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Abstract

A proper edge-coloring of a graph G with colors 1,...,t is an interval
t-coloring if all colors are used and the colors of edges incident to each vertex
of G form an interval of integers. A graph G is interval colorable if it has an
interval ¢-coloring for some positive integer ¢. Let 91 be the set of all interval
colorable graphs. For a graph G € I, the least and the greatest values of
t for which G has an interval t-coloring are denoted by w(G) and W(G),
respectively. In this paper we first show that if G is an r-regular graph
and G € M, then W(GOP,,) > W(G) + W(P,,) + (m — 1)r (m € N) and
W(GOCy,) > W(G) + W (Cay) +nr (n > 2). Next, we investigate interval
edge-colorings of grids, cylinders and tori. In particular, we prove that if
GUOH is planar and both factors have at least 3 vertices, then GOOH €
and w(GOH) < 6. Finally, we confirm the first author’s conjecture on the
n-dimensional cube @,, and show that @,, has an interval ¢t-coloring if and
onlyifngtgn(%"'l).
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1. INTRODUCTION

A proper edge-coloring of a graph G with colors 1,...,t is an interval ¢-coloring
if all colors are used and the colors of edges incident to each vertex of G form an
interval of integers. A graph G is interval colorable if it has an interval ¢-coloring
for some positive integer t. Let 91 be the set of all interval colorable graphs [1, 14].
For a graph G € 91, the least and the greatest values of ¢ for which G has an
interval t-coloring are denoted by w(G) and W(GQ), respectively. The concept of
interval edge-coloring was introduced by Asratian and Kamalian [1]. In [1], they
proved the following;:

Theorem 1. Let G be a regqular graph. Then
(1) G €N if and only if X'(G) = A(G).
(2) If G € N and w(G) <t < W(G), then G has an interval t-coloring.

In [2], Asratian and Kamalian investigated interval edge-colorings of connected
graphs. In particular, they obtained the following two results.

Theorem 2. If G is a connected graph and G € N, then
W(G) < (diam(G) +1) (A(G) — 1) + 1.
Theorem 3. If G is a connected bipartite graph and G € N, then
W(G) < diam(G) (A(G) — 1) + 1.

Recently, Kamalian and the first author [16] showed that these upper bounds
cannot be significantly improved.

In [13], Kamalian investigated interval colorings of complete bipartite graphs
and trees. In particular, he proved the following:

Theorem 4. For any r,s € N, the complete bipartite graph K, s is interval
colorable, and

(1) w(Kys)=7r+s—ged(r,s),

(2) W(Kr,s) =r+s-— 1,

(3) ifw (K,,) <t < W (K,s), then K, s has an interval t-coloring.

In [21], the first author investigated interval colorings of complete graphs and
n-dimensional cubes. In particular, he obtained the following two results.
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Theorem 5. If n = p24¢, where p is odd and q is nonnegative, then

W (Kap) >4n—2—p—gq.

n(n+1)
Theorem 6. Ifn € N, then W (Q,) > ( 5

The N P-completeness of the problem of the existence of an interval edge-coloring
of an arbitrary bipartite graph was shown in [24]. A similar result for regular
graphs was obtained in [1, 2]. In [19, 22, 23], interval edge-colorings of various
products of graphs were investigated. Some interesting results on interval color-
ings were also obtained in [3, 4, 6, 7, 8, 9, 10, 14, 15, 16, 17, 18, 19, 20]. Surveys
on this topic can be found in some books [3, 12, 19].

In this paper we focus only on interval edge-colorings of Cartesian products
of graphs.

2. NOTATIONS, DEFINITIONS AND AUXILIARY RESULTS

Throughout this paper all graphs are finite, undirected, and have no loops or
multiple edges. Let V(G) and E(G) denote the sets of vertices and edges of
graph G, respectively. The degree of a vertex v in G is denoted by dg(v), the
maximum degree of G by A(G), and the chromatic index of G by x'(G). If G is a
connected graph, then the distance between two vertices v and v in G, we denote
by d(u,v), and the diameter of G by diam(G). We use the standard notations
P,, C,, K, and @, for the path, cycle, complete graph on n vertices and the n-
dimensional cube, respectively. A partial edge-coloring of a graph G is a coloring
of some edges of GG such that no two adjacent edges receive the same color. If « is
a partial edge-coloring of G and v € V(G), then S (v, o) denotes the set of colors
appearing on colored edges incident to v. Clearly, if «a is a proper edge-coloring
of a graph G, then |S(v, )| = dg(v) for every v € V(G).

Let [t] denote the set of the first ¢ natural numbers. Let [a| ([a]) denote the
largest (least) integer less (greater) than or equal to a. For two positive integers
a and b with a < b, the set {a,...,b} is denoted by [a, b]. The terms and concepts
that we do not define can be found in [25].

Let G and H be graphs. The Cartesian product GLJH is defined as follows:
V(GOH) = V(G) x V(H), E(GOH) = {(u1,v1)(u2,v2): u1 = uz and vivg €
E(H) or v; = vy and ujug € E(G)}.

Let V(G) = {u1,...,u,} and V(H) = {wy, ..., wy,}. We use the following
notation for vertex and edge sets of the Cartesian product GOH: V(GOH) =
U™, V%, where Vi = {v](.l) 1< < n} and E(GOH) = J, E'U Uj=1 Ej»

where B! = {v](-i)v,g) tujuy € E(G)} and E; = {vj(-i)vj(.k) Cwiwy € E(H)}
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We define subgraphs G' of G as follows: G* = (V*, E%). Clearly, G* is isomorphic
to G for 1 <i<m.
Clearly, if G and H are connected graphs, then GLIH is connected, too.
Moreover, A(GOH) = A(G) + A(H) and diam(GOH) = diam(G) + diam(H).
The k-dimensional grid G(nq,...,ng), n; € N, is the Cartesian product
of paths P,,0F,,0---0P,, . The cylinder C(ny,n2) is the Cartesian product
P,,0C,,, and the torus T'(ny,ng) is the Cartesian product of cycles Cy,,0C,,,.
We also need the following two lemmas.

Lemma 7. If o is an edge-coloring of a connected graph G with colors 1,...,t
such that the edges incident to each vertex v € V(G) are colored by distinct and
consecutive colors, and mingcp{a(e)} = 1, max.cp@ {ale)} =t, then a is an
interval t-coloring of G.

Proof. For the proof of the lemma, it suffices to show that all colors are used in
the coloring « of G.

Let w and w be vertices such that 1 € S(u,a) and ¢t € S(w,a). Also, let
P =wv,...,v,, where u = v; and vy = w be a u,w-path in G. If £ = 1, then
t € S(u,a) and all colors appear on edges incident to u. Assume that k > 2. The
sets S(v;, ) for v; € V(P) are intervals, and for 2 < i < k, intervals S(v;—1, @)
and S(v;, @) share a color. Thus, the sets S(vi,a),...,S(vk, ) cover [1,t]. [

The next lemma was proved by Behzad and Mahmoodian in [5].

Lemma 8. If both G and H have at least 3 vertices, then the Cartesian product
GUH is planar if and only if GOH = G(m,n) or GOH = C(m,n).

3. THE CARTESIAN PRODUCT OF REGULAR GRAPHS

Interval edge-colorings of Cartesian products of graphs were first investigated by
Giaro and Kubale in [7], where they proved the following:

Theorem 9. If G € M, then GOP,, € N (m € N) and GOCy, € N (n > 2).

It is well-known that P,,,Ca, € Mt and W (P,,) = m — 1, W (Cy,) = n+ 1 for
m € N and n > 2. Later, Giaro and Kubale [9, 19] proved a more general result.

Theorem 10. If G, H € N, then GOH € N. Moreover, w(GOH) < w(G) +
w(H) and W(GOH) > W(G) + W(H).

Let us note that if G € 9t and H = P,,, or H = Csy,, then, by Theorem 10, we
obtain w(GOH) < w(G) + 2 and W(GOP,,) > W(G) +m — 1, W(GOCsyy,) >
W(G) +n+ 1. Now we improve the lower bound in Theorem 10 for W (GOPF,,)
and W (GOCy,) when G is a regular graph and G € 91. More precisely, we show
that the following two theorems hold.
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Theorem 11. If G is an r-regular graph and G € N, then GOP,, € 9 (m € N)
and W (GOP,,) > W(G) + W (Py,) + (m — 1)r.

Proof. For the proof, we construct an edge-coloring of the graph GUPF,, that
satisfies the specified conditions.

Since G € N, there exists an interval W (G)-coloring « of G. Now we define
an edge-coloring B of the subgraphs G!,...,G™. For 1 < i < m and for every
edge v]( )U(Z) € E(GY), let

Ié] (vj(i)v,(;)> = a(vjvg) + (1 — 1)(r + 1).

It is easy to see that the color of each edge of the subgraph G’ is obtained
by shlftlng the color of the associated edge of G by (i — 1)(r + 1). Thus the
set S( v; ,B) is an interval for each vertex U]() € V(GY), where 1 < i < m,
1 < j < n. Now we define an edge-coloring ~ of the graph GUP,,. For every
e € E(GOPR,,), let

e), ife EGl,
7(6):{6() € B(GY)

max .S <v ,ﬂ) +1, ife= v](.i)vj(»iﬂ) € Ej,
where 1 <1 <m,1 <7< n.

Let us prove that v is an interval (W (G) + W (Pp,) + (m — 1)r)-coloring of
the graph GOIP,, for m € N.

First we prove that the set S (UJ@ ,’y) is an interval for each vertex U](»Z) €
V (GOP,,), where 1 <i<m,1<j<n.

For each vertex v() € V(GOP,,), the set S (v( ),fy> can be represented as
a union of three sets, S <vj( ),7) = AS-) U B]( Dy CJ( ), where Ag-i) corresponds to
the edges of i-th layer, BJ(-i) corresponds to the edges from the vertices of lower
layer and CJ(-i)
specifically, for 1 <i < m, 1 < j < n, define sets Agi), BJ@ and C’j@ as follows:

o) e

corresponds to the edges from the vertices of higher layer. More

ifi=1
’y<](z) ) v; )ueEJ, ue Vs 1} if2<i<m,

at
0 {é'y<§@>> ue By, eVt 1gism 1

, if i = m.

By the definition of «, we have that for 1 <i<m, 1 <j <mn,
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AY = min S (vj, @) + (i — 1)(r + 1), max S (v, ) + (i — 1)(r + 1)},
for2<i<m,1<j<n,

B = {max S (vj,a) + (i — 2)(r +1) + 1},
andfor 1<i<m-—1,1<j<n,

C]@ = {max S (vj,) + (1 — 1)(r +1) +1}.

By this and taking into account that max S (v;,a) — min S (vj,a) = r — 1 for
1 < j < n, we have that AE.Z)UB](-Z) UCJ@ is an interval for each vertex v](-z) e V(GY),
where 1 <1 <m, 1< 5 < n.

Next we show that in the coloring v all colors are used. Clearly, there

exists an edge v](-i)v]%) € E(G') such that ~y (U](-;)U](Ci)) = 1, since in the col-

oring « there exists an edge vj vy, with a(vj,vr,) = 1 and 7 (v](-;)vl(%)) =

B (v](i)vlii)) = o (vjyvk,). Similarly, there exists an edge v](-:n)v,(gln) € E(G™)

such that (vj(in)vlg:n)) =W(GE)+(m—-1)(r+1)=W(G)+W (Py)+ (m—1)r,
since in the coloring « there exists an edge vj vy, with a (vjvg,) = W(G) and
7 (o) = 8 (v 0”) = (v + (m = 1 + 1),

Now, by Lemma 7, we have that v is an interval (W (G) + W (Py,)+(m — 1)r)
-coloring of the graph GUP,, for m € N.

Corollary 12. If G is an r-regular graph and G € N, then GOQ, € N (n € N)
and

W (GOQ,) > W(G) + 2t2rid),
Proof. By Theorem 11 and using associativity of the Cartesian product, we get
W(GOQ,) = W(--- ((GOK2)OK,)0 - - - OKy) > W(G) 4 Mrt2rtl),
u

Theorem 13. If G is an r-regular graph and G € N, then GOCy, € N (n > 2)
and W (GOCY,) > W(G) + W (Cay,) + nr.

Proof. For the proof, we construct an edge-coloring of the graph GUC5, that
satisfies the specified conditions.

Since G € N, there exists an interval W (G)-coloring « of G. Now we define
an edge-coloring 3 of the subgraphs G,. .., G*".

For 1 < i < 2n and for every edge vj(z)v,(;) € B(GY), let
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L a (vjug), ifi=1,
3 (v](-z)v,g)) ={ a(wop) + (i -Dr+1)+1, f2<i<n+1,
a(vjvg) + 2n+1—-10)(r+1), ifn+2<i<2n.
It is easy to see that the color of each edge of the subgraph G' is obtained by
shifting the color of the associated edge of G by (i—1)(r+1)+1for2 <i <n+1,
and by (2n—i+1)(r+1) for n+2 < i < 2n, thus the set S <v§z),6) is an interval
for each vertex v](-i) € V(GY), where 1 <i < 2n,1 < j < p. Now we define an
edge-coloring v of the graph GUCY,.
For every e € E(GOCyy,), let
B(e), if e € E(G"),
max .S vj(l),ﬁ +1, ife= vj(-l)
max .S v](l),ﬁ +2, ife= v](-l)v- € Ej,

max § (v\),8) +1, ife=v Ve E;2<i<n,

max S vj(-i),ﬁ +1, ife=w U(i)eEj,n—ngiSQn,

\
where 1 <7 <2n,1 <5 <p.

Let us prove that 7 is an interval (W(G) 4+ W (Cyy,) + nr)-coloring of the
graph GOCYy, for n > 2.

First we prove that the set S (v](-i),'y) is an interval for each vertex v](-i) €
V (GOCY,), where 1 <i <2n,1<j <p.

Casel. i =1,1 < j <p. By the definition of v and taking into account that
max S (vj, ) —min S (vj, ) =r — 1 for 1 < j < p, we have

S(vj(l),v) = {minS (vj,a),...,max S (vj,a)} U{maxS (vj,a) + 2}

U {maxS (vj,) + 1} = [min S (v;, ) , max S (vj, a) + 2].

Case 2. 2 <i<mn,1<j<p. By the definition of v and taking into account
that max S (vj,«) —minS (vj,) =r —1 for 1 < j < p, we have

S (U](-i),’)/) = {minS (vj,a)+ (GE—1)(r+1)+1,...,maxS (v;, ®)
+ ((—1)(r+1)+1}U{maxS (vj,a)+ (i —2)(r+1)+2}
U {maxS (vj,a)+ (i—1)(r+1)+2}
= [minS (vj, ) + (i —1)(r + 1), max S (v, ) + (¢ — 1)(r + 1)+ 2].

Case 3. i =n+1,1 < j < p. By the definition of v and taking into account
that max S (vj,«) —minS (vj,) =r —1 for 1 < j < p, we have
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S (v](nﬂ),y) = {min S (vj,a)+n(r+1)+1,...,maxS (vj,a)+n(r+1)+1}
U {maxS (vj,a) +(n—1)(r+1)+2}
U {maxS (vj,a)+ (n—1)(r+1)+1}

= [minS (vj,a) +n(r+1) —1,max S (v, ) +n(r+1) + 1].

Case 4. n+2 < i< 2n,1 < j <p. By the definition of v and taking into
account that max S (vj,) —min S (vj,a) =r — 1 for 1 < j < p, we have

S (vj(i),V) = {minS (vj,a)+ 2n+1—1i)(r+1),...,maxS (v;,®)
+ (@Cn+1-49)(r+1)}U{maxS(vj,a)+ (2n+1—-1d)(r+1)+1}
U {maxS (vj,a)+ (2n —i)(r+1) + 1} = [min S (v}, a)
+ (2n—i+1)(r+1)—1,maxS (vj,o) + (2n—i+1)(r+1)+1].
Next we show that in the coloring « all colors are used. Clearly, there ex-
ists an edge v](;)v,%) € E(G') such that ~ (v](;)v,({?) = 1, since in the col-
oring « there exists an edge vj vy, with a(vj,vr,) = 1 and 7 (vﬁ?v,&?) =
Ié] (v](-é)vl(%)) = a (vj,Vk, ). Similarly, there exists an edge U](-?+1)UI(CTIL+1) € E(G"H)
such that ~ (U](-?—i_l)’u](:—i_l)) = W(@G) +nir+1)+1=W(G) + W (Cs,) + nr,
since in the coloring « there exists an edge vj, vy, with a (vjvg,) = W(G) and
7 (oY) = B (5 ) = a (o) 4 n(r 1) + 1
Now, by Lemma 7, we have that 7 is an interval (W(G) + W (Cay,) + nr)-
coloring of the graph GUCs, for n > 2. [

From Theorems 5 and 13, we have:
Corollary 14. Ifn = p29, where p is odd and q is nonnegative, then
W (K2,(003,) > 2n? +4n—1—p—q.

Note that the lower bound in Corollary 14 is close to the upper bound for
W (K2,0C%,), since A (K2,0C%,) = 2n + 1 and diam (K»,0C5,) = n + 1, by
Theorem 2, we have W (K2,[0C%,) < 2n? + 4n + 1.

4. GRIDS, CYLINDERS AND TORI

Interval edge-colorings of grids, cylinders and tori were first considered by Giaro
and Kubale in [7], where they proved the following:
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Theorem 15. If G = G(ny,...,ni) or G = C(m,2n), m € Nyon > 2, or G =
T(2m,2n), m,n > 2, then G € N and w(G) = A(G).

For the greatest possible number of colors in interval colorings of grid graphs, the
first author and Karapetyan [20] proved the following theorems:

Theorem 16. For any m € N;n > 2, we have W (C(m,2n)) > 3m +n — 2.
Theorem 17. For any m,n > 2, we have W (T'(2m, 2n)) > max{3m+n, 3n+m}.

First we consider grids. It is easy to see that W (G(2,n)) = 2n—1 for any n € N.
Now we provide a lower bound for W (G(m,n)) when m,n > 2.

2 4 6 8 10
® L ® L L L J

1 3 5 7 9 9

Figure 1. Interval 14-coloring of the graph G(4,6).

Theorem 18. For any m,n > 2, we have W (G(m,n)) > 2(m +n — 3).

Proof. For the proof, we are going to construct an edge-coloring of the graph
G(m,n) that satisfies the specified conditions.
Define an edge-coloring o of G(m,n) as follows:

(1) fori=1,....m—1,j=1,...,n—1, let
) (i+1 o
a(vj(.z)vj(z )> =2(i+7)—3;
(2) fori=1,...,m—1, let

! (vﬁf)vr(fﬂ)) =2(n+1) — 5;

3) forj=1,....,n—1, let
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« (v§1)v§21) = 27;

(4) fori=2,....m,j=1,...,n—1, let
o (fu)) =20+ 5) - 4

It is easy to see that « is an interval (2(m + n — 3))-coloring of G(m,n) when
m,n > 2. [ |

Figure 1 shows the interval 14-coloring a of the graph G(4,6) described in the
proof of Theorem 18.

Note that the lower bound in Theorem 18 is not far from the upper bound for
W (G(m,n)), since G(m,n) is bipartite, 2 < A (G(m,n)) < 4 and diam (G(m,n))
=m+n — 2, by Theorem 3, we have W (G(m,n)) <3(m+mn—2)+ 1.

From Theorems 10 and 18, we have:

Corollary 19. Ifny > --- > ng, > 2 (k € N), then
W(G(ny,...,na1)) > 252 n; — 6k,
and if ny > -+ > nop1 > 2 (k €N), then
W(G(n1,. .. noke1)) > 22 ni 4 ngpy1 — 6k — 1.
Next we consider cylinders. In [18], Khchoyan proved the following:

Theorem 20. For any n > 3, we have
(1) C(2,n) €M,

(2) w(C(2,n)) =3,

)
3) W(C(2,n)) =n+2,
(4) if w(C(2,n)) <t <W(C(2,n)), then C(2,n) has an interval t-coloring.

Now we prove some general results on cylinders.
Theorem 21. For any m > 3,n € N, we have C(m,2n + 1) € M and

4, if m is even,

w (C(m,2n +1)) :{ 6, if m is odd.

Proof. First we show that if m is even, then C(m,2n + 1) has an interval 4-
coloring. For 1 < i < %, define a subgraph C' of the graph C(m,2n + 1) as
follows:

Ci = <V2H UV EYE-ly B2y {ufi‘l)vfi): 1<j<2n+ 1})
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Clearly, C? is isomorphic to C(2,2n + 1) for 1 < i < 5. By Theorem 20,
C(2,2n+1) € 91 and there exists an interval 3-coloring a of C(2,2n+1). Now we
define an edge-coloring 3 of C(m,2n+1). First we color the edges of C? according
to o for 1 < ¢ < . Then we color the edges v§2z)v§21+1) € E; with color 4 for
1<i<Z—1,1<j<2n+1. It is easy to see that § is an interval 4-coloring of
C(m, 2n+ 1). This shows that C'(m,2n+1) € 9 and w(C(m,2n+1)) < 4. On the
other hand, w(C(m,2n + 1)) > A(C(m,2n + 1)) = 4; thus w(C(m,2n + 1)) =4
for even m.

Now assume that m is odd. First we show that C(3,2n + 1) has an interval

6-coloring. Define an edge-coloring 7 of C'(3,2n + 1) as follows:

(1) v <U§1)v§2)) =6and for j =2,...,2 | 2] let v (vj(l)vj(Q)) '
(2) ’Y( 1) ) J+1> =2and for j =2 |2 +2,...,2n+ 1, let

2| 24 4172 2t
v (v](»l)v(?)) =3;

<

3) v <v§2)v§3)> =3 and for j =2,...,2 | 2] let v (vj(?)vj(g)) =2;
(4) for j=2 |2 +1,.. 2n+llet'y((2)()>:1;

(5) j=1,....| =], let
(o) = (o2 0) =5 an () = (421) o
(6) for j = L"T‘HJ +1,...,n, let

() = (o2 02) =t amd o (o0 ) = (o202,) =

(7) for j = LiJ +1,...,n, let ~ (v%)vé}l_l) =7 (vg)véj)ﬂ) =2

(8) for ] - 17 R LnTHJv let v (U§311U§3)> =1 and ¥ (véj)vgﬁrl) = 37
(9) for j = VLTHJ +1,...,n, let v <v$)_11)$)) =2 and y (vg )véi)Jrl) =2;

(10) for j = LLJ +1,...,n, let vy <U§§)”$)+1> =3
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It is not difficult to see that ~ is an interval 6-coloring of C'(3,2n + 1) for which

S(vj(»g),'y) =[1,3] when 1 <j <2n+ 1.

Next we define an edge-coloring ¢ of C'(m,2n + 1) as follows: first we color
the edges of the subgraph C(3,2n+ 1) of C'(m,2n + 1) according to 7. Secondly,
we color the edges of the remaining subgraph C(m — 3,2n + 1) of C(m,2n + 1)

according to 5, and finally, we color the edges v§3)v§4) € E; with color 4 for
1 <j<2n+1. It is easy to see that ¢ is an interval 6-coloring of C'(m,2n + 1).
This shows that C'(m,2n + 1) € M and w(C(m,2n + 1)) < 6.

Now we prove that w(C(m,2n 4+ 1)) > 6 for odd m. Let ¢ be an interval
w(C(m,2n+1))-coloring of C'(m,2n+1) and w(C(m,2n+1)) < 5. Consider the

set S (v](-i),w) for 1 <i<m,1<j<2n+1. It is easy to see that if d (vg.i)) =3,
then 1 < min S (U](-i),ﬂ)) < 3, and if d (vj(.i)) =4, then 1 < min S <v](-i),?!)) <2
Hence, 3 € S <v§i),¢) for 1 <¢<m,1 <j <2n+1, but this implies that the

edges with color 3 form a perfect matching in C'(m,2n + 1), which contradicts
the fact that C'(m,2n + 1) does not have one. Thus w(C(m,2n+ 1)) = 6 for odd
m. |

£
U UL

Figure 2. Interval 6-coloring of the graph C(3,7).

Figure 2 shows the interval 6-coloring v of the graph C(3,7) described in the
proof of Theorem 21.

Before we derive lower bounds for W(C'(2m,2n)) and W (C(2m,2n + 1)), let
us note that Lemma 8, Theorems 15 and 21 imply the following:

Corollary 22. If GUH is planar and both factors have at least 3 vertices, then
GOH € M and w(GOH) < 6.

Theorem 23. If m € N,n > 2, then W(C(2m,2n)) > 4m + 2n — 2, and if
m,n € N, then W(C(2m,2n + 1)) > 4m + 2n — 1.

Proof. For the proof of the theorem, it suffices to construct edge-colorings that
satisfies the specified conditions. First we construct an interval (4m + 2n — 2)-
coloring of C'(2m,2n) when m € N,n > 2.
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Define an edge-coloring « of C'(2m,2n) as follows:

(1) fore=1,...,m,j=1,...,n, let

a (v§2i_1)v§ffl)> =« (U](-Qi)v](-iq) =4i+2j —4;

(2) fore=1,...,m,j=n+1,...,2n—1, let

2i—1) (2i—1 2) (2 . .
a(v](- )vj(-H )> :a(v](- Z)UJ(HL%) =4i—-2j4+4n —1;

(3) fori=1,...,m, let
Q@ (v?i_l)vgj—l)) =« (Ufi)vgj)) =4i—1;
(4) fori=1,...,m,j=1,...,n,let

a <vj(-2i_1)v](-2i)> =4i+2j —5;

(5) fori=1,....m,j7=n+1,...,2n, let

! (vj(-%_l)vj(-?i)) =41 — 25+ 4n;

(6) fori=1,....m—1,j=2,...,n+1, let
a (v](?i)v](»%ﬂ)) =4i+2j —3;

(7) fori=1,....m—1,j=n+2,...,2n, let
« (v](?i)v](?iﬂ)) =47 — 25 +4n+ 2;
(8) fori=1,...,m—1, let
o <v§2i)vg2i+1)> — 4

Next we construct an interval (4m + 2n — 1)-coloring of C(2m,2n + 1) when
m,n € N. Define an edge-coloring § of C(2m,2n + 1) as follows:

(1) fori=1,....m,7=1,....,n+1, let
B (W VulY) = 5 (P ul)) = i+ 2) - 4

(2) fori=1,...,m,j=n+2,...,2n, let
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3 (ufi*”ufj;”) -3 (u§2)u§2+)1) —4i—2j+dn+1;

(3) fori=1,...,m, let
(L) = 5 (uE2),) =i 1
(4) fore=1,...,m,j=1,...,n+2, let

() fori=1,...,m,j=n+3,...,2n+1, let

2i—1) (2 . ‘
5(U§ )ug. )>:42—23—|—4n+2;

(6) fore=1,....m—1,j=2,....,n+1, let

B (ufulP ) = 4i 425 - 3

(7) fori=1,....m—1,j=n+2,...,2n+1, let

B (P H) = i - 2j + dn + 4

(8) fori=1,...,m—1, let
3 ()

It is straightforward to check that « is an interval (4m + 2n — 2)-coloring of
C(2m,2n) when m € N,n > 2, and  is an interval (4m + 2n — 1)-coloring of
C(2m,2n + 1) when m,n € N. |

Note that the lower bound in Theorem 23 is not so far from the upper bound for
W (C(m,n)). Indeed, since C(2m,2n) is bipartite, 3 < A (C(2m,2n)) < 4 and
diam (C'(2m, 2n)) = 2m+n—1, by Theorem 3, we have W (C'(2m, 2n)) < 3(2m+
n—1)+1. Similarly, since 3 < A (C(2m,2n + 1)) < 4 and diam (C'(2m,2n + 1)) =
2m 4+ n — 1, by Theorem 2, we have W (C(2m,2n + 1)) < 3(2m + n) + 1. Next
we would like to compare obtained lower bounds for W(C(m,n)). If m is even
and m < n, then the lower bound in Theorem 23 is better than in Theorem 16,
if m is even and m > n, then the lower bound in Theorem 16 is better than in
Theorem 23, and if m is even and m = n, then we obtain the same lower bound
in both theorems.

In the following we consider tori. In [22], the first author proved that the
torus T'(m,n) € N if and only if mn is even. Since T(m,n) is 4-regular, by
Theorem 1, we obtain that w(7(m,n)) = 4 when mn is even. Now we derive a
new lower bound for W(7T'(m,n)) when mn is even.
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Theorem 24. For any m,n > 2, we have W(T'(2m,2n)) > max{3m+n+2,3n+
m + 2}, and for any m > 2, n € N, we have

2m 4+ 2n+ 2, if m is odd,

>
W (T(2m,2n+1)) > { 2m +2n+3, if m is even.

Proof. First note that the lower bound for W(T'(2m,2n)) (m,n > 2) follows

from Theorem 13. For the proof of a second part of the theorem, it suffices to
construct an edge-coloring of T'(2m, 2n+ 1) that satisfies the specified conditions.

U AT Y T A T

y

4
5
4
2 4 6 8 7 5
3
Figure 3. Interval 13-coloring of the graph T'(4,7).

Define an edge-coloring « of T'(2m,2n + 1) as follows:

(1) forj=1,...,n+1, let
m, 1\ _ 2m) (2m)\ _ o ..
« (vj Uj—s—l) =« (vj Ch} ) = 273;
(2) for j=n+2,...,2n, let
1 1 2m) (2m .
a (v]( )U§J21) =« (vj( )v§+1)> =22n+1—-75)+3
and
1) (1 2m) (2m
o (000,) = o (o) = 5
3) forj=1,....,n+2, let

« <v](-1)v](-2m)) =25 -1

(4) for j=n+3,...,2n+1, let
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« (vj(l)v](-zm)) =22n+3 —j);
(5) fori=1,....|%],j=1,...,n+1,let

a (U(Qi)v(Qi)) — (v(2i+1)v(gi+1)>

Jo i+l J Jj+1
. (2m—2i) (2m—2i)\ _ (2m—2i4+1) (2m—-2i4+1)\ _ . .
—a(vj Chs) )—a(vj Chs) )-42—1—2],

(6) fori=1,....|%|, j=n+2,...,2n, let

o (U](-Zi)vﬁq) —a (U§2i+1)v§ii;rl)> —a (v]@m*%)vﬁ?*m)

— <U§'2m_2i+1)vj('inll_2i+l)) = 4+ 2(2n 41— ]) +3
and
@ (2,) = a (o DY)
—a <U§2m_2i)1}§zﬁ;2i)) —a <U§2m—2i+1)véiri;2¢+1)> — 4+ 3

(7) fori=1,....[%],j=2,...,n+1,let

o <U<2i71)v§2i)> —a (Uj(‘2m721+1)vj(2m72i+2)> — 44+ 2j — 3

(8) forizl,...,[%1,j=n+2,...,2n+1, let

o <v§2i—1)v§2i)> —a (U§2m—2i+1)v§2m—2i+2)> —A(n+14+1) - 2j;

(9) fori=1,..., [%1, let
o (v§2i—l)v§2i)> —a (U£2m—2i+1)v§2m—2i+2)) — 4i;
(10) fori=1,...,|

o <U§21)U(2i+1)) —a <U§2m72i)v§2m72i+1)> —di+2j—1;

wI3

|,i=1,....,n+2 let

<

(11) forizl,...,L%J,j:n+3,...,2n+1, let

o (v§2i)v§2i+1)> —a <U§2m—2i)v§2m—2i+1)> —4i+2(2n+3— j).
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VAP TVATraTre
;

2 4 6 8 7 5
3
Figure 4. Interval 14-coloring of the graph T'(6,7).

Let us show that the edges incident to any vertex of T(2m,2n + 1) are colored
by four consecutive colors. For example, let 2 <7 < L%J and 2 <j<n+1. By
the points (5), (7) and (10) of the definition of o, for 2 <i < | 2], 2 < j < n+1,
we have

g (UJ(%), a) e (UJ(.?’”—Q”,@) = {4i +2j — 2,4i + 25}
U {4i+2j—3}U{di+2j— 1} =[4i+ 25 — 3,40+ 27].
Similarly, it can be verified that the edges incident to other vertices of T'(2m, 2n+

1) are also colored by four consecutive colors. It is easy to see that a (vgl)v?m)) =

1. Now if m is odd, then « (Uiﬁévéﬁ?”) = 2m + 2n + 2 and, by Lemma 7, «

is an interval (2m + 2n + 2)-coloring of T'(2m,2n + 1) when m is odd. If m is

even, then « (vfﬂévfﬁ;lv = 2m + 2n + 3 and, by Lemma 7, « is an interval
(2m + 2n + 3)-coloring of T'(2m, 2n + 1) when m is even. |

Figure 3 and 4 show the interval colorings of the graphs 7'(4,7) and T'(6,7)
described in the proof of Theorem 24.
From Theorems 1, 15 and 24, we have:

Corollary 25. If G =T(2m,2n) (m,n > 2) and 4 <t < max{3m+n+2,3n +
m + 2}, then G has an interval t-coloring. Also, if H = T(2m,2n + 1) (m >
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2,n €N), mis odd and 4 <t <2m + 2n+ 2, then H has an interval t-coloring,
and if H=T2m,2n+1) (m > 2,n € N), m is even and 4 <t < 2m + 2n + 3,
then H has an interval t-coloring.

Let us note that the lower bound in Theorem 24 is not so far from the upper bound
for W (T'(m,n)). Indeed, since T'(2m,2n) is bipartite, A (T(2m,2n)) = 4 and
diam (C(2m, 2n)) = m+n, by Theorem 3, we have W (T'(2m, 2n)) < 3(m+n)+1.
Similarly, since A (T'(2m,2n+ 1)) = 4 and diam (T'(2m,2n+ 1)) = m + n, by
Theorem 2, we have W (T'(2m,2n+ 1)) <3(m+n+1) + 1.

5. n-DIMENSIONAL CUBES

It is well-known that the n-dimensional cube @, is the Cartesian product of

n copies of K. In [21], the first author investigated interval colorings of n-
dimensional cubes and proved that w (@) = n and W (Q,) > w for any
n € N. In the same paper he also conjectured that W (Q,,) = % for any
n € N. Here, we prove this conjecture.

Let e, ¢’ € E(Q,) and e = ujug, € = vjvy. The distance between two edges

e and € in Q,, we define as follows:
d(e, €') = mini<i<a1<j<2 {d (ui, v))}-

Let « be an interval ¢-coloring of @,,. Define an edge span sp,, (e, e’) of edges e
and ¢’ (e,e’ € E(Q,)) in coloring « as follows:

sP, (€,€') = |a(e) — a(e)].
For any k,0 < k <n—1, define an edge span at distance k sp, j in coloring « as
follows:

SPax = Max {sp, (e,€') : e,e € E(Qy,) and d(e,e') = k}.

Clearly, sp,o=n—1.

n(n+1
Theorem 26. Ifn € N, then W (Q,,) < ( 5 ).

Proof. Let a be an interval W (Qy,)-coloring of @,,. First we show that if 1 <
k <mn—1, then sp,  <sp, 1 +n—k.

Let e, ¢’ € E(Qy) be any two edges of Q,, with d(e,e’) = k. Without loss of
generality, we may assume that a(e) > a(e’). Since d(e,e’) = k, there exist u

and v vertices such that u € e and v € ¢’ and d(u,v) = k. There are vy, ve, ..., v
(vi # v; when i # j) vertices such that d(u,v;) = k — 1 and vv; € E(Q,) for
1=1,...,k. Since @, is n-regular, we have

(%) ming <;<x {a(viv)} < ale) +n—k.

Let a(e”) = miny<;<p{a(v;v)}. By (*), we obtain
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ale') > a(e”) — (n— k) and d(e,e”) =k — 1.

Thus,
8P (€,€') = |a(e) — ()] < |afe) —a(e”) +n — k| <|a(e) —ale")| +n -k

< Spgk—1+n—k.
Since e and ¢’ were arbitrary edges with d(e, e’) = k, we obtain sp,, ;, < sp, 1 +
n—k. Now by induction on k with sp, o = n —1, we obtain sp,, ,_; < n(n;l) -1
From this and taking into account that d(e,e’) < n —1 for all e, e’ € E(Q,,), we
get W (Qy) < % [ ]

By Theorems 6 and 26, we obtain W (Q,,) = w for any n € N. Moreover,

b%f Tl)leorem 1, we have that @), has an interval t-coloring if and only if n <t <
n(n+1
—a—.
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