2 n}\right)$ when $G$ is a regular graph and $G \in \mathfrak{N}$. More precisely, we show that the following two theorems hold.

Theorem 11. If $G$ is an $r$-regular graph and $G \in \mathfrak{N}$, then $G \square P_{m} \in \mathfrak{N}(m \in \mathbb{N})$ and $W\left(G \square P_{m}\right) \geq W(G)+W\left(P_{m}\right)+(m-1) r$.

Proof. For the proof, we construct an edge-coloring of the graph $G \square P_{m}$ that satisfies the specified conditions.

Since $G \in \mathfrak{N}$, there exists an interval $W(G)$-coloring $\alpha$ of $G$. Now we define an edge-coloring $\beta$ of the subgraphs $G^{1}, \ldots, G^{m}$. For $1 \leq i \leq m$ and for every edge $v_{j}^{(i)} v_{k}^{(i)} \in E\left(G^{i}\right)$, let

$$
\beta\left(v_{j}^{(i)} v_{k}^{(i)}\right)=\alpha\left(v_{j} v_{k}\right)+(i-1)(r+1) .
$$

It is easy to see that the color of each edge of the subgraph $G^{i}$ is obtained by shifting the color of the associated edge of $G$ by $(i-1)(r+1)$. Thus the set $S\left(v_{j}^{(i)}, \beta\right)$ is an interval for each vertex $v_{j}^{(i)} \in V\left(G^{i}\right)$, where $1 \leq i \leq m$, $1 \leq j \leq n$. Now we define an edge-coloring $\gamma$ of the graph $G \square P_{m}$. For every $e \in E\left(G \square P_{m}\right)$, let

$$
\gamma(e)= \begin{cases}\beta(e), & \text { if } e \in E\left(G^{i}\right), \\ \max S\left(v_{j}^{(i)}, \beta\right)+1, & \text { if } e=v_{j}^{(i)} v_{j}^{(i+1)} \in E_{j},\end{cases}
$$

where $1 \leq i \leq m, 1 \leq j \leq n$.
Let us prove that $\gamma$ is an interval $\left(W(G)+W\left(P_{m}\right)+(m-1) r\right)$-coloring of the graph $G \square P_{m}$ for $m \in \mathbb{N}$.

First we prove that the set $S\left(v_{j}^{(i)}, \gamma\right)$ is an interval for each vertex $v_{j}^{(i)} \in$ $V\left(G \square P_{m}\right)$, where $1 \leq i \leq m, 1 \leq j \leq n$.

For each vertex $v_{j}^{(i)} \in V\left(G \square P_{m}\right)$, the set $S\left(v_{j}^{(i)}, \gamma\right)$ can be represented as a union of three sets, $S\left(v_{j}^{(i)}, \gamma\right)=A_{j}^{(i)} \cup B_{j}^{(i)} \cup C_{j}^{(i)}$, where $A_{j}^{(i)}$ corresponds to the edges of $i$-th layer, $B_{j}^{(i)}$ corresponds to the edges from the vertices of lower layer and $C_{j}^{(i)}$ corresponds to the edges from the vertices of higher layer. More specifically, for $1 \leq i \leq m, 1 \leq j \leq n$, define sets $A_{j}^{(i)}, B_{j}^{(i)}$ and $C_{j}^{(i)}$ as follows:

$$
\begin{aligned}
& A_{j}^{(i)}=\left\{\gamma\left(v_{j}^{(i)} u\right): v_{j}^{(i)} u \in E^{i}\right\}, \\
& B_{j}^{(i)}= \begin{cases}\emptyset, & \text { if } i=1, \\
\left\{\gamma\left(v_{j}^{(i)} u\right): v_{j}^{(i)} u \in E_{j}, u \in V^{i-1}\right\}, & \text { if } 2 \leq i \leq m,\end{cases} \\
& C_{j}^{(i)}= \begin{cases}\left\{\gamma\left(v_{j}^{(i)} u\right): v_{j}^{(i)} u \in E_{j}, u \in V^{i+1}\right\}, & \text { if } 1 \leq i \leq m-1, \\
\emptyset, & \text { if } i=m .\end{cases}
\end{aligned}
$$

By the definition of $\gamma$, we have that for $1 \leq i \leq m, 1 \leq j \leq n$,

$$
\begin{aligned}
A_{j}^{(i)} & =\left[\min S\left(v_{j}, \alpha\right)+(i-1)(r+1), \max S\left(v_{j}, \alpha\right)+(i-1)(r+1)\right], \\
& \text { for } 2 \leq i \leq m, 1 \leq j \leq n, \\
B_{j}^{(i)} & =\left\{\max S\left(v_{j}, \alpha\right)+(i-2)(r+1)+1\right\}, \\
& \text { and for } 1 \leq i \leq m-1,1 \leq j \leq n, \\
C_{j}^{(i)} & =\left\{\max S\left(v_{j}, \alpha\right)+(i-1)(r+1)+1\right\} .
\end{aligned}
$$

By this and taking into account that $\max S\left(v_{j}, \alpha\right)-\min S\left(v_{j}, \alpha\right)=r-1$ for $1 \leq j \leq n$, we have that $A_{j}^{(i)} \cup B_{j}^{(i)} \cup C_{j}^{(i)}$ is an interval for each vertex $v_{j}^{(i)} \in V\left(G^{i}\right)$, where $1 \leq i \leq m, 1 \leq j \leq n$.

Next we show that in the coloring $\gamma$ all colors are used. Clearly, there exists an edge $v_{j_{0}}^{(1)} v_{k_{0}}^{(1)} \in E\left(G^{1}\right)$ such that $\gamma\left(v_{j_{0}}^{(1)} v_{k_{0}}^{(1)}\right)=1$, since in the coloring $\alpha$ there exists an edge $v_{j_{0}} v_{k_{0}}$ with $\alpha\left(v_{j_{0}} v_{k_{0}}\right)=1$ and $\gamma\left(v_{j_{0}}^{(1)} v_{k_{0}}^{(1)}\right)=$ $\beta\left(v_{j_{0}}^{(1)} v_{k_{0}}^{(1)}\right)=\alpha\left(v_{j_{0}} v_{k_{0}}\right)$. Similarly, there exists an edge $v_{j_{1}}^{(m)} v_{k_{1}}^{(m)} \in E\left(G^{m}\right)$ such that $\gamma\left(v_{j_{1}}^{(m)} v_{k_{1}}^{(m)}\right)=W(G)+(m-1)(r+1)=W(G)+W\left(P_{m}\right)+(m-1) r$, since in the coloring $\alpha$ there exists an edge $v_{j_{1}} v_{k_{1}}$ with $\alpha\left(v_{j_{1}} v_{k_{1}}\right)=W(G)$ and $\gamma\left(v_{j_{1}}^{(m)} v_{k_{1}}^{(m)}\right)=\beta\left(v_{j_{1}}^{(m)} v_{k_{1}}^{(m)}\right)=\alpha\left(v_{j_{1}} v_{k_{1}}\right)+(m-1)(r+1)$.

Now, by Lemma 7, we have that $\gamma$ is an interval $\left(W(G)+W\left(P_{m}\right)+(m-1) r\right)$ -coloring of the graph $G \square P_{m}$ for $m \in \mathbb{N}$.

Corollary 12. If $G$ is an $r$-regular graph and $G \in \mathfrak{N}$, then $G \square Q_{n} \in \mathfrak{N}(n \in \mathbb{N})$ and

$$
W\left(G \square Q_{n}\right) \geq W(G)+\frac{n(n+2 r+1)}{2} .
$$

Proof. By Theorem 11 and using associativity of the Cartesian product, we get

$$
W\left(G \square Q_{n}\right)=W\left(\cdots\left(\left(G \square K_{2}\right) \square K_{2}\right) \square \cdots \square K_{2}\right) \geq W(G)+\frac{n(n+2 r+1)}{2} .
$$

Theorem 13. If $G$ is an $r$-regular graph and $G \in \mathfrak{N}$, then $G \square C_{2 n} \in \mathfrak{N}(n \geq 2)$ and $W\left(G \square C_{2 n}\right) \geq W(G)+W\left(C_{2 n}\right)+n r$.

Proof. For the proof, we construct an edge-coloring of the graph $G \square C_{2 n}$ that satisfies the specified conditions.

Since $G \in \mathfrak{N}$, there exists an interval $W(G)$-coloring $\alpha$ of $G$. Now we define an edge-coloring $\beta$ of the subgraphs $G^{1}, \ldots, G^{2 n}$.

For $1 \leq i \leq 2 n$ and for every edge $v_{j}^{(i)} v_{k}^{(i)} \in E\left(G^{i}\right)$, let

$$
\beta\left(v_{j}^{(i)} v_{k}^{(i)}\right)= \begin{cases}\alpha\left(v_{j} v_{k}\right), & \text { if } i=1, \\ \alpha\left(v_{j} v_{k}\right)+(i-1)(r+1)+1, & \text { if } 2 \leq i \leq n+1 \\ \alpha\left(v_{j} v_{k}\right)+(2 n+1-i)(r+1), & \text { if } n+2 \leq i \leq 2 n\end{cases}
$$

It is easy to see that the color of each edge of the subgraph $G^{i}$ is obtained by shifting the color of the associated edge of $G$ by $(i-1)(r+1)+1$ for $2 \leq i \leq n+1$, and by $(2 n-i+1)(r+1)$ for $n+2 \leq i \leq 2 n$, thus the set $S\left(v_{j}^{(i)}, \beta\right)$ is an interval for each vertex $v_{j}^{(i)} \in V\left(G^{i}\right)$, where $1 \leq i \leq 2 n, 1 \leq j \leq p$. Now we define an edge-coloring $\gamma$ of the graph $G \square C_{2 n}$.

For every $e \in E\left(G \square C_{2 n}\right)$, let

$$
\gamma(e)= \begin{cases}\beta(e), & \text { if } e \in E\left(G^{i}\right), \\ \max S\left(v_{j}^{(1)}, \beta\right)+1, & \text { if } e=v_{j}^{(1)} v_{j}^{(2 n)} \in E_{j}, \\ \max S\left(v_{j}^{(1)}, \beta\right)+2, & \text { if } e=v_{j}^{(1)} v_{j}^{(2)} \in E_{j}, \\ \max S\left(v_{j}^{(i)}, \beta\right)+1, & \text { if } e=v_{j}^{(i)} v_{j}^{(i+1)} \in E_{j}, 2 \leq i \leq n, \\ \max S\left(v_{j}^{(i)}, \beta\right)+1, & \text { if } e=v_{j}^{(i-1)} v_{j}^{(i)} \in E_{j}, n+2 \leq i \leq 2 n,\end{cases}
$$

where $1 \leq i \leq 2 n, 1 \leq j \leq p$.
Let us prove that $\gamma$ is an interval $\left(W(G)+W\left(C_{2 n}\right)+n r\right)$-coloring of the graph $G \square C_{2 n}$ for $n \geq 2$.

First we prove that the set $S\left(v_{j}^{(i)}, \gamma\right)$ is an interval for each vertex $v_{j}^{(i)} \in$ $V\left(G \square C_{2 n}\right)$, where $1 \leq i \leq 2 n, 1 \leq j \leq p$.

Case 1. $i=1,1 \leq j \leq p$. By the definition of $\gamma$ and taking into account that $\max S\left(v_{j}, \alpha\right)-\min S\left(v_{j}, \alpha\right)=r-1$ for $1 \leq j \leq p$, we have

$$
\begin{aligned}
S\left(v_{j}^{(1)}, \gamma\right)= & \left\{\min S\left(v_{j}, \alpha\right), \ldots, \max S\left(v_{j}, \alpha\right)\right\} \cup\left\{\max S\left(v_{j}, \alpha\right)+2\right\} \\
\cup & \left\{\max S\left(v_{j}, \alpha\right)+1\right\}=\left[\min S\left(v_{j}, \alpha\right), \max S\left(v_{j}, \alpha\right)+2\right] .
\end{aligned}
$$

Case 2 . $2 \leq i \leq n, 1 \leq j \leq p$. By the definition of $\gamma$ and taking into account that $\max S\left(v_{j}, \alpha\right)-\min S\left(v_{j}, \alpha\right)=r-1$ for $1 \leq j \leq p$, we have

$$
\begin{aligned}
S\left(v_{j}^{(i)}, \gamma\right) & =\left\{\min S\left(v_{j}, \alpha\right)+(i-1)(r+1)+1, \ldots, \max S\left(v_{j}, \alpha\right)\right. \\
& +(i-1)(r+1)+1\} \cup\left\{\max S\left(v_{j}, \alpha\right)+(i-2)(r+1)+2\right\} \\
& \cup\left\{\max S\left(v_{j}, \alpha\right)+(i-1)(r+1)+2\right\} \\
& =\left[\min S\left(v_{j}, \alpha\right)+(i-1)(r+1), \max S\left(v_{j}, \alpha\right)+(i-1)(r+1)+2\right] .
\end{aligned}
$$

Case 3. $i=n+1,1 \leq j \leq p$. By the definition of $\gamma$ and taking into account that $\max S\left(v_{j}, \alpha\right)-\min S\left(v_{j}, \alpha\right)=r-1$ for $1 \leq j \leq p$, we have

$$
\begin{aligned}
S\left(v_{j}^{(n+1)}, \gamma\right) & =\left\{\min S\left(v_{j}, \alpha\right)+n(r+1)+1, \ldots, \max S\left(v_{j}, \alpha\right)+n(r+1)+1\right\} \\
& \cup\left\{\max S\left(v_{j}, \alpha\right)+(n-1)(r+1)+2\right\} \\
& \cup\left\{\max S\left(v_{j}, \alpha\right)+(n-1)(r+1)+1\right\} \\
& =\left[\min S\left(v_{j}, \alpha\right)+n(r+1)-1, \max S\left(v_{j}, \alpha\right)+n(r+1)+1\right] .
\end{aligned}
$$

Case 4. $n+2 \leq i \leq 2 n, 1 \leq j \leq p$. By the definition of $\gamma$ and taking into account that $\max S\left(v_{j}, \alpha\right)-\min S\left(v_{j}, \alpha\right)=r-1$ for $1 \leq j \leq p$, we have

$$
\begin{aligned}
S\left(v_{j}^{(i)}, \gamma\right) & =\left\{\min S\left(v_{j}, \alpha\right)+(2 n+1-i)(r+1), \ldots, \max S\left(v_{j}, \alpha\right)\right. \\
& +(2 n+1-i)(r+1)\} \cup\left\{\max S\left(v_{j}, \alpha\right)+(2 n+1-i)(r+1)+1\right\} \\
& \cup\left\{\max S\left(v_{j}, \alpha\right)+(2 n-i)(r+1)+1\right\}=\left[\min S\left(v_{j}, \alpha\right)\right. \\
& \left.+(2 n-i+1)(r+1)-1, \max S\left(v_{j}, \alpha\right)+(2 n-i+1)(r+1)+1\right] .
\end{aligned}
$$

Next we show that in the coloring $\gamma$ all colors are used. Clearly, there exists an edge $v_{j_{0}}^{(1)} v_{k_{0}}^{(1)} \in E\left(G^{1}\right)$ such that $\gamma\left(v_{j_{0}}^{(1)} v_{k_{0}}^{(1)}\right)=1$, since in the coloring $\alpha$ there exists an edge $v_{j_{0}} v_{k_{0}}$ with $\alpha\left(v_{j_{0}} v_{k_{0}}\right)=1$ and $\gamma\left(v_{j_{0}}^{(1)} v_{k_{0}}^{(1)}\right)=$ $\beta\left(v_{j_{0}}^{(1)} v_{k_{0}}^{(1)}\right)=\alpha\left(v_{j_{0}} v_{k_{0}}\right)$. Similarly, there exists an edge $v_{j_{1}}^{(n+1)} v_{k_{1}}^{(n+1)} \in E\left(G^{n+1}\right)$ such that $\gamma\left(v_{j_{1}}^{(n+1)} v_{k_{1}}^{(n+1)}\right)=W(G)+n(r+1)+1=W(G)+W\left(C_{2 n}\right)+n r$, since in the coloring $\alpha$ there exists an edge $v_{j_{1}} v_{k_{1}}$ with $\alpha\left(v_{j_{1}} v_{k_{1}}\right)=W(G)$ and $\gamma\left(v_{j_{1}}^{(n+1)} v_{k_{1}}^{(n+1)}\right)=\beta\left(v_{j_{1}}^{(n+1)} v_{k_{1}}^{(n+1)}\right)=\alpha\left(v_{j_{1}} v_{k_{1}}\right)+n(r+1)+1$.

Now, by Lemma 7, we have that $\gamma$ is an interval $\left(W(G)+W\left(C_{2 n}\right)+n r\right)-$ coloring of the graph $G \square C_{2 n}$ for $n \geq 2$.

From Theorems 5 and 13, we have:
Corollary 14. If $n=p 2^{q}$, where $p$ is odd and $q$ is nonnegative, then

$$
W\left(K_{2 n} \square C_{2 n}\right) \geq 2 n^{2}+4 n-1-p-q .
$$

Note that the lower bound in Corollary 14 is close to the upper bound for $W\left(K_{2 n} \square C_{2 n}\right)$, since $\Delta\left(K_{2 n} \square C_{2 n}\right)=2 n+1$ and $\operatorname{diam}\left(K_{2 n} \square C_{2 n}\right)=n+1$, by Theorem 2, we have $W\left(K_{2 n} \square C_{2 n}\right) \leq 2 n^{2}+4 n+1$.

## 4. Grids, Cylinders and Tori

Interval edge-colorings of grids, cylinders and tori were first considered by Giaro and Kubale in [7], where they proved the following:

Theorem 15. If $G=G\left(n_{1}, \ldots, n_{k}\right)$ or $G=C(m, 2 n), m \in \mathbb{N}, n \geq 2$, or $G=$ $T(2 m, 2 n), m, n \geq 2$, then $G \in \mathfrak{N}$ and $w(G)=\Delta(G)$.

For the greatest possible number of colors in interval colorings of grid graphs, the first author and Karapetyan [20] proved the following theorems:

Theorem 16. For any $m \in \mathbb{N}, n \geq 2$, we have $W(C(m, 2 n)) \geq 3 m+n-2$.
Theorem 17. For any $m, n \geq 2$, we have $W(T(2 m, 2 n)) \geq \max \{3 m+n, 3 n+m\}$.
First we consider grids. It is easy to see that $W(G(2, n))=2 n-1$ for any $n \in \mathbb{N}$. Now we provide a lower bound for $W(G(m, n))$ when $m, n \geq 2$.


Figure 1. Interval 14-coloring of the graph $G(4,6)$.

Theorem 18. For any $m, n \geq 2$, we have $W(G(m, n)) \geq 2(m+n-3)$.
Proof. For the proof, we are going to construct an edge-coloring of the graph $G(m, n)$ that satisfies the specified conditions.

Define an edge-coloring $\alpha$ of $G(m, n)$ as follows:
(1) for $i=1, \ldots, m-1, j=1, \ldots, n-1$, let

$$
\alpha\left(v_{j}^{(i)} v_{j}^{(i+1)}\right)=2(i+j)-3 ;
$$

(2) for $i=1, \ldots, m-1$, let

$$
\alpha\left(v_{n}^{(i)} v_{n}^{(i+1)}\right)=2(n+i)-5 ;
$$

(3) for $j=1, \ldots, n-1$, let

$$
\alpha\left(v_{j}^{(1)} v_{j+1}^{(1)}\right)=2 j
$$

(4) for $i=2, \ldots, m, j=1, \ldots, n-1$, let

$$
\alpha\left(v_{j}^{(i)} v_{j+1}^{(i)}\right)=2(i+j)-4
$$

It is easy to see that $\alpha$ is an interval $(2(m+n-3))$-coloring of $G(m, n)$ when $m, n \geq 2$.

Figure 1 shows the interval 14-coloring $\alpha$ of the graph $G(4,6)$ described in the proof of Theorem 18.

Note that the lower bound in Theorem 18 is not far from the upper bound for $W(G(m, n))$, since $G(m, n)$ is bipartite, $2 \leq \Delta(G(m, n)) \leq 4$ and $\operatorname{diam}(G(m, n))$ $=m+n-2$, by Theorem 3, we have $W(G(m, n)) \leq 3(m+n-2)+1$.

From Theorems 10 and 18, we have:
Corollary 19. If $n_{1} \geq \cdots \geq n_{2 k} \geq 2(k \in \mathbb{N})$, then

$$
W\left(G\left(n_{1}, \ldots, n_{2 k}\right)\right) \geq 2 \sum_{i=1}^{2 k} n_{i}-6 k
$$

and if $n_{1} \geq \cdots \geq n_{2 k+1} \geq 2(k \in \mathbb{N})$, then

$$
W\left(G\left(n_{1}, \ldots, n_{2 k+1}\right)\right) \geq 2 \sum_{i=1}^{2 k} n_{i}+n_{2 k+1}-6 k-1
$$

Next we consider cylinders. In [18], Khchoyan proved the following:
Theorem 20. For any $n \geq 3$, we have
(1) $C(2, n) \in \mathfrak{N}$,
(2) $w(C(2, n))=3$,
(3) $W(C(2, n))=n+2$,
(4) if $w(C(2, n)) \leq t \leq W(C(2, n))$, then $C(2, n)$ has an interval $t$-coloring.

Now we prove some general results on cylinders.
Theorem 21. For any $m \geq 3, n \in \mathbb{N}$, we have $C(m, 2 n+1) \in \mathfrak{N}$ and

$$
w(C(m, 2 n+1))= \begin{cases}4, & \text { if } m \text { is even } \\ 6, & \text { if } m \text { is odd. }\end{cases}
$$

Proof. First we show that if $m$ is even, then $C(m, 2 n+1)$ has an interval 4coloring. For $1 \leq i \leq \frac{m}{2}$, define a subgraph $C^{i}$ of the graph $C(m, 2 n+1)$ as follows:

$$
C^{i}=\left(V^{2 i-1} \cup V^{2 i}, E^{2 i-1} \cup E^{2 i} \cup\left\{v_{j}^{(2 i-1)} v_{j}^{(2 i)}: 1 \leq j \leq 2 n+1\right\}\right)
$$

Clearly, $C^{i}$ is isomorphic to $C(2,2 n+1)$ for $1 \leq i \leq \frac{m}{2}$. By Theorem 20, $C(2,2 n+1) \in \mathfrak{N}$ and there exists an interval 3 -coloring $\alpha$ of $C(2,2 n+1)$. Now we define an edge-coloring $\beta$ of $C(m, 2 n+1)$. First we color the edges of $C^{i}$ according to $\alpha$ for $1 \leq i \leq \frac{m}{2}$. Then we color the edges $v_{j}^{(2 i)} v_{j}^{(2 i+1)} \in E_{j}$ with color 4 for $1 \leq i \leq \frac{m}{2}-1,1 \leq j \leq 2 n+1$. It is easy to see that $\beta$ is an interval 4 -coloring of $C(m, 2 n+1)$. This shows that $C(m, 2 n+1) \in \mathfrak{N}$ and $w(C(m, 2 n+1)) \leq 4$. On the other hand, $w(C(m, 2 n+1)) \geq \Delta(C(m, 2 n+1))=4 ;$ thus $w(C(m, 2 n+1))=4$ for even $m$.

Now assume that $m$ is odd. First we show that $C(3,2 n+1)$ has an interval 6 -coloring. Define an edge-coloring $\gamma$ of $C(3,2 n+1)$ as follows:
(1) $\gamma\left(v_{1}^{(1)} v_{1}^{(2)}\right)=6$ and for $j=2, \ldots, 2\left\lfloor\frac{n+1}{2}\right\rfloor$, let $\gamma\left(v_{j}^{(1)} v_{j}^{(2)}\right)=4$;
(2) $\gamma\left(v_{2\left\lfloor\frac{n+1}{2}\right\rfloor+1}^{(1)} v_{2\left\lfloor\frac{n+1}{2}\right\rfloor+1}^{(2)}\right)=2$ and for $j=2\left\lfloor\frac{n+1}{2}\right\rfloor+2, \ldots, 2 n+1$, let

$$
\gamma\left(v_{j}^{(1)} v_{j}^{(2)}\right)=3 ;
$$

(3) $\gamma\left(v_{1}^{(2)} v_{1}^{(3)}\right)=3$ and for $j=2, \ldots, 2\left\lfloor\frac{n+1}{2}\right\rfloor$, let $\gamma\left(v_{j}^{(2)} v_{j}^{(3)}\right)=2$;
(4) for $j=2\left\lfloor\frac{n+1}{2}\right\rfloor+1, \ldots, 2 n+1$, let $\gamma\left(v_{j}^{(2)} v_{j}^{(3)}\right)=1$;
(5) $j=1, \ldots,\left\lfloor\frac{n+1}{2}\right\rfloor$, let

$$
\gamma\left(v_{2 j-1}^{(1)} v_{2 j}^{(1)}\right)=\gamma\left(v_{2 j-1}^{(2)} v_{2 j}^{(2)}\right)=5 \text { and } \gamma\left(v_{2 j}^{(1)} v_{2 j+1}^{(1)}\right)=\gamma\left(v_{2 j}^{(2)} v_{2 j+1}^{(2)}\right)=3 ;
$$

(6) for $j=\left\lfloor\frac{n+1}{2}\right\rfloor+1, \ldots, n$, let $\gamma\left(v_{2 j-1}^{(1)} v_{2 j}^{(1)}\right)=\gamma\left(v_{2 j-1}^{(2)} v_{2 j}^{(2)}\right)=4$ and $\gamma\left(v_{1}^{(1)} v_{2 n+1}^{(1)}\right)=\gamma\left(v_{1}^{(2)} v_{2 n+1}^{(2)}\right)=4 ;$
(7) for $j=\left\lfloor\frac{n+1}{2}\right\rfloor+1, \ldots, n$, let $\gamma\left(v_{2 j}^{(1)} v_{2 j+1}^{(1)}\right)=\gamma\left(v_{2 j}^{(2)} v_{2 j+1}^{(2)}\right)=2$;
(8) for $j=1, \ldots,\left\lfloor\frac{n+1}{2}\right\rfloor$, let $\gamma\left(v_{2 j-1}^{(3)} v_{2 j}^{(3)}\right)=1$ and $\gamma\left(v_{2 j}^{(3)} v_{2 j+1}^{(3)}\right)=3$;
(9) for $j=\left\lfloor\frac{n+1}{2}\right\rfloor+1, \ldots, n$, let $\gamma\left(v_{2 j-1}^{(3)} v_{2 j}^{(3)}\right)=2$ and $\gamma\left(v_{1}^{(3)} v_{2 n+1}^{(3)}\right)=2$;
(10) for $j=\left\lfloor\frac{n+1}{2}\right\rfloor+1, \ldots, n$, let $\gamma\left(v_{2 j}^{(3)} v_{2 j+1}^{(3)}\right)=3$.

It is not difficult to see that $\gamma$ is an interval 6 -coloring of $C(3,2 n+1)$ for which $S\left(v_{j}^{(3)}, \gamma\right)=[1,3]$ when $1 \leq j \leq 2 n+1$.

Next we define an edge-coloring $\phi$ of $C(m, 2 n+1)$ as follows: first we color the edges of the subgraph $C(3,2 n+1)$ of $C(m, 2 n+1)$ according to $\gamma$. Secondly, we color the edges of the remaining subgraph $C(m-3,2 n+1)$ of $C(m, 2 n+1)$ according to $\beta$, and finally, we color the edges $v_{j}^{(3)} v_{j}^{(4)} \in E_{j}$ with color 4 for $1 \leq j \leq 2 n+1$. It is easy to see that $\phi$ is an interval 6 -coloring of $C(m, 2 n+1)$. This shows that $C(m, 2 n+1) \in \mathfrak{N}$ and $w(C(m, 2 n+1)) \leq 6$.

Now we prove that $w(C(m, 2 n+1)) \geq 6$ for odd $m$. Let $\psi$ be an interval $w(C(m, 2 n+1)$ )-coloring of $C(m, 2 n+1)$ and $w(C(m, 2 n+1)) \leq 5$. Consider the set $S\left(v_{j}^{(i)}, \psi\right)$ for $1 \leq i \leq m, 1 \leq j \leq 2 n+1$. It is easy to see that if $d\left(v_{j}^{(i)}\right)=3$, then $1 \leq \min S\left(v_{j}^{(i)}, \psi\right) \leq 3$, and if $d\left(v_{j}^{(i)}\right)=4$, then $1 \leq \min S\left(v_{j}^{(i)}, \psi\right) \leq 2$. Hence, $3 \in S\left(v_{j}^{(i)}, \psi\right)$ for $1 \leq i \leq m, 1 \leq j \leq 2 n+1$, but this implies that the edges with color 3 form a perfect matching in $C(m, 2 n+1)$, which contradicts the fact that $C(m, 2 n+1)$ does not have one. Thus $w(C(m, 2 n+1))=6$ for odd $m$.


Figure 2. Interval 6-coloring of the graph $C(3,7)$.
Figure 2 shows the interval 6-coloring $\gamma$ of the graph $C(3,7)$ described in the proof of Theorem 21.

Before we derive lower bounds for $W(C(2 m, 2 n))$ and $W(C(2 m, 2 n+1))$, let us note that Lemma 8, Theorems 15 and 21 imply the following:

Corollary 22. If $G \square H$ is planar and both factors have at least 3 vertices, then $G \square H \in \mathfrak{N}$ and $w(G \square H) \leq 6$.

Theorem 23. If $m \in \mathbb{N}, n \geq 2$, then $W(C(2 m, 2 n)) \geq 4 m+2 n-2$, and if $m, n \in \mathbb{N}$, then $W(C(2 m, 2 n+1)) \geq 4 m+2 n-1$.

Proof. For the proof of the theorem, it suffices to construct edge-colorings that satisfies the specified conditions. First we construct an interval ( $4 m+2 n-2$ )coloring of $C(2 m, 2 n)$ when $m \in \mathbb{N}, n \geq 2$.

Define an edge-coloring $\alpha$ of $C(2 m, 2 n)$ as follows:
(1) for $i=1, \ldots, m, j=1, \ldots, n$, let

$$
\alpha\left(v_{j}^{(2 i-1)} v_{j+1}^{(2 i-1)}\right)=\alpha\left(v_{j}^{(2 i)} v_{j+1}^{(2 i)}\right)=4 i+2 j-4 ;
$$

(2) for $i=1, \ldots, m, j=n+1, \ldots, 2 n-1$, let

$$
\alpha\left(v_{j}^{(2 i-1)} v_{j+1}^{(2 i-1)}\right)=\alpha\left(v_{j}^{(2 i)} v_{j+1}^{(2 i)}\right)=4 i-2 j+4 n-1
$$

(3) for $i=1, \ldots, m$, let

$$
\alpha\left(v_{1}^{(2 i-1)} v_{2 n}^{(2 i-1)}\right)=\alpha\left(v_{1}^{(2 i)} v_{2 n}^{(2 i)}\right)=4 i-1 ;
$$

(4) for $i=1, \ldots, m, j=1, \ldots, n$, let

$$
\alpha\left(v_{j}^{(2 i-1)} v_{j}^{(2 i)}\right)=4 i+2 j-5 ;
$$

(5) for $i=1, \ldots, m, j=n+1, \ldots, 2 n$, let

$$
\alpha\left(v_{j}^{(2 i-1)} v_{j}^{(2 i)}\right)=4 i-2 j+4 n
$$

(6) for $i=1, \ldots, m-1, j=2, \ldots, n+1$, let

$$
\alpha\left(v_{j}^{(2 i)} v_{j}^{(2 i+1)}\right)=4 i+2 j-3
$$

(7) for $i=1, \ldots, m-1, j=n+2, \ldots, 2 n$, let

$$
\alpha\left(v_{j}^{(2 i)} v_{j}^{(2 i+1)}\right)=4 i-2 j+4 n+2
$$

(8) for $i=1, \ldots, m-1$, let

$$
\alpha\left(v_{1}^{(2 i)} v_{1}^{(2 i+1)}\right)=4 i
$$

Next we construct an interval $(4 m+2 n-1)$-coloring of $C(2 m, 2 n+1)$ when $m, n \in \mathbb{N}$. Define an edge-coloring $\beta$ of $C(2 m, 2 n+1)$ as follows:
(1) for $i=1, \ldots, m, j=1, \ldots, n+1$, let

$$
\beta\left(u_{j}^{(2 i-1)} u_{j+1}^{(2 i-1)}\right)=\beta\left(u_{j}^{(2 i)} u_{j+1}^{(2 i)}\right)=4 i+2 j-4
$$

(2) for $i=1, \ldots, m, j=n+2, \ldots, 2 n$, let

$$
\beta\left(u_{j}^{(2 i-1)} u_{j+1}^{(2 i-1)}\right)=\beta\left(u_{j}^{(2 i)} u_{j+1}^{(2 i)}\right)=4 i-2 j+4 n+1
$$

(3) for $i=1, \ldots, m$, let

$$
\beta\left(u_{1}^{(2 i-1)} u_{2 n+1}^{(2 i-1)}\right)=\beta\left(u_{1}^{(2 i)} u_{2 n+1}^{(2 i)}\right)=4 i-1
$$

(4) for $i=1, \ldots, m, j=1, \ldots, n+2$, let

$$
\beta\left(u_{j}^{(2 i-1)} u_{j}^{(2 i)}\right)=4 i+2 j-5
$$

(5) for $i=1, \ldots, m, j=n+3, \ldots, 2 n+1$, let

$$
\beta\left(u_{j}^{(2 i-1)} u_{j}^{(2 i)}\right)=4 i-2 j+4 n+2
$$

(6) for $i=1, \ldots, m-1, j=2, \ldots, n+1$, let

$$
\beta\left(u_{j}^{(2 i)} u_{j}^{(2 i+1)}\right)=4 i+2 j-3
$$

(7) for $i=1, \ldots, m-1, j=n+2, \ldots, 2 n+1$, let

$$
\beta\left(u_{j}^{(2 i)} u_{j}^{(2 i+1)}\right)=4 i-2 j+4 n+4
$$

(8) for $i=1, \ldots, m-1$, let

$$
\beta\left(u_{1}^{(2 i)} u_{1}^{(2 i+1)}\right)=4 i
$$

It is straightforward to check that $\alpha$ is an interval $(4 m+2 n-2)$-coloring of $C(2 m, 2 n)$ when $m \in \mathbb{N}, n \geq 2$, and $\beta$ is an interval $(4 m+2 n-1)$-coloring of $C(2 m, 2 n+1)$ when $m, n \in \mathbb{N}$.

Note that the lower bound in Theorem 23 is not so far from the upper bound for $W(C(m, n))$. Indeed, since $C(2 m, 2 n)$ is bipartite, $3 \leq \Delta(C(2 m, 2 n)) \leq 4$ and $\operatorname{diam}(C(2 m, 2 n))=2 m+n-1$, by Theorem 3, we have $W(C(2 m, 2 n)) \leq 3(2 m+$ $n-1)+1$. Similarly, since $3 \leq \Delta(C(2 m, 2 n+1)) \leq 4$ and $\operatorname{diam}(C(2 m, 2 n+1))=$ $2 m+n-1$, by Theorem 2, we have $W(C(2 m, 2 n+1)) \leq 3(2 m+n)+1$. Next we would like to compare obtained lower bounds for $W(C(m, n))$. If $m$ is even and $m<n$, then the lower bound in Theorem 23 is better than in Theorem 16 , if $m$ is even and $m>n$, then the lower bound in Theorem 16 is better than in Theorem 23, and if $m$ is even and $m=n$, then we obtain the same lower bound in both theorems.

In the following we consider tori. In [22], the first author proved that the torus $T(m, n) \in \mathfrak{N}$ if and only if $m n$ is even. Since $T(m, n)$ is 4-regular, by Theorem 1, we obtain that $w(T(m, n))=4$ when $m n$ is even. Now we derive a new lower bound for $W(T(m, n))$ when $m n$ is even.

Theorem 24. For any $m, n \geq 2$, we have $W(T(2 m, 2 n)) \geq \max \{3 m+n+2,3 n+$ $m+2\}$, and for any $m \geq 2, n \in \mathbb{N}$, we have

$$
W(T(2 m, 2 n+1)) \geq \begin{cases}2 m+2 n+2, & \text { if } m \text { is odd } \\ 2 m+2 n+3, & \text { if } m \text { is even }\end{cases}
$$

Proof. First note that the lower bound for $W(T(2 m, 2 n))(m, n \geq 2)$ follows from Theorem 13. For the proof of a second part of the theorem, it suffices to construct an edge-coloring of $T(2 m, 2 n+1)$ that satisfies the specified conditions.


Figure 3. Interval 13-coloring of the graph $T(4,7)$.
Define an edge-coloring $\alpha$ of $T(2 m, 2 n+1)$ as follows:
(1) for $j=1, \ldots, n+1$, let

$$
\alpha\left(v_{j}^{(1)} v_{j+1}^{(1)}\right)=\alpha\left(v_{j}^{(2 m)} v_{j+1}^{(2 m)}\right)=2 j ;
$$

(2) for $j=n+2, \ldots, 2 n$, let

$$
\alpha\left(v_{j}^{(1)} v_{j+1}^{(1)}\right)=\alpha\left(v_{j}^{(2 m)} v_{j+1}^{(2 m)}\right)=2(2 n+1-j)+3
$$

and

$$
\alpha\left(v_{1}^{(1)} v_{2 n+1}^{(1)}\right)=\alpha\left(v_{1}^{(2 m)} v_{2 n+1}^{(2 m)}\right)=3
$$

(3) for $j=1, \ldots, n+2$, let

$$
\alpha\left(v_{j}^{(1)} v_{j}^{(2 m)}\right)=2 j-1
$$

(4) for $j=n+3, \ldots, 2 n+1$, let

$$
\alpha\left(v_{j}^{(1)} v_{j}^{(2 m)}\right)=2(2 n+3-j)
$$

(5) for $i=1, \ldots,\left\lfloor\frac{m}{2}\right\rfloor, j=1, \ldots, n+1$, let

$$
\begin{gathered}
\alpha\left(v_{j}^{(2 i)} v_{j+1}^{(2 i)}\right)=\alpha\left(v_{j}^{(2 i+1)} v_{j+1}^{(2 i+1)}\right) \\
=\alpha\left(v_{j}^{(2 m-2 i)} v_{j+1}^{(2 m-2 i)}\right)=\alpha\left(v_{j}^{(2 m-2 i+1)} v_{j+1}^{(2 m-2 i+1)}\right)=4 i+2 j
\end{gathered}
$$

(6) for $i=1, \ldots,\left\lfloor\frac{m}{2}\right\rfloor, j=n+2, \ldots, 2 n$, let

$$
\begin{gathered}
\alpha\left(v_{j}^{(2 i)} v_{j+1}^{(2 i)}\right)=\alpha\left(v_{j}^{(2 i+1)} v_{j+1}^{(2 i+1)}\right)=\alpha\left(v_{j}^{(2 m-2 i)} v_{j+1}^{(2 m-2 i)}\right) \\
=\alpha\left(v_{j}^{(2 m-2 i+1)} v_{j+1}^{(2 m-2 i+1)}\right)=4 i+2(2 n+1-j)+3
\end{gathered}
$$

and

$$
\begin{gathered}
\alpha\left(v_{1}^{(2 i)} v_{2 n+1}^{(2 i)}\right)=\alpha\left(v_{1}^{(2 i+1)} v_{2 n+1}^{(2 i+1)}\right) \\
=\alpha\left(v_{1}^{(2 m-2 i)} v_{2 n+1}^{(2 m-2 i)}\right)=\alpha\left(v_{1}^{(2 m-2 i+1)} v_{2 n+1}^{(2 m-2 i+1)}\right)=4 i+3
\end{gathered}
$$

(7) for $i=1, \ldots,\left\lceil\frac{m}{2}\right\rceil, j=2, \ldots, n+1$, let

$$
\alpha\left(v_{j}^{(2 i-1)} v_{j}^{(2 i)}\right)=\alpha\left(v_{j}^{(2 m-2 i+1)} v_{j}^{(2 m-2 i+2)}\right)=4 i+2 j-3 ;
$$

(8) for $i=1, \ldots,\left\lceil\frac{m}{2}\right\rceil, j=n+2, \ldots, 2 n+1$, let

$$
\alpha\left(v_{j}^{(2 i-1)} v_{j}^{(2 i)}\right)=\alpha\left(v_{j}^{(2 m-2 i+1)} v_{j}^{(2 m-2 i+2)}\right)=4(n+1+i)-2 j ;
$$

(9) for $i=1, \ldots,\left\lceil\frac{m}{2}\right\rceil$, let

$$
\alpha\left(v_{1}^{(2 i-1)} v_{1}^{(2 i)}\right)=\alpha\left(v_{1}^{(2 m-2 i+1)} v_{1}^{(2 m-2 i+2)}\right)=4 i
$$

(10) for $i=1, \ldots,\left\lfloor\frac{m}{2}\right\rfloor, j=1, \ldots, n+2$, let

$$
\alpha\left(v_{j}^{(2 i)} v_{j}^{(2 i+1)}\right)=\alpha\left(v_{j}^{(2 m-2 i)} v_{j}^{(2 m-2 i+1)}\right)=4 i+2 j-1 ;
$$

(11) for $i=1, \ldots,\left\lfloor\frac{m}{2}\right\rfloor, j=n+3, \ldots, 2 n+1$, let

$$
\alpha\left(v_{j}^{(2 i)} v_{j}^{(2 i+1)}\right)=\alpha\left(v_{j}^{(2 m-2 i)} v_{j}^{(2 m-2 i+1)}\right)=4 i+2(2 n+3-j)
$$



Figure 4. Interval 14-coloring of the graph $T(6,7)$.

Let us show that the edges incident to any vertex of $T(2 m, 2 n+1)$ are colored by four consecutive colors. For example, let $2 \leq i \leq\left\lfloor\frac{m}{2}\right\rfloor$ and $2 \leq j \leq n+1$. By the points (5), (7) and (10) of the definition of $\alpha$, for $2 \leq i \leq\left\lfloor\frac{m}{2}\right\rfloor, 2 \leq j \leq n+1$, we have

$$
\begin{aligned}
S\left(v_{j}^{(2 i)}, \alpha\right) & =S\left(v_{j}^{(2 m-2 i)}, \alpha\right)=\{4 i+2 j-2,4 i+2 j\} \\
& \cup\{4 i+2 j-3\} \cup\{4 i+2 j-1\}=[4 i+2 j-3,4 i+2 j] .
\end{aligned}
$$

Similarly, it can be verified that the edges incident to other vertices of $T(2 m, 2 n+$ 1) are also colored by four consecutive colors. It is easy to see that $\alpha\left(v_{1}^{(1)} v_{1}^{(2 m)}\right)=$ 1. Now if $m$ is odd, then $\alpha\left(v_{n+2}^{(m)} v_{n+2}^{(m+1)}\right)=2 m+2 n+2$ and, by Lemma $7, \alpha$ is an interval $(2 m+2 n+2)$-coloring of $T(2 m, 2 n+1)$ when $m$ is odd. If $m$ is even, then $\alpha\left(v_{n+2}^{(m)} v_{n+2}^{(m+1)}\right)=2 m+2 n+3$ and, by Lemma $7, \alpha$ is an interval $(2 m+2 n+3)$-coloring of $T(2 m, 2 n+1)$ when $m$ is even.

Figure 3 and 4 show the interval colorings of the graphs $T(4,7)$ and $T(6,7)$ described in the proof of Theorem 24.

From Theorems 1, 15 and 24, we have:
Corollary 25. If $G=T(2 m, 2 n)(m, n \geq 2)$ and $4 \leq t \leq \max \{3 m+n+2,3 n+$ $m+2\}$, then $G$ has an interval $t$-coloring. Also, if $H=T(2 m, 2 n+1)(m \geq$
$2, n \in \mathbb{N}$ ), $m$ is odd and $4 \leq t \leq 2 m+2 n+2$, then $H$ has an interval $t$-coloring, and if $H=T(2 m, 2 n+1)(m \geq 2, n \in \mathbb{N})$, $m$ is even and $4 \leq t \leq 2 m+2 n+3$, then $H$ has an interval t-coloring.
Let us note that the lower bound in Theorem 24 is not so far from the upper bound for $W(T(m, n))$. Indeed, since $T(2 m, 2 n)$ is bipartite, $\Delta(T(2 m, 2 n))=4$ and $\operatorname{diam}(C(2 m, 2 n))=m+n$, by Theorem 3 , we have $W(T(2 m, 2 n)) \leq 3(m+n)+1$. Similarly, since $\Delta(T(2 m, 2 n+1))=4$ and $\operatorname{diam}(T(2 m, 2 n+1))=m+n$, by Theorem 2, we have $W(T(2 m, 2 n+1)) \leq 3(m+n+1)+1$.

## 5. n-dimensional Cubes

It is well-known that the $n$-dimensional cube $Q_{n}$ is the Cartesian product of $n$ copies of $K_{2}$. In [21], the first author investigated interval colorings of $n$ dimensional cubes and proved that $w\left(Q_{n}\right)=n$ and $W\left(Q_{n}\right) \geq \frac{n(n+1)}{2}$ for any $n \in \mathbb{N}$. In the same paper he also conjectured that $W\left(Q_{n}\right)=\frac{n(n+1)}{2}$ for any $n \in \mathbb{N}$. Here, we prove this conjecture.

Let $e, e^{\prime} \in E\left(Q_{n}\right)$ and $e=u_{1} u_{2}, e^{\prime}=v_{1} v_{2}$. The distance between two edges $e$ and $e^{\prime}$ in $Q_{n}$, we define as follows:

$$
d\left(e, e^{\prime}\right)=\min _{1 \leq i \leq 2,1 \leq j \leq 2}\left\{d\left(u_{i}, v_{j}\right)\right\}
$$

Let $\alpha$ be an interval $t$-coloring of $Q_{n}$. Define an edge $\operatorname{span}^{\sin } \mathrm{sp}_{\alpha}\left(e, e^{\prime}\right)$ of edges $e$ and $e^{\prime}\left(e, e^{\prime} \in E\left(Q_{n}\right)\right)$ in coloring $\alpha$ as follows:

$$
\mathrm{sp}_{\alpha}\left(e, e^{\prime}\right)=\left|\alpha(e)-\alpha\left(e^{\prime}\right)\right|
$$

For any $k, 0 \leq k \leq n-1$, define an edge span at distance $k \mathrm{sp}_{\alpha, k}$ in coloring $\alpha$ as follows:

$$
\operatorname{sp}_{\alpha, k}=\max \left\{\operatorname{sp}_{\alpha}\left(e, e^{\prime}\right): e, e^{\prime} \in E\left(Q_{n}\right) \text { and } d\left(e, e^{\prime}\right)=k\right\}
$$

Clearly, $\mathrm{sp}_{\alpha, 0}=n-1$.
Theorem 26. If $n \in \mathbb{N}$, then $W\left(Q_{n}\right) \leq \frac{n(n+1)}{2}$.
Proof. Let $\alpha$ be an interval $W\left(Q_{n}\right)$-coloring of $Q_{n}$. First we show that if $1 \leq$ $k \leq n-1$, then $\mathrm{sp}_{\alpha, k} \leq \mathrm{sp}_{\alpha, k-1}+n-k$.

Let $e, e^{\prime} \in E\left(Q_{n}\right)$ be any two edges of $Q_{n}$ with $d\left(e, e^{\prime}\right)=k$. Without loss of generality, we may assume that $\alpha(e) \geq \alpha\left(e^{\prime}\right)$. Since $d\left(e, e^{\prime}\right)=k$, there exist $u$ and $v$ vertices such that $u \in e$ and $v \in e^{\prime}$ and $d(u, v)=k$. There are $v_{1}, v_{2}, \ldots, v_{k}$ $\left(v_{i} \neq v_{j}\right.$ when $\left.i \neq j\right)$ vertices such that $d\left(u, v_{i}\right)=k-1$ and $v v_{i} \in E\left(Q_{n}\right)$ for $i=1, \ldots, k$. Since $Q_{n}$ is $n$-regular, we have

$$
\begin{equation*}
\min _{1 \leq i \leq k}\left\{\alpha\left(v_{i} v\right)\right\} \leq \alpha\left(e^{\prime}\right)+n-k \tag{*}
\end{equation*}
$$

Let $\alpha\left(e^{\prime \prime}\right)=\min _{1 \leq i \leq k}\left\{\alpha\left(v_{i} v\right)\right\}$. By $(*)$, we obtain

$$
\alpha\left(e^{\prime}\right) \geq \alpha\left(e^{\prime \prime}\right)-(n-k) \text { and } d\left(e, e^{\prime \prime}\right)=k-1 .
$$

Thus,

$$
\begin{aligned}
\operatorname{sp}_{\alpha}\left(e, e^{\prime}\right) & =\left|\alpha(e)-\alpha\left(e^{\prime}\right)\right| \leq\left|\alpha(e)-\alpha\left(e^{\prime \prime}\right)+n-k\right| \leq\left|\alpha(e)-\alpha\left(e^{\prime \prime}\right)\right|+n-k \\
& \leq \operatorname{sp}_{\alpha, k-1}+n-k
\end{aligned}
$$

Since $e$ and $e^{\prime}$ were arbitrary edges with $d\left(e, e^{\prime}\right)=k$, we obtain $\mathrm{sp}_{\alpha, k} \leq \mathrm{sp}_{\alpha, k-1}+$ $n-k$. Now by induction on $k$ with $\operatorname{sp}_{\alpha, 0}=n-1$, we obtain $\mathrm{sp}_{\alpha, n-1} \leq \frac{n(n+1)}{2}-1$. From this and taking into account that $d\left(e, e^{\prime}\right) \leq n-1$ for all $e, e^{\prime} \in E\left(Q_{n}\right)$, we get $W\left(Q_{n}\right) \leq \frac{n(n+1)}{2}$.

By Theorems 6 and 26, we obtain $W\left(Q_{n}\right)=\frac{n(n+1)}{2}$ for any $n \in \mathbb{N}$. Moreover, by Theorem 1, we have that $Q_{n}$ has an interval $t$-coloring if and only if $n \leq t \leq$ $\frac{n(n+1)}{2}$.

## Acknowledgement

We would like to thank our referees for many useful comments and suggestions which helped us to improve the presentation of the paper.

## References

[1] A.S. Asratian and R.R. Kamalian, Interval colorings of edges of a multigraph, Appl. Math. 5 (1987) 25-34 (in Russian).
[2] A.S. Asratian and R.R. Kamalian, Investigation on interval edge-colorings of graphs, J. Combin. Theory (B) 62 (1994) 34-43. doi:10.1006/jctb.1994.1053
[3] A.S. Asratian, T.M.J. Denley and R. Häggkvist, Bipartite Graphs and their Applications (Cambridge University Press, Cambridge, 1998). doi:10.1017/CBO9780511984068
[4] M.A. Axenovich, On interval colorings of planar graphs, Congr. Numer. 159 (2002) 77-94.
[5] M. Behzad and E.S. Mahmoodian, On topological invariants of the product of graphs, Canad. Math. Bull. 12 (1969) 157-166. doi:10.4153/CMB-1969-015-9
[6] Y. Feng and Q. Huang, Consecutive edge-coloring of the generalized $\theta$-graph, Discrete Appl. Math. 155 (2007) 2321-2327. doi:10.1016/j.dam.2007.06.010
[7] K. Giaro and M. Kubale, Consecutive edge-colorings of complete and incomplete Cartesian products of graphs, Congr. Numer. 128 (1997) 143-149.
[8] K. Giaro, M. Kubale and M. Małafiejski, Consecutive colorings of the edges of general graphs, Discrete Math. 236 (2001) 131-143.
doi:10.1016/S0012-365X(00)00437-4
[9] K. Giaro and M. Kubale, Compact scheduling of zero-one time operations in multistage systems, Discrete Appl. Math. 145 (2004) 95-103.
doi:10.1016/j.dam.2003.09.010
[10] D. Hanson, C.O.M. Loten and B. Toft, On interval colorings of bi-regular bipartite graphs, Ars Combin. 50 (1998) 23-32.
[11] R. Hammack, W. Imrich, S. Klavžar, Handbook of Product Graphs, Second Edition (CRC Press, 2011).
[12] T.R. Jensen, B. Toft, Graph Coloring Problems (Wiley Interscience Series in Discrete Mathematics and Optimization, 1995).
[13] R.R. Kamalian, Interval colorings of complete bipartite graphs and trees, preprint, Comp. Cen. Acad. Sci. Armenian SSR, Erevan (1989) (in Russian).
[14] R.R. Kamalian, Interval edge colorings of graphs (Doctoral Thesis, Novosibirsk, 1990).
[15] R.R. Kamalian and A.N. Mirumian, Interval edge colorings of bipartite graphs of some class, Dokl. NAN RA 97 (1997) 3-5 (in Russian).
[16] R.R. Kamalian and P.A. Petrosyan, A note on upper bounds for the maximum span in interval edge-colorings of graphs, Discrete Math. 312 (2012) 1393-1399.
[17] R.R. Kamalian and P.A. Petrosyan, A note on interval edge-colorings of graphs, Mathematical Problems of Computer Science 36 (2012) 13-16.
[18] A. Khchoyan, Interval edge-colorings of subcubic graphs and multigraphs, Yerevan State University, BS Thesis (2010) 30p.
[19] M. Kubale, Graph Colorings (American Mathematical Society, 2004).
[20] P.A. Petrosyan and G.H. Karapetyan, Lower bounds for the greatest possible number of colors in interval edge colorings of bipartite cylinders and bipartite tori, in: Proceedings of the CSIT Conference (2007) 86-88.
[21] P.A. Petrosyan, Interval edge-colorings of complete graphs and $n$-dimensional cubes, Discrete Math. 310 (2010) 1580-1587. doi:10.1016/j.disc.2010.02.001
[22] P.A. Petrosyan, Interval edge colorings of some products of graphs, Discuss. Math. Graph Theory 31 (2011) 357-373. doi:10.7151/dmgt. 1551
[23] P.A. Petrosyan, H.H. Khachatrian, L.E. Yepremyan and H.G. Tananyan, Interval edge-colorings of graph products, in: Proceedings of the CSIT Conference (2011) 89-92.
[24] S.V. Sevast'janov, Interval colorability of the edges of a bipartite graph, Metody Diskret. Analiza 50 (1990) 61-72 (in Russian).
[25] D.B. West, Introduction to Graph Theory (Prentice-Hall, New Jersey, 2001).

Revised 5 March 2013
Accepted 5 March 2013

