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Abstract

A proper edge-coloring of a graph G with colors 1, . . . , t is an interval
t-coloring if all colors are used and the colors of edges incident to each vertex
of G form an interval of integers. A graph G is interval colorable if it has an
interval t-coloring for some positive integer t. Let N be the set of all interval
colorable graphs. For a graph G ∈ N, the least and the greatest values of
t for which G has an interval t-coloring are denoted by w(G) and W (G),
respectively. In this paper we first show that if G is an r-regular graph
and G ∈ N, then W (G�Pm) ≥ W (G) + W (Pm) + (m − 1)r (m ∈ N) and
W (G�C2n) ≥ W (G) +W (C2n) + nr (n ≥ 2). Next, we investigate interval
edge-colorings of grids, cylinders and tori. In particular, we prove that if
G�H is planar and both factors have at least 3 vertices, then G�H ∈ N

and w(G�H) ≤ 6. Finally, we confirm the first author’s conjecture on the
n-dimensional cube Qn and show that Qn has an interval t-coloring if and

only if n ≤ t ≤ n(n+1)
2 .
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1. Introduction

A proper edge-coloring of a graph G with colors 1, . . . , t is an interval t-coloring
if all colors are used and the colors of edges incident to each vertex of G form an
interval of integers. A graph G is interval colorable if it has an interval t-coloring
for some positive integer t. Let N be the set of all interval colorable graphs [1, 14].
For a graph G ∈ N, the least and the greatest values of t for which G has an
interval t-coloring are denoted by w(G) and W (G), respectively. The concept of
interval edge-coloring was introduced by Asratian and Kamalian [1]. In [1], they
proved the following:

Theorem 1. Let G be a regular graph. Then

(1) G ∈ N if and only if χ′(G) = ∆(G).

(2) If G ∈ N and w(G) ≤ t ≤W (G), then G has an interval t-coloring.

In [2], Asratian and Kamalian investigated interval edge-colorings of connected
graphs. In particular, they obtained the following two results.

Theorem 2. If G is a connected graph and G ∈ N, then

W (G) ≤ (diam(G) + 1) (∆(G) − 1) + 1.

Theorem 3. If G is a connected bipartite graph and G ∈ N, then

W (G) ≤ diam(G) (∆(G) − 1) + 1.

Recently, Kamalian and the first author [16] showed that these upper bounds
cannot be significantly improved.

In [13], Kamalian investigated interval colorings of complete bipartite graphs
and trees. In particular, he proved the following:

Theorem 4. For any r, s ∈ N, the complete bipartite graph Kr,s is interval

colorable, and

(1) w (Kr,s) = r + s− gcd(r, s),

(2) W (Kr,s) = r + s− 1,

(3) if w (Kr,s) ≤ t ≤W (Kr,s), then Kr,s has an interval t-coloring.

In [21], the first author investigated interval colorings of complete graphs and
n-dimensional cubes. In particular, he obtained the following two results.
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Theorem 5. If n = p2q, where p is odd and q is nonnegative, then

W (K2n) ≥ 4n− 2 − p− q.

Theorem 6. If n ∈ N, then W (Qn) ≥ n(n+1)
2 .

The NP -completeness of the problem of the existence of an interval edge-coloring
of an arbitrary bipartite graph was shown in [24]. A similar result for regular
graphs was obtained in [1, 2]. In [19, 22, 23], interval edge-colorings of various
products of graphs were investigated. Some interesting results on interval color-
ings were also obtained in [3, 4, 6, 7, 8, 9, 10, 14, 15, 16, 17, 18, 19, 20]. Surveys
on this topic can be found in some books [3, 12, 19].

In this paper we focus only on interval edge-colorings of Cartesian products
of graphs.

2. Notations, Definitions and Auxiliary Results

Throughout this paper all graphs are finite, undirected, and have no loops or
multiple edges. Let V (G) and E(G) denote the sets of vertices and edges of
graph G, respectively. The degree of a vertex v in G is denoted by dG(v), the
maximum degree of G by ∆(G), and the chromatic index of G by χ′(G). If G is a
connected graph, then the distance between two vertices u and v in G, we denote
by d(u, v), and the diameter of G by diam(G). We use the standard notations
Pn, Cn, Kn and Qn for the path, cycle, complete graph on n vertices and the n-
dimensional cube, respectively. A partial edge-coloring of a graph G is a coloring
of some edges of G such that no two adjacent edges receive the same color. If α is
a partial edge-coloring of G and v ∈ V (G), then S (v, α) denotes the set of colors
appearing on colored edges incident to v. Clearly, if α is a proper edge-coloring
of a graph G, then |S(v, α)| = dG(v) for every v ∈ V (G).

Let [t] denote the set of the first t natural numbers. Let ⌊a⌋ (⌈a⌉) denote the
largest (least) integer less (greater) than or equal to a. For two positive integers
a and b with a ≤ b, the set {a, . . . , b} is denoted by [a, b]. The terms and concepts
that we do not define can be found in [25].

Let G and H be graphs. The Cartesian product G�H is defined as follows:
V (G�H) = V (G) × V (H), E(G�H) = {(u1, v1)(u2, v2) : u1 = u2 and v1v2 ∈
E(H) or v1 = v2 and u1u2 ∈ E(G)}.

Let V (G) = {u1, . . . , un} and V (H) = {w1, . . . , wm}. We use the following
notation for vertex and edge sets of the Cartesian product G�H: V (G�H) =
⋃m

i=1 V
i, where V i =

{

v
(i)
j : 1 ≤ j ≤ n

}

and E(G�H) =
⋃m

i=1E
i ∪

⋃n
j=1Ej ,

where Ei =
{

v
(i)
j v

(i)
k : ujuk ∈ E(G)

}

and Ej =
{

v
(i)
j v

(k)
j : wiwk ∈ E(H)

}

.
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We define subgraphs Gi of G as follows: Gi = (V i, Ei). Clearly, Gi is isomorphic
to G for 1 ≤ i ≤ m.

Clearly, if G and H are connected graphs, then G�H is connected, too.
Moreover, ∆(G�H) = ∆(G) + ∆(H) and diam(G�H) = diam(G) + diam(H).

The k-dimensional grid G(n1, . . . , nk), ni ∈ N, is the Cartesian product
of paths Pn1

�Pn2
� · · ·�Pnk

. The cylinder C(n1, n2) is the Cartesian product
Pn1

�Cn2
, and the torus T (n1, n2) is the Cartesian product of cycles Cn1

�Cn2
.

We also need the following two lemmas.

Lemma 7. If α is an edge-coloring of a connected graph G with colors 1, . . . , t
such that the edges incident to each vertex v ∈ V (G) are colored by distinct and

consecutive colors, and mine∈E(G){α(e)} = 1, maxe∈E(G){α(e)} = t, then α is an

interval t-coloring of G.

Proof. For the proof of the lemma, it suffices to show that all colors are used in
the coloring α of G.

Let u and w be vertices such that 1 ∈ S(u, α) and t ∈ S(w,α). Also, let
P = v1, . . . , vk, where u = v1 and vk = w be a u,w-path in G. If k = 1, then
t ∈ S(u, α) and all colors appear on edges incident to u. Assume that k ≥ 2. The
sets S(vi, α) for vi ∈ V (P ) are intervals, and for 2 ≤ i ≤ k, intervals S(vi−1, α)
and S(vi, α) share a color. Thus, the sets S(v1, α), . . . , S(vk, α) cover [1, t].

The next lemma was proved by Behzad and Mahmoodian in [5].

Lemma 8. If both G and H have at least 3 vertices, then the Cartesian product

G�H is planar if and only if G�H = G(m,n) or G�H = C(m,n).

3. The Cartesian Product of Regular Graphs

Interval edge-colorings of Cartesian products of graphs were first investigated by
Giaro and Kubale in [7], where they proved the following:

Theorem 9. If G ∈ N, then G�Pm ∈ N (m ∈ N) and G�C2n ∈ N (n ≥ 2).

It is well-known that Pm, C2n ∈ N and W (Pm) = m − 1, W (C2n) = n + 1 for
m ∈ N and n ≥ 2. Later, Giaro and Kubale [9, 19] proved a more general result.

Theorem 10. If G,H ∈ N, then G�H ∈ N. Moreover, w(G�H) ≤ w(G) +
w(H) and W (G�H) ≥W (G) +W (H).

Let us note that if G ∈ N and H = Pm or H = C2n, then, by Theorem 10, we
obtain w(G�H) ≤ w(G) + 2 and W (G�Pm) ≥ W (G) + m − 1, W (G�C2n) ≥
W (G) + n+ 1. Now we improve the lower bound in Theorem 10 for W (G�Pm)
and W (G�C2n) when G is a regular graph and G ∈ N. More precisely, we show
that the following two theorems hold.
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Theorem 11. If G is an r-regular graph and G ∈ N, then G�Pm ∈ N (m ∈ N)
and W (G�Pm) ≥W (G) +W (Pm) + (m− 1)r.

Proof. For the proof, we construct an edge-coloring of the graph G�Pm that
satisfies the specified conditions.

Since G ∈ N, there exists an interval W (G)-coloring α of G. Now we define
an edge-coloring β of the subgraphs G1, . . . , Gm. For 1 ≤ i ≤ m and for every

edge v
(i)
j v

(i)
k ∈ E(Gi), let

β
(

v
(i)
j v

(i)
k

)

= α(vjvk) + (i− 1)(r + 1).

It is easy to see that the color of each edge of the subgraph Gi is obtained
by shifting the color of the associated edge of G by (i − 1)(r + 1). Thus the

set S
(

v
(i)
j , β

)

is an interval for each vertex v
(i)
j ∈ V (Gi), where 1 ≤ i ≤ m,

1 ≤ j ≤ n. Now we define an edge-coloring γ of the graph G�Pm. For every
e ∈ E (G�Pm), let

γ(e) =

{

β(e), if e ∈ E(Gi),

maxS
(

v
(i)
j , β

)

+ 1, if e = v
(i)
j v

(i+1)
j ∈ Ej ,

where 1 ≤ i ≤ m, 1 ≤ j ≤ n.

Let us prove that γ is an interval (W (G) +W (Pm) + (m− 1)r)-coloring of
the graph G�Pm for m ∈ N.

First we prove that the set S
(

v
(i)
j , γ

)

is an interval for each vertex v
(i)
j ∈

V (G�Pm), where 1 ≤ i ≤ m, 1 ≤ j ≤ n.

For each vertex v
(i)
j ∈ V (G�Pm), the set S

(

v
(i)
j , γ

)

can be represented as

a union of three sets, S
(

v
(i)
j , γ

)

= A
(i)
j ∪ B

(i)
j ∪ C

(i)
j , where A

(i)
j corresponds to

the edges of i-th layer, B
(i)
j corresponds to the edges from the vertices of lower

layer and C
(i)
j corresponds to the edges from the vertices of higher layer. More

specifically, for 1 ≤ i ≤ m, 1 ≤ j ≤ n, define sets A
(i)
j , B

(i)
j and C

(i)
j as follows:

A
(i)
j =

{

γ
(

v
(i)
j u

)

: v
(i)
j u ∈ Ei

}

,

B
(i)
j =

{

∅, if i = 1,
{

γ
(

v
(i)
j u

)

: v
(i)
j u ∈ Ej , u ∈ V i−1

}

, if 2 ≤ i ≤ m,

C
(i)
j =

{ {

γ
(

v
(i)
j u

)

: v
(i)
j u ∈ Ej , u ∈ V i+1

}

, if 1 ≤ i ≤ m− 1,

∅, if i = m.

By the definition of γ, we have that for 1 ≤ i ≤ m, 1 ≤ j ≤ n,
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A
(i)
j = [minS (vj , α) + (i− 1)(r + 1),maxS (vj , α) + (i− 1)(r + 1)],

for 2 ≤ i ≤ m, 1 ≤ j ≤ n,

B
(i)
j = {maxS (vj , α) + (i− 2)(r + 1) + 1},

and for 1 ≤ i ≤ m− 1, 1 ≤ j ≤ n,

C
(i)
j = {maxS (vj , α) + (i− 1)(r + 1) + 1}.

By this and taking into account that maxS (vj , α) − minS (vj , α) = r − 1 for

1 ≤ j ≤ n, we have that A
(i)
j ∪B

(i)
j ∪C

(i)
j is an interval for each vertex v

(i)
j ∈ V (Gi),

where 1 ≤ i ≤ m, 1 ≤ j ≤ n.

Next we show that in the coloring γ all colors are used. Clearly, there

exists an edge v
(1)
j0
v
(1)
k0

∈ E(G1) such that γ
(

v
(1)
j0
v
(1)
k0

)

= 1, since in the col-

oring α there exists an edge vj0vk0 with α (vj0vk0) = 1 and γ
(

v
(1)
j0
v
(1)
k0

)

=

β
(

v
(1)
j0
v
(1)
k0

)

= α (vj0vk0). Similarly, there exists an edge v
(m)
j1

v
(m)
k1

∈ E(Gm)

such that γ
(

v
(m)
j1

v
(m)
k1

)

= W (G) + (m− 1)(r+ 1) = W (G) +W (Pm) + (m− 1)r,

since in the coloring α there exists an edge vj1vk1 with α (vj1vk1) = W (G) and

γ
(

v
(m)
j1

v
(m)
k1

)

= β
(

v
(m)
j1

v
(m)
k1

)

= α (vj1vk1) + (m− 1)(r + 1).

Now, by Lemma 7, we have that γ is an interval (W (G) +W (Pm)+(m− 1)r)
-coloring of the graph G�Pm for m ∈ N.

Corollary 12. If G is an r-regular graph and G ∈ N, then G�Qn ∈ N (n ∈ N)
and

W (G�Qn) ≥W (G) + n(n+2r+1)
2 .

Proof. By Theorem 11 and using associativity of the Cartesian product, we get

W (G�Qn) = W (· · · ((G�K2)�K2)� · · ·�K2) ≥W (G) + n(n+2r+1)
2 .

Theorem 13. If G is an r-regular graph and G ∈ N, then G�C2n ∈ N (n ≥ 2)
and W (G�C2n) ≥W (G) +W (C2n) + nr.

Proof. For the proof, we construct an edge-coloring of the graph G�C2n that
satisfies the specified conditions.

Since G ∈ N, there exists an interval W (G)-coloring α of G. Now we define
an edge-coloring β of the subgraphs G1, . . . , G2n.

For 1 ≤ i ≤ 2n and for every edge v
(i)
j v

(i)
k ∈ E(Gi), let
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β
(

v
(i)
j v

(i)
k

)

=







α (vjvk), if i = 1,
α (vjvk) + (i− 1)(r + 1) + 1, if 2 ≤ i ≤ n+ 1,
α (vjvk) + (2n+ 1 − i)(r + 1), if n+ 2 ≤ i ≤ 2n.

It is easy to see that the color of each edge of the subgraph Gi is obtained by
shifting the color of the associated edge of G by (i−1)(r+1)+1 for 2 ≤ i ≤ n+1,

and by (2n− i+1)(r+1) for n+2 ≤ i ≤ 2n, thus the set S
(

v
(i)
j , β

)

is an interval

for each vertex v
(i)
j ∈ V (Gi), where 1 ≤ i ≤ 2n, 1 ≤ j ≤ p. Now we define an

edge-coloring γ of the graph G�C2n.
For every e ∈ E (G�C2n), let

γ(e) =







































β(e), if e ∈ E(Gi),

maxS
(

v
(1)
j , β

)

+ 1, if e = v
(1)
j v

(2n)
j ∈ Ej ,

maxS
(

v
(1)
j , β

)

+ 2, if e = v
(1)
j v

(2)
j ∈ Ej ,

maxS
(

v
(i)
j , β

)

+ 1, if e = v
(i)
j v

(i+1)
j ∈ Ej , 2 ≤ i ≤ n,

maxS
(

v
(i)
j , β

)

+ 1, if e = v
(i−1)
j v

(i)
j ∈ Ej , n+ 2 ≤ i ≤ 2n,

where 1 ≤ i ≤ 2n, 1 ≤ j ≤ p.
Let us prove that γ is an interval (W (G) +W (C2n) + nr)-coloring of the

graph G�C2n for n ≥ 2.

First we prove that the set S
(

v
(i)
j , γ

)

is an interval for each vertex v
(i)
j ∈

V (G�C2n), where 1 ≤ i ≤ 2n, 1 ≤ j ≤ p.

Case 1. i = 1, 1 ≤ j ≤ p. By the definition of γ and taking into account that
maxS (vj , α) − minS (vj , α) = r − 1 for 1 ≤ j ≤ p, we have

S
(

v
(1)
j , γ

)

= {minS (vj , α) , . . . ,maxS (vj , α)} ∪ {maxS (vj , α) + 2}

∪ {maxS (vj , α) + 1} = [minS (vj , α) ,maxS (vj , α) + 2].

Case 2. 2 ≤ i ≤ n, 1 ≤ j ≤ p. By the definition of γ and taking into account
that maxS (vj , α) − minS (vj , α) = r − 1 for 1 ≤ j ≤ p, we have

S
(

v
(i)
j , γ

)

= {minS (vj , α) + (i− 1)(r + 1) + 1, . . . ,maxS (vj , α)

+ (i− 1)(r + 1) + 1} ∪ {maxS (vj , α) + (i− 2)(r + 1) + 2}

∪ {maxS (vj , α) + (i− 1)(r + 1) + 2}

= [minS (vj , α) + (i− 1)(r + 1),maxS (vj , α) + (i− 1)(r + 1)+ 2].

Case 3. i = n+ 1, 1 ≤ j ≤ p. By the definition of γ and taking into account
that maxS (vj , α) − minS (vj , α) = r − 1 for 1 ≤ j ≤ p, we have
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S
(

v
(n+1)
j , γ

)

= {minS (vj , α)+ n(r + 1)+ 1, . . . ,maxS (vj , α)+ n(r + 1)+1}

∪ {maxS (vj , α) +(n− 1)(r + 1)+2}

∪ {maxS (vj , α) + (n− 1)(r + 1)+ 1}

= [minS (vj , α) + n(r + 1) − 1,maxS (vj , α) + n(r + 1) + 1].

Case 4. n + 2 ≤ i ≤ 2n, 1 ≤ j ≤ p. By the definition of γ and taking into
account that maxS (vj , α) − minS (vj , α) = r − 1 for 1 ≤ j ≤ p, we have

S
(

v
(i)
j , γ

)

= {minS (vj , α) + (2n+ 1 − i)(r + 1), . . . ,maxS (vj , α)

+ (2n+ 1 − i)(r + 1)} ∪ {maxS (vj , α) + (2n+ 1 − i)(r + 1) + 1}

∪ {maxS (vj , α) + (2n− i)(r + 1) + 1} = [minS (vj , α)

+ (2n− i+ 1)(r + 1) − 1,maxS (vj , α) + (2n− i+ 1)(r + 1) + 1].

Next we show that in the coloring γ all colors are used. Clearly, there ex-

ists an edge v
(1)
j0
v
(1)
k0

∈ E(G1) such that γ
(

v
(1)
j0
v
(1)
k0

)

= 1, since in the col-

oring α there exists an edge vj0vk0 with α (vj0vk0) = 1 and γ
(

v
(1)
j0
v
(1)
k0

)

=

β
(

v
(1)
j0
v
(1)
k0

)

= α (vj0vk0). Similarly, there exists an edge v
(n+1)
j1

v
(n+1)
k1

∈ E(Gn+1)

such that γ
(

v
(n+1)
j1

v
(n+1)
k1

)

= W (G) + n(r + 1) + 1 = W (G) + W (C2n) + nr,

since in the coloring α there exists an edge vj1vk1 with α (vj1vk1) = W (G) and

γ
(

v
(n+1)
j1

v
(n+1)
k1

)

= β
(

v
(n+1)
j1

v
(n+1)
k1

)

= α (vj1vk1) + n(r + 1) + 1.

Now, by Lemma 7, we have that γ is an interval (W (G) +W (C2n) + nr)-
coloring of the graph G�C2n for n ≥ 2.

From Theorems 5 and 13, we have:

Corollary 14. If n = p2q, where p is odd and q is nonnegative, then

W (K2n�C2n) ≥ 2n2 + 4n− 1 − p− q.

Note that the lower bound in Corollary 14 is close to the upper bound for
W (K2n�C2n), since ∆ (K2n�C2n) = 2n + 1 and diam (K2n�C2n) = n + 1, by
Theorem 2, we have W (K2n�C2n) ≤ 2n2 + 4n+ 1.

4. Grids, Cylinders and Tori

Interval edge-colorings of grids, cylinders and tori were first considered by Giaro
and Kubale in [7], where they proved the following:



Interval Edge-colorings of Cartesian Products of Graphs I 621

Theorem 15. If G = G(n1, . . . , nk) or G = C(m, 2n), m ∈ N, n ≥ 2, or G =
T (2m, 2n), m,n ≥ 2, then G ∈ N and w(G) = ∆(G).

For the greatest possible number of colors in interval colorings of grid graphs, the
first author and Karapetyan [20] proved the following theorems:

Theorem 16. For any m ∈ N, n ≥ 2, we have W (C(m, 2n)) ≥ 3m+ n− 2.

Theorem 17. For any m,n ≥ 2, we haveW (T (2m, 2n)) ≥ max{3m+n, 3n+m}.

First we consider grids. It is easy to see that W (G(2, n)) = 2n−1 for any n ∈ N.
Now we provide a lower bound for W (G(m,n)) when m,n ≥ 2.

2

1

4

3

6

5

8

7

10

9 9

2

3

4

5

6
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11

12

13 13

6 8 10 12 14

Figure 1. Interval 14-coloring of the graph G(4, 6).

Theorem 18. For any m,n ≥ 2, we have W (G(m,n)) ≥ 2(m+ n− 3).

Proof. For the proof, we are going to construct an edge-coloring of the graph
G(m,n) that satisfies the specified conditions.

Define an edge-coloring α of G(m,n) as follows:

(1) for i = 1, . . . ,m− 1, j = 1, . . . , n− 1, let

α
(

v
(i)
j v

(i+1)
j

)

= 2(i+ j) − 3;

(2) for i = 1, . . . ,m− 1, let

α
(

v
(i)
n v

(i+1)
n

)

= 2(n+ i) − 5;

(3) for j = 1, . . . , n− 1, let
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α
(

v
(1)
j v

(1)
j+1

)

= 2j;

(4) for i = 2, . . . ,m, j = 1, . . . , n− 1, let

α
(

v
(i)
j v

(i)
j+1

)

= 2(i+ j) − 4.

It is easy to see that α is an interval (2(m + n − 3))-coloring of G(m,n) when
m,n ≥ 2.

Figure 1 shows the interval 14-coloring α of the graph G(4, 6) described in the
proof of Theorem 18.

Note that the lower bound in Theorem 18 is not far from the upper bound for
W (G(m,n)), sinceG(m,n) is bipartite, 2 ≤ ∆ (G(m,n)) ≤ 4 and diam (G(m,n))
= m+ n− 2, by Theorem 3, we have W (G(m,n)) ≤ 3(m+ n− 2) + 1.

From Theorems 10 and 18, we have:

Corollary 19. If n1 ≥ · · · ≥ n2k ≥ 2 (k ∈ N), then

W (G(n1, . . . , n2k)) ≥ 2
∑2k

i=1 ni − 6k,

and if n1 ≥ · · · ≥ n2k+1 ≥ 2 (k ∈ N), then

W (G(n1, . . . , n2k+1)) ≥ 2
∑2k

i=1 ni + n2k+1 − 6k − 1.

Next we consider cylinders. In [18], Khchoyan proved the following:

Theorem 20. For any n ≥ 3, we have

(1) C(2, n) ∈ N,

(2) w (C(2, n)) = 3,

(3) W (C(2, n)) = n+ 2,

(4) if w (C(2, n)) ≤ t ≤W (C(2, n)), then C(2, n) has an interval t-coloring.

Now we prove some general results on cylinders.

Theorem 21. For any m ≥ 3, n ∈ N, we have C(m, 2n+ 1) ∈ N and

w (C(m, 2n+ 1)) =

{

4, if m is even,

6, if m is odd.

Proof. First we show that if m is even, then C(m, 2n + 1) has an interval 4-
coloring. For 1 ≤ i ≤ m

2 , define a subgraph Ci of the graph C(m, 2n + 1) as
follows:

Ci =
(

V 2i−1 ∪ V 2i, E2i−1 ∪ E2i ∪
{

v
(2i−1)
j v

(2i)
j : 1 ≤ j ≤ 2n+ 1

})

.
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Clearly, Ci is isomorphic to C(2, 2n + 1) for 1 ≤ i ≤ m
2 . By Theorem 20,

C(2, 2n+1) ∈ N and there exists an interval 3-coloring α of C(2, 2n+1). Now we
define an edge-coloring β of C(m, 2n+1). First we color the edges of Ci according

to α for 1 ≤ i ≤ m
2 . Then we color the edges v

(2i)
j v

(2i+1)
j ∈ Ej with color 4 for

1 ≤ i ≤ m
2 − 1, 1 ≤ j ≤ 2n+ 1. It is easy to see that β is an interval 4-coloring of

C(m, 2n+1). This shows that C(m, 2n+1) ∈ N and w(C(m, 2n+1)) ≤ 4. On the
other hand, w(C(m, 2n+ 1)) ≥ ∆(C(m, 2n+ 1)) = 4; thus w(C(m, 2n+ 1)) = 4
for even m.

Now assume that m is odd. First we show that C(3, 2n+ 1) has an interval
6-coloring. Define an edge-coloring γ of C(3, 2n+ 1) as follows:

(1) γ
(

v
(1)
1 v

(2)
1

)

= 6 and for j = 2, . . . , 2
⌊

n+1
2

⌋

, let γ
(

v
(1)
j v

(2)
j

)

= 4;

(2) γ

(

v
(1)

2⌊n+1

2 ⌋+1
v
(2)

2⌊n+1

2 ⌋+1

)

= 2 and for j = 2
⌊

n+1
2

⌋

+ 2, . . . , 2n+ 1, let

γ
(

v
(1)
j v

(2)
j

)

= 3;

(3) γ
(

v
(2)
1 v

(3)
1

)

= 3 and for j = 2, . . . , 2
⌊

n+1
2

⌋

, let γ
(

v
(2)
j v

(3)
j

)

= 2;

(4) for j = 2
⌊

n+1
2

⌋

+ 1, . . . , 2n+ 1, let γ
(

v
(2)
j v

(3)
j

)

= 1;

(5) j = 1, . . . ,
⌊

n+1
2

⌋

, let

γ
(

v
(1)
2j−1v

(1)
2j

)

= γ
(

v
(2)
2j−1v

(2)
2j

)

= 5 and γ
(

v
(1)
2j v

(1)
2j+1

)

= γ
(

v
(2)
2j v

(2)
2j+1

)

= 3;

(6) for j =
⌊

n+1
2

⌋

+ 1, . . . , n, let

γ
(

v
(1)
2j−1v

(1)
2j

)

= γ
(

v
(2)
2j−1v

(2)
2j

)

= 4 and γ
(

v
(1)
1 v

(1)
2n+1

)

= γ
(

v
(2)
1 v

(2)
2n+1

)

= 4;

(7) for j =
⌊

n+1
2

⌋

+ 1, . . . , n, let γ
(

v
(1)
2j v

(1)
2j+1

)

= γ
(

v
(2)
2j v

(2)
2j+1

)

= 2;

(8) for j = 1, . . . ,
⌊

n+1
2

⌋

, let γ
(

v
(3)
2j−1v

(3)
2j

)

= 1 and γ
(

v
(3)
2j v

(3)
2j+1

)

= 3;

(9) for j =
⌊

n+1
2

⌋

+ 1, . . . , n, let γ
(

v
(3)
2j−1v

(3)
2j

)

= 2 and γ
(

v
(3)
1 v

(3)
2n+1

)

= 2;

(10) for j =
⌊

n+1
2

⌋

+ 1, . . . , n, let γ
(

v
(3)
2j v

(3)
2j+1

)

= 3.
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It is not difficult to see that γ is an interval 6-coloring of C(3, 2n+ 1) for which

S(v
(3)
j , γ) = [1, 3] when 1 ≤ j ≤ 2n+ 1.
Next we define an edge-coloring φ of C(m, 2n + 1) as follows: first we color

the edges of the subgraph C(3, 2n+ 1) of C(m, 2n+ 1) according to γ. Secondly,
we color the edges of the remaining subgraph C(m − 3, 2n + 1) of C(m, 2n + 1)

according to β, and finally, we color the edges v
(3)
j v

(4)
j ∈ Ej with color 4 for

1 ≤ j ≤ 2n+ 1. It is easy to see that φ is an interval 6-coloring of C(m, 2n+ 1).
This shows that C(m, 2n+ 1) ∈ N and w(C(m, 2n+ 1)) ≤ 6.

Now we prove that w(C(m, 2n + 1)) ≥ 6 for odd m. Let ψ be an interval
w(C(m, 2n+1))-coloring of C(m, 2n+1) and w(C(m, 2n+1)) ≤ 5. Consider the

set S
(

v
(i)
j , ψ

)

for 1 ≤ i ≤ m, 1 ≤ j ≤ 2n+ 1. It is easy to see that if d
(

v
(i)
j

)

= 3,

then 1 ≤ minS
(

v
(i)
j , ψ

)

≤ 3, and if d
(

v
(i)
j

)

= 4, then 1 ≤ minS
(

v
(i)
j , ψ

)

≤ 2.

Hence, 3 ∈ S
(

v
(i)
j , ψ

)

for 1 ≤ i ≤ m, 1 ≤ j ≤ 2n + 1, but this implies that the

edges with color 3 form a perfect matching in C(m, 2n + 1), which contradicts
the fact that C(m, 2n+ 1) does not have one. Thus w(C(m, 2n+ 1)) = 6 for odd
m.
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Figure 2. Interval 6-coloring of the graph C(3, 7).

Figure 2 shows the interval 6-coloring γ of the graph C(3, 7) described in the
proof of Theorem 21.

Before we derive lower bounds for W (C(2m, 2n)) and W (C(2m, 2n+ 1)), let
us note that Lemma 8, Theorems 15 and 21 imply the following:

Corollary 22. If G�H is planar and both factors have at least 3 vertices, then

G�H ∈ N and w(G�H) ≤ 6.

Theorem 23. If m ∈ N, n ≥ 2, then W (C(2m, 2n)) ≥ 4m + 2n − 2, and if

m,n ∈ N, then W (C(2m, 2n+ 1)) ≥ 4m+ 2n− 1.

Proof. For the proof of the theorem, it suffices to construct edge-colorings that
satisfies the specified conditions. First we construct an interval (4m + 2n − 2)-
coloring of C(2m, 2n) when m ∈ N, n ≥ 2.
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Define an edge-coloring α of C(2m, 2n) as follows:

(1) for i = 1, . . . ,m, j = 1, . . . , n, let

α
(

v
(2i−1)
j v

(2i−1)
j+1

)

= α
(

v
(2i)
j v

(2i)
j+1

)

= 4i+ 2j − 4;

(2) for i = 1, . . . ,m, j = n+ 1, . . . , 2n− 1, let

α
(

v
(2i−1)
j v

(2i−1)
j+1

)

= α
(

v
(2i)
j v

(2i)
j+1

)

= 4i− 2j + 4n− 1;

(3) for i = 1, . . . ,m, let

α
(

v
(2i−1)
1 v

(2i−1)
2n

)

= α
(

v
(2i)
1 v

(2i)
2n

)

= 4i− 1;

(4) for i = 1, . . . ,m, j = 1, . . . , n, let

α
(

v
(2i−1)
j v

(2i)
j

)

= 4i+ 2j − 5;

(5) for i = 1, . . . ,m, j = n+ 1, . . . , 2n, let

α
(

v
(2i−1)
j v

(2i)
j

)

= 4i− 2j + 4n;

(6) for i = 1, . . . ,m− 1, j = 2, . . . , n+ 1, let

α
(

v
(2i)
j v

(2i+1)
j

)

= 4i+ 2j − 3;

(7) for i = 1, . . . ,m− 1, j = n+ 2, . . . , 2n, let

α
(

v
(2i)
j v

(2i+1)
j

)

= 4i− 2j + 4n+ 2;

(8) for i = 1, . . . ,m− 1, let

α
(

v
(2i)
1 v

(2i+1)
1

)

= 4i.

Next we construct an interval (4m + 2n − 1)-coloring of C(2m, 2n + 1) when
m,n ∈ N. Define an edge-coloring β of C(2m, 2n+ 1) as follows:

(1) for i = 1, . . . ,m, j = 1, . . . , n+ 1, let

β
(

u
(2i−1)
j u

(2i−1)
j+1

)

= β
(

u
(2i)
j u

(2i)
j+1

)

= 4i+ 2j − 4;

(2) for i = 1, . . . ,m, j = n+ 2, . . . , 2n, let
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β
(

u
(2i−1)
j u

(2i−1)
j+1

)

= β
(

u
(2i)
j u

(2i)
j+1

)

= 4i− 2j + 4n+ 1;

(3) for i = 1, . . . ,m, let

β
(

u
(2i−1)
1 u

(2i−1)
2n+1

)

= β
(

u
(2i)
1 u

(2i)
2n+1

)

= 4i− 1;

(4) for i = 1, . . . ,m, j = 1, . . . , n+ 2, let

β
(

u
(2i−1)
j u

(2i)
j

)

= 4i+ 2j − 5;

(5) for i = 1, . . . ,m, j = n+ 3, . . . , 2n+ 1, let

β
(

u
(2i−1)
j u

(2i)
j

)

= 4i− 2j + 4n+ 2;

(6) for i = 1, . . . ,m− 1, j = 2, . . . , n+ 1, let

β
(

u
(2i)
j u

(2i+1)
j

)

= 4i+ 2j − 3;

(7) for i = 1, . . . ,m− 1, j = n+ 2, . . . , 2n+ 1, let

β
(

u
(2i)
j u

(2i+1)
j

)

= 4i− 2j + 4n+ 4;

(8) for i = 1, . . . ,m− 1, let

β
(

u
(2i)
1 u

(2i+1)
1

)

= 4i.

It is straightforward to check that α is an interval (4m + 2n − 2)-coloring of
C(2m, 2n) when m ∈ N, n ≥ 2, and β is an interval (4m + 2n − 1)-coloring of
C(2m, 2n+ 1) when m,n ∈ N.

Note that the lower bound in Theorem 23 is not so far from the upper bound for
W (C(m,n)). Indeed, since C(2m, 2n) is bipartite, 3 ≤ ∆ (C(2m, 2n)) ≤ 4 and
diam (C(2m, 2n)) = 2m+n−1, by Theorem 3, we have W (C(2m, 2n)) ≤ 3(2m+
n−1)+1. Similarly, since 3 ≤ ∆ (C(2m, 2n+ 1)) ≤ 4 and diam (C(2m, 2n+ 1)) =
2m + n − 1, by Theorem 2, we have W (C(2m, 2n+ 1)) ≤ 3(2m + n) + 1. Next
we would like to compare obtained lower bounds for W (C(m,n)). If m is even
and m < n, then the lower bound in Theorem 23 is better than in Theorem 16,
if m is even and m > n, then the lower bound in Theorem 16 is better than in
Theorem 23, and if m is even and m = n, then we obtain the same lower bound
in both theorems.

In the following we consider tori. In [22], the first author proved that the
torus T (m,n) ∈ N if and only if mn is even. Since T (m,n) is 4-regular, by
Theorem 1, we obtain that w(T (m,n)) = 4 when mn is even. Now we derive a
new lower bound for W (T (m,n)) when mn is even.
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Theorem 24. For any m,n ≥ 2, we have W (T (2m, 2n)) ≥ max{3m+n+2, 3n+
m+ 2}, and for any m ≥ 2, n ∈ N, we have

W (T (2m, 2n+ 1)) ≥

{

2m+ 2n+ 2, if m is odd,

2m+ 2n+ 3, if m is even.

Proof. First note that the lower bound for W (T (2m, 2n)) (m,n ≥ 2) follows
from Theorem 13. For the proof of a second part of the theorem, it suffices to
construct an edge-coloring of T (2m, 2n+1) that satisfies the specified conditions.
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Figure 3. Interval 13-coloring of the graph T (4, 7).

Define an edge-coloring α of T (2m, 2n+ 1) as follows:

(1) for j = 1, . . . , n+ 1, let

α
(

v
(1)
j v

(1)
j+1

)

= α
(

v
(2m)
j v

(2m)
j+1

)

= 2j;

(2) for j = n+ 2, . . . , 2n, let

α
(

v
(1)
j v

(1)
j+1

)

= α
(

v
(2m)
j v

(2m)
j+1

)

= 2(2n+ 1 − j) + 3

and

α
(

v
(1)
1 v

(1)
2n+1

)

= α
(

v
(2m)
1 v

(2m)
2n+1

)

= 3;

(3) for j = 1, . . . , n+ 2, let

α
(

v
(1)
j v

(2m)
j

)

= 2j − 1;

(4) for j = n+ 3, . . . , 2n+ 1, let
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α
(

v
(1)
j v

(2m)
j

)

= 2(2n+ 3 − j);

(5) for i = 1, . . . ,
⌊

m
2

⌋

, j = 1, . . . , n+ 1, let

α
(

v
(2i)
j v

(2i)
j+1

)

= α
(

v
(2i+1)
j v

(2i+1)
j+1

)

= α
(

v
(2m−2i)
j v

(2m−2i)
j+1

)

= α
(

v
(2m−2i+1)
j v

(2m−2i+1)
j+1

)

= 4i+ 2j;

(6) for i = 1, . . . ,
⌊

m
2

⌋

, j = n+ 2, . . . , 2n, let

α
(

v
(2i)
j v

(2i)
j+1

)

= α
(

v
(2i+1)
j v

(2i+1)
j+1

)

= α
(

v
(2m−2i)
j v

(2m−2i)
j+1

)

= α
(

v
(2m−2i+1)
j v

(2m−2i+1)
j+1

)

= 4i+ 2(2n+ 1 − j) + 3

and

α
(

v
(2i)
1 v

(2i)
2n+1

)

= α
(

v
(2i+1)
1 v

(2i+1)
2n+1

)

= α
(

v
(2m−2i)
1 v

(2m−2i)
2n+1

)

= α
(

v
(2m−2i+1)
1 v

(2m−2i+1)
2n+1

)

= 4i+ 3;

(7) for i = 1, . . . ,
⌈

m
2

⌉

, j = 2, . . . , n+ 1, let

α
(

v
(2i−1)
j v

(2i)
j

)

= α
(

v
(2m−2i+1)
j v

(2m−2i+2)
j

)

= 4i+ 2j − 3;

(8) for i = 1, . . . ,
⌈

m
2

⌉

, j = n+ 2, . . . , 2n+ 1, let

α
(

v
(2i−1)
j v

(2i)
j

)

= α
(

v
(2m−2i+1)
j v

(2m−2i+2)
j

)

= 4(n+ 1 + i) − 2j;

(9) for i = 1, . . . ,
⌈

m
2

⌉

, let

α
(

v
(2i−1)
1 v

(2i)
1

)

= α
(

v
(2m−2i+1)
1 v

(2m−2i+2)
1

)

= 4i;

(10) for i = 1, . . . ,
⌊

m
2

⌋

, j = 1, . . . , n+ 2, let

α
(

v
(2i)
j v

(2i+1)
j

)

= α
(

v
(2m−2i)
j v

(2m−2i+1)
j

)

= 4i+ 2j − 1;

(11) for i = 1, . . . ,
⌊

m
2

⌋

, j = n+ 3, . . . , 2n+ 1, let

α
(

v
(2i)
j v

(2i+1)
j

)

= α
(

v
(2m−2i)
j v

(2m−2i+1)
j

)

= 4i+ 2(2n+ 3 − j).
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Figure 4. Interval 14-coloring of the graph T (6, 7).

Let us show that the edges incident to any vertex of T (2m, 2n + 1) are colored
by four consecutive colors. For example, let 2 ≤ i ≤

⌊

m
2

⌋

and 2 ≤ j ≤ n+ 1. By
the points (5), (7) and (10) of the definition of α, for 2 ≤ i ≤

⌊

m
2

⌋

, 2 ≤ j ≤ n+ 1,
we have

S
(

v
(2i)
j , α

)

= S
(

v
(2m−2i)
j , α

)

= {4i+ 2j − 2, 4i+ 2j}

∪ {4i+ 2j − 3} ∪ {4i+ 2j − 1} = [4i+ 2j − 3, 4i+ 2j].

Similarly, it can be verified that the edges incident to other vertices of T (2m, 2n+

1) are also colored by four consecutive colors. It is easy to see that α
(

v
(1)
1 v

(2m)
1

)

=

1. Now if m is odd, then α
(

v
(m)
n+2v

(m+1)
n+2

)

= 2m + 2n + 2 and, by Lemma 7, α

is an interval (2m + 2n + 2)-coloring of T (2m, 2n + 1) when m is odd. If m is

even, then α
(

v
(m)
n+2v

(m+1)
n+2

)

= 2m + 2n + 3 and, by Lemma 7, α is an interval

(2m+ 2n+ 3)-coloring of T (2m, 2n+ 1) when m is even.

Figure 3 and 4 show the interval colorings of the graphs T (4, 7) and T (6, 7)
described in the proof of Theorem 24.

From Theorems 1, 15 and 24, we have:

Corollary 25. If G = T (2m, 2n) (m,n ≥ 2) and 4 ≤ t ≤ max{3m+ n+ 2, 3n+
m + 2}, then G has an interval t-coloring. Also, if H = T (2m, 2n + 1) (m ≥
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2, n ∈ N), m is odd and 4 ≤ t ≤ 2m+ 2n+ 2, then H has an interval t-coloring,

and if H = T (2m, 2n + 1) (m ≥ 2, n ∈ N), m is even and 4 ≤ t ≤ 2m + 2n + 3,
then H has an interval t-coloring.

Let us note that the lower bound in Theorem 24 is not so far from the upper bound
for W (T (m,n)). Indeed, since T (2m, 2n) is bipartite, ∆ (T (2m, 2n)) = 4 and
diam (C(2m, 2n)) = m+n, by Theorem 3, we have W (T (2m, 2n)) ≤ 3(m+n)+1.
Similarly, since ∆ (T (2m, 2n+ 1)) = 4 and diam (T (2m, 2n+ 1)) = m + n, by
Theorem 2, we have W (T (2m, 2n+ 1)) ≤ 3(m+ n+ 1) + 1.

5. n-dimensional Cubes

It is well-known that the n-dimensional cube Qn is the Cartesian product of
n copies of K2. In [21], the first author investigated interval colorings of n-

dimensional cubes and proved that w (Qn) = n and W (Qn) ≥ n(n+1)
2 for any

n ∈ N. In the same paper he also conjectured that W (Qn) = n(n+1)
2 for any

n ∈ N. Here, we prove this conjecture.
Let e, e′ ∈ E(Qn) and e = u1u2, e

′ = v1v2. The distance between two edges
e and e′ in Qn, we define as follows:

d(e, e′) = min1≤i≤2,1≤j≤2 {d (ui, vj)}.

Let α be an interval t-coloring of Qn. Define an edge span spα (e, e′) of edges e
and e′ (e, e′ ∈ E(Qn)) in coloring α as follows:

spα (e, e′) = |α(e) − α(e′)|.

For any k, 0 ≤ k ≤ n− 1, define an edge span at distance k spα,k in coloring α as
follows:

spα,k = max {spα (e, e′) : e, e′ ∈ E(Qn) and d(e, e′) = k}.

Clearly, spα,0 = n− 1.

Theorem 26. If n ∈ N, then W (Qn) ≤ n(n+1)
2 .

Proof. Let α be an interval W (Qn)-coloring of Qn. First we show that if 1 ≤
k ≤ n− 1, then spα,k ≤ spα,k−1 + n− k.

Let e, e′ ∈ E(Qn) be any two edges of Qn with d(e, e′) = k. Without loss of
generality, we may assume that α(e) ≥ α(e′). Since d(e, e′) = k, there exist u
and v vertices such that u ∈ e and v ∈ e′ and d(u, v) = k. There are v1, v2, . . . , vk
(vi 6= vj when i 6= j) vertices such that d(u, vi) = k − 1 and vvi ∈ E(Qn) for
i = 1, . . . , k. Since Qn is n-regular, we have

(∗) min1≤i≤k {α(viv)} ≤ α(e′) + n− k.

Let α(e′′) = min1≤i≤k{α(viv)}. By (∗), we obtain
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α(e′) ≥ α(e′′) − (n− k) and d(e, e′′) = k − 1.

Thus,
spα (e, e′) = |α(e) − α(e′)| ≤ |α(e) − α(e′′) + n− k| ≤ |α(e) − α(e′′)| + n− k

≤ spα,k−1 + n− k.

Since e and e′ were arbitrary edges with d(e, e′) = k, we obtain spα,k ≤ spα,k−1 +

n−k. Now by induction on k with spα,0 = n−1, we obtain spα,n−1 ≤
n(n+1)

2 −1.
From this and taking into account that d(e, e′) ≤ n− 1 for all e, e′ ∈ E(Qn), we

get W (Qn) ≤ n(n+1)
2 .

By Theorems 6 and 26, we obtain W (Qn) = n(n+1)
2 for any n ∈ N. Moreover,

by Theorem 1, we have that Qn has an interval t-coloring if and only if n ≤ t ≤
n(n+1)

2 .
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