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Abstract

An edge-colored graph G is rainbow connected, if any two vertices are
connected by a path whose edges have distinct colors. The rainbow connec-
tion number of a connected graph G, denoted rc(G), is the smallest number
of colors that are needed in order to make G rainbow connected. In this
paper we show that rc(G) ≤ 3 if |E(G)| ≥

(

n−2

2

)

+ 2, and rc(G) ≤ 4 if

|E(G)| ≥
(

n−3

2

)

+ 3. These bounds are sharp.
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1. Introduction

We use [1] for terminology and notation not defined here and consider finite and
simple graphs only.

An edge-colored graph G is called rainbow connected, if any two vertices are
connected by a path whose edges have different colors. The concept of rainbow
connection in graphs was introduced by Chartrand et al. in [2]. The rainbow

connection number of a connected graph G, denoted by rc(G), is the smallest
number of colors that are needed in order to make G rainbow connected. The
rainbow connection number has been studied for several graph classes. These
results are presented in a recent survey [5]. Rainbow connection has an interesting
application for the secure transfer of classified information between agencies, see
[3].

In [4] the following problem was suggested:

Problem 1. For every k, 1 ≤ k ≤ n − 1, compute and minimize the function
f(n, k) with the following property: If |E(G)| ≥ f(n, k), then rc(G) ≤ k.

The authors of [4] got the following results:

Proposition 2. f(n, k) ≥
(

n−k+1
2

)

+ (k − 1).

For convenience we repeat the proof given in [4].

Proof. We construct a graph Gk as follows: Take a Kn−k+1 − e and denote the
two vertices of degree n−k−1 with u1 and u2. Now take a path Pk with vertices
labeled w1, w2, . . . , wk and identify the vertices u2 and w1. The resulting graph
Gk has order n and size |E(Gk)| =

(

n−k+1
2

)

+ (k− 2). For its diameter we obtain

d(u1, wk) = diam(G) = k + 1. Hence f(n, k) ≥
(

n−k+1
2

)

+ (k − 1).

Moreover, in [4] f(n, k) has been determined for k = 1, 2, n− 1, n− 2.

Proposition 3. f(n, 1) =
(

n
2

)

, f(n, n− 1) = n− 1, f(n, n− 2) = n.

Theorem 4. Let G be a connected graph of order n ≥ 3. If
(

n−1
2

)

+1 ≤ |E(G)| ≤
(

n
2

)

− 1, then rc(G) = 2.

Hence f(n, 2) =
(

n−1
2

)

+ 1. In this paper we will show that f(n, 3) =
(

n−2
2

)

+ 2

and f(n, 4) =
(

n−3
2

)

+3. One might think that equality in Proposition 1.2 always
holds for any 1 ≤ k ≤ n. But, as one will see, our proof technique cannot be
easily used for general k ≥ 5.
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2. Main Results

At first, we give some notation which will be used in the sequel.

Definition. Let G be a connected graph. The distance between two vertices u
and v in G, denoted by d(u, v), is the length of a shortest path between them in
G. The distance between a vertex v and a set S ⊂ V (G) is defined as d(v, S) =
minx∈S d(v, x). The k-step open neighborhood of a set S ⊂ V (G) is defined
as Nk(S) = {x ∈ V (G) | d(x, S) = k}, k ∈ {0, 1, 2, . . .}. When k = 1, we
may omit the qualifier “1-step” in the above name and the superscript 1 in the
notation. The neighborhood of a vertex v in G, denoted by N(v), is defined as
N(v) = {x | xv /∈ E(G)}.

We will first present a new and shorter proof for Theorem 4, which we restate for
convenience.

Theorem 5. Let G be a connected graph of order n ≥ 3. If
(

n−1
2

)

+1 ≤ |E(G)| ≤
(

n
2

)

− 1, then rc(G) = 2.

Proof. Our proof will be by induction on n. For n = 3, we have f(n, n − 1) =
n − 1 = 2 =

(

3−1
2

)

+ 1. For n = 4, we have f(n, n − 2) = n = 4 =
(

4−1
2

)

+ 1. So
we may assume n ≥ 5.

Since |E(G)| ≤
(

n
2

)

−1, we have 1 ≤ δ(G) ≤ n−2. Choose a vertex w ∈ V (G)
with d(w) = δ(G) and set d(w) = n− 2− t with 0 ≤ t ≤ n− 3. Let H = G− w.
Then |E(H)| ≥

(

n−1
2

)

+1−d(w) =
(

n−2
2

)

+n−2+1−(n−2− t) =
(

n−2
2

)

+1+ t =
(

(n−1)−1
2

)

+1+t ≥
(

n−2
2

)

+1. Hence, H is connected; otherwise E(H) <
(

n−2
2

)

+1.

Now let N(w) = {v1, v2, . . . , vt, vt+1}.

Claim. N(vi) ∩N(w) 6= ∅ for 1 ≤ i ≤ t+ 1.

Proof of the Claim. Suppose N(vi)∩N(w) = ∅ for some i with 1 ≤ i ≤ t+1.
Then d(vi) ≤ (t + 1) − 1 = t, thus E(G) ≥ |NH(vi)| + |NG(w)| ≥ (n − t − 2) +
(t+ 1) = n− 1 > n− 2, a contradiction, since E(G) ≤ n− 2.

Hence for every vertex vi, there is a vertex ui ∈ N(w) such that uivi ∈ E(G) for
1 ≤ i ≤ t + 1. Let H ′ be a subgraph of H with V (H ′) = V (H) and E(H ′) =
E(H) − {v1u1, . . . , vtut}. Then |E(H ′)| ≥

(

n−2
2

)

+ 1 + t − t =
(

n−2
2

)

+ 1 =
(

(n−1)−1
2

)

+ 1. So H ′ is connected, and by induction we have rc(H ′) ≤ 2. Now
take a 2-rainbow coloring of H ′. Let c(vt+1ut+1) = 1. Then, set c(viui) = 1 for
1 ≤ i ≤ t and c(e) = 2 for all edges e which are incident with w. It is easy to
check that G is 2-rainbow connected.

In the following we give the new results of this paper.
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Theorem 6. Let G be a connected graph of order n ≥ 4. If |E(G)| ≥
(

n−2
2

)

+ 2,
then rc(G) ≤ 3.

Proof. Our proof will be by induction on n. For n = 4, we have f(n, n − 1) =
n − 1 = 3 =

(

4−2
2

)

+ 2. For n = 5, we have f(n, n − 2) = n = 5 =
(

5−2
2

)

+ 2. So
we may assume n ≥ 6.

By Theorem 5, we have rc(G) ≤ 2 for |E(G)| ≥
(

n−1
2

)

+ 1. Hence we may

assume |E(G)| ≤
(

n−1
2

)

. This implies δ(G) ≤ (n−1)(n−2)
n

= n− 3 + 2
n
< n− 2.

Claim 1. diam(G) ≤ 3.

Proof of Claim 1. Suppose diam(G) ≥ 4 and consider a diameter path v1, v2,
. . . , vD+1 with D ≥ 4. Then d(v1) + d(v4) ≤ n − 2 and d(v2) + d(v5) ≤ n − 2,
implying |E(G)| ≤

(

n
2

)

−2(2n−3−(n−2)) =
(

n
2

)

−2(n−1) =
(

n−2
2

)

−1 <
(

n−2
2

)

+2,
a contradiction.

Claim 2. If δ(G) = 1, then rc(G) ≤ 3.

Proof of Claim 2. Let w be a vertex with d(w) = δ(G) = 1, and letH = G−w.
Then |E(H)| ≥

(

n−2
2

)

+ 2 − 1 =
(

n−2
2

)

+ 1 =
(

(n−1)−1
2

)

+ 1. Hence rc(H) ≤ 2
by Theorem 5. Take a 2-rainbow coloring for H, and set c(e) = 3 for the edge
incident with w. Then rc(G) ≤ 3.

Hence we may assume δ(G) ≥ 2. Let w1, w2 ∈ V (G) with w1w2 /∈ E(G). Suppose
N(w1)∩N(w2) = ∅. Let H = G−{w1, w2}. Then |E(H)| ≥

(

n−2
2

)

+2−(n−2) =
(

n−3
2

)

+1 =
(

(n−2)−1
2

)

+1. Thus H is connected. Hence rc(H) ≤ 2 by Theorem 5.
Consider a 2-rainbow coloring of H with colors 1 and 2. Since diam(G) ≤ 3, there
is a w1w2-path w1u1u2w2. Let c(u1u2) = 1, and then set c(w1u1) = 2, c(w2u2) = 3
and c(e) = 3 for all other edges incident with w1 or w2. Then G is 3-rainbow
connected.

Hence we may assume N(w1) ∩ N(w2) 6= ∅ if w1, w2 ∈ V (G) and w1w2 /∈
E(G). Choose a vertex w with d(w) = δ(G) and set d(w) = n − 2 − t with
1 ≤ t ≤ n − 4. As in the proof of Theorem 5, there exist vertices ui ∈ N(w)
such that uivi ∈ E(G) for 1 ≤ i ≤ t + 1, where N(w) = {v1, v2, . . . , vt, vt+1}.
Let H = G − w, and let H ′ be a subgraph of H with V (H ′) = V (H) and
E(H ′) = E(H)−{u1v1, . . . , ut−1vt−1}. Then |E(H ′)| ≥

(

n−2
2

)

+2− (n− 2− t)−

(t− 1) =
(

n−2
2

)

− n+ 5 =
(

(n−1)−2
2

)

+ 2.
Hence, if H ′ is connected, then by induction, H ′ is 3-rainbow connected. Now

take a 3-rainbow coloring of H ′. Let c(uivi) ∈ {1, 2} for i = t, t+ 1, and then set
c(uivi) = 1 for 1 ≤ i ≤ t − 1 and c(e) = 3 for all edges e incident with w. Then
G is 3-rainbow connected.

Claim 3. If H ′ is disconnected, then H ′ has at most 2 components and one of

them is a single vertex.
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Proof of Claim 3. Suppose, on the contrary, that H ′ has k ≥ 3 components.
Let ni be the number of vertices of the ith component. Thus n1+ · · ·+nk = n−1,
and then

|E(H ′)| ≤

(

n1

2

)

+ · · ·+

(

nk

2

)

=
∑k

i=1

n2
i − ni

2

=
1

2

(

∑k

i=1
n2
i − (n− 1)

)

≤
1

2

[

1 + 1 + (n− 1− 2)2 − n+ 1
]

=
1

2

(

n2 − 7n+ 12
)

<

(

n− 3

2

)

+ 2,

a contradiction. So H ′ has two components, that is, n1 + n2 = n− 1. If n1 ≥ 2,
then

|E(H ′)| ≤

(

n1

2

)

+

(

n2

2

)

=
n2
1 + n2

2 − (n− 1)

2

≤
1

2

[

22 + (n− 3)2 − n+ 1
]

=
1

2

(

n2 − 7n+ 14
)

<

(

n− 3

2

)

+ 2,

thus completing the proof.

Let H1 = {v}, H2 be two components of H ′. We know v ∈ N(w) (otherwise,
δ(G) = 1). Let N(v) = {w, v1, . . . , vd(v)−1}. Obviously, d(v) ≤ t, and all edges

viv, 1 ≤ i ≤ d(v)− 1 are deleted edges. Since |E(H2)| = |E(H ′)| ≥
(

(n−2)−1
2

)

+ 2,
H2 is 2-rainbow connected by Theorem 5. Consider a 2-rainbow coloring of H2

with colors 1, 2. Set c(vvi) = 3, 1 ≤ i ≤ d(v) − 1, c(wv) = 1, c(e) = 3 for all
other edges incident with w, c(e) = 2 for all other deleted edges. Then for every
x ∈ V (G)\w, there is a rainbow path between w and x, and for every x ∈ N(w),
there is a rainbow path vwx. For every x ∈ N2(w)\N(v), we know xv /∈ E(G),
and then N(x)∩N(v) 6= ∅, which means that there exist some vi, 1 ≤ i ≤ d(v)−1
with vi ∈ N(x) ∩ N(v), i.e., there is a rainbow path between v and x. So G is
3-rainbow connected.

Theorem 7. Let G be a connected graph of order n ≥ 5. If |E(G)| ≥
(

n−3
2

)

+ 3,
then rc(G) ≤ 4.

Proof. We apply the proof idea from the proof of Theorem 6.
Our proof will be by induction on n. For n = 5, we have f(n, n−1) = n−1 =

4 =
(

5−3
2

)

+ 3, and for n = 6, we have f(n, n − 2) = n = 6 =
(

6−3
2

)

+ 3. So we
may assume n ≥ 7.

By Theorem 6, we have rc(G) ≤ 3 for |E(G)| ≥
(

n−2
2

)

+ 2. Hence we may

assume |E(G)| ≤
(

n−2
2

)

+1. This implies δ(G) ≤ (n−2)(n−3)+2
n

= n−5+ 8
n
< n−3.
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Claim 4. diam(G) ≤ 4.

Proof of Claim 4. Suppose diam(G) ≥ 5 and consider a diameter path v1, v2,
. . . , vD+1 with D ≥ 5. Then d(vi) + d(vi+3) ≤ n − 2 for i = 1, 2, 3, implying
|E(G)| ≤

(

n
2

)

− 3(2n− 3− (n− 2)) =
(

n
2

)

− 3(n− 1) =
(

n−3
2

)

− 3 <
(

n−3
2

)

+ 3, a
contradiction.

Claim 5. If δ(G) = 1, then rc(G) ≤ 4.

Proof of Claim 5. Let w be a vertex with d(w) = δ(G) = 1, and letH = G−w.
Then |E(H)| ≥

(

n−3
2

)

+ 3 − 1 =
(

n−3
2

)

+ 2 =
(

(n−1)−2
2

)

+ 2. Hence rc(H) ≤ 3
by Theorem 6. Take a 3-rainbow coloring for H, and set c(e) = 4 for the edge
incident with w. Then rc(G) ≤ 4.

Hence we may assume δ(G) ≥ 2.

Case 1. There are w1, w2 ∈ V (G), w1w2 /∈ E(G), with N(w1) ∩ N(w2) = ∅
and d(w1) + d(w2) ≤ n− 3.

Let H = G − {w1, w2}. Then |E(H)| ≥
(

n−3
2

)

+ 3 − (n − 3) =
(

n−4
2

)

+ 2 =
(

(n−2)−2
2

)

+2. We claim that H is connected. Otherwise, by the proof of Theorem
6, we know that H has at most 2 components and one of them is a single vertex.
Thus δ(G) = 1, a contradiction. Then rc(H) ≤ 3 by Theorem 6. Consider a
3-rainbow coloring of H with colors 1, 2, 3. If there is a rainbow path P = xyz
of length 2 between N(w1) and N(w2), where x ∈ N(w1), z ∈ N(w2), then let
c(xy) = 1, c(yz) = 2 and set c(w1x) = 3, c(w2z) = 4 and c(e) = 4 for all other
edges incident with w1 or w2. Then G is 4-rainbow connected. If all paths of
length 2 between N(w1) and N(w2) are not rainbow, then we choose a path
P = xyz, where x ∈ N(w1), z ∈ N(w2). Let c(xy) = c(yz) = 1, and then keep
the colors of all the edges in E(H) except for yz. Then set c(yz) = 4, c(w1x) =
2, c(w2z) = 3 and c(e) = 4 for all other edges incident with w1 or w2. It is only
need to check that G is 4-rainbow connected. Since δ ≥ 2, then there exists a v
such that c(w1v) = 4. For every w ∈ V (G) \ N(w1), there is a rainbow path P
from w1 to w not containing yz. Otherwise, there is a rainbow path of length 2
between N(w1) and N(w2), and so w1vPw is a rainbow path. For w2, the proof
is similar.

Case 2. For all w1, w2 ∈ V (G), w1w2 /∈ E(G), we have N(w1) ∩ N(w2) 6= ∅
or d(w1) + d(w2) ≥ n− 2.

We know that in this case diam(G) ≤ 3. Choose a vertex w with d(w) =
δ(G), and set d(w) = n− 2− t with 2 ≤ t ≤ n− 4.

Subcase 2.1. N3(w) = ∅. As in the proof of Theorem 5, there exist ver-
tices ui ∈ N(w) such that uivi ∈ E(G) for 1 ≤ i ≤ t + 1, where N(w) =
{v1, v2, . . . , vt, vt+1}. Let H = G − w, and let H ′ be a subgraph of H with
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V (H ′) = V (H) and E(H ′) = E(H) − {u1v1, . . . , ut−2vt−2}. Then |E(H ′)| ≥
(

n−3
2

)

+ 3− (n− 2− t)− (t− 2) =
(

n−3
2

)

− n+ 7 =
(

(n−1)−3
2

)

+ 3.
If H ′ is connected, then by induction, H ′ is 4-rainbow connected. Now take

a 4-rainbow coloring of H ′. Let c(uivi) ∈ {1, 2, 3} for i = t− 1, t, t+ 1. Then set
c(uivi) = 1 for 1 ≤ i ≤ t − 2 and c(e) = 4 for all edges e incident with w. Then
G is 4-rainbow connected.

IfH ′ is disconnected, we claim thatH ′ has at most 3 components. Otherwise,
|E(H ′)| <

(

n−4
2

)

+3. If H ′ has exactly 3 components H1, H2, H3, we may assume
that |H3| ≥ |H2| ≥ |H1| ≥ 1, |H1| + |H2| + |H3| = n − 1. If |H2| ≥ 2, then
|E(H ′)| ≤

(

|H1|
2

)

+
(

|H2|
2

)

+
(

|H3|
2

)

≤ 1+
(

n−4
2

)

<
(

n−4
2

)

+3. So |H1| = |H2| = 1, and

let V (H1) = {u1}, V (H2) = {u2} and u1, u2 ∈ N(w). Then |E(H3)| ≥
(

n−4
2

)

+3 ≥
(

(n−3)−1
2

)

+ 3. Hence, by Theorem 5, H3 is 2-rainbow connected. Now consider a
2-rainbow coloring of H ′ with colors 1, 2. Set c(wu1) = 1, c(wu2) = 2, c(e) = 4 for
all the edges e incident with w, and set c(f) = 3 for all edges f incident with u1
or u2 except for wu1, wu2, as well as c(g) = 1 for all other deleted edges g. Then
G is 4-rainbow connected.

If H ′ has exactly 2 components H1, H2, we may assume that |H2| ≥ |H1| ≥ 1.
First, |H1| = 1, and let V (H1) = {u1} and u1 ∈ N(w). Then |E(H2)| ≥

(

n−4
2

)

+

3 ≥
(

(n−2)−2
2

)

+3. Hence, by Theorem 6, H2 is 3-rainbow connected. Now consider
a 3-rainbow coloring of H ′ with colors 1, 2, 3. Set c(wu1) = 1, c(e) = 4 for all edges
e incident with w or u1 except for wu1 and set c(g) = 2 for all other deleted edges
g. Then G is 4-rainbow connected. Second, |H1| ≥ 2. Since n ≥ 7, then |H2| ≥ 3.
Thus if |H1| ≥ 3, we have

|E(H1)| ≥

(

n− 4

2

)

+ 3−

(

|H2|

2

)

=
1

2

[

|H1|
2 − 3|H1|+ 4

]

+ |H1||H2| − 3|H2| − 2|H1|+ 7

≥

(

|H1| − 1

2

)

+ 1 + 3(n− 4)− 3(n− 1) + |H1|+ 7

≥

(

|H1| − 1

2

)

+ 1.

Similarly, |E(H2)| ≥
(

|H2|−1
2

)

+ 1. Obviously if |H1| = 2, H1, H2 are 2-rainbow
connected. Hence when |H1| ≥ 2, bothH1, H2 are 2-rainbow connected. Consider
a 2-rainbow coloring of H ′ with colors 1, 2. Set c(wv) = 4 for all v ∈ V (H1),
c(wv) = 3 for all v ∈ V (H2), c(uv) = 4 for all u ∈ V (H2) ∩ N(w), v ∈ V (H1) ∩
N2(w), c(uv) = 3 for all u ∈ V (H1) ∩N(w), v ∈ V (H2) ∩N2(w), c(e) = 1 for all
other edges e. Then G is 4-rainbow connected.

Subcase 2.2. N3(w) 6= ∅. For every u ∈ N3(w), wu /∈ E(G) and N(w) ∩
N(u) = ∅, then d(w) + d(u) = n − 2, that is, N(u)= N2(w) ∪ N3(w)\{u}. Let
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N(w)= {u1, . . . , un−t−2}, N
2(w) = {v1, . . . , vp}, p ≥ 1, N3(w)= {vp+1, . . . , vt+1}.

If p = 1, v1 is a cut vertex and G[N2(w) ∪N3(w)] is a complete graph. Let
H1, H2 be two blocks of G−v1, we may assume that H2 is a complete graph. Let
NH1

(v1) = {u1, . . . , us}, 1 ≤ s ≤ n− t− 2. Then K2,s is a spanning subgraph of
G[w, v1, u1, . . . , us]. If s ≥ 2, then K2,s is 4-rainbow connected. Now we give a
4-coloring of K2,s as follows:

c(e) =















j + 1, if e = uiw, i ∈ {3j + 1, 3j + 2, 3j + 3} for 0 ≤ j ≤ 2,
4, if e = uiw for i > 9,
i mod 3, if e = v1ui for i ≤ 9,
3, if e = v1ui for i > 9.

For every uk(s < k ≤ n − t − 2), ukvj /∈ E(G) and N(uk) ∩ N(vj) = ∅ for
2 ≤ j ≤ t + 1, then N(uk) = N(w) ∪ {w}\{uk}. Set c(ukuj) = c(wuj) for
1 ≤ j ≤ s, c(e) = 1 for all other edges e in E(H1), c(e) = 4 for e ∈ E(H2). Then
G is 4-rainbow connected. If s = 1, then G is 3-rainbow connected.

If p = 2, let H1 = G[w ∪ N(w) ∪ N2(w)], H2 = G[N2(w) ∪ N3(w)], then
|H1|+ |H2| = n+ 2, |H1| ≥ 5, |H2| ≥ 3. If |H2| = 3, then d(v3) = 2 = d(w), thus
n = 6. If |H2| = 4, n = 7, set c(wu1) = 4, c(wu2) = 3, c(u1v1) = 2, c(u2v2) =
1, c(e) = 1 for all e ∈ E(H2), then G is 4-rainbow connected. If |H2| = 4, n ≥ 8,
|E(H1)| ≥

(

n−3
2

)

+ 3 − 5 =
(

(n−2)−2
2

)

+ n − 6, then H1 is 3-rainbow connected.
Consider a 3-rainbow coloring of H1 with 2, 3, 4. Set c(e) = 1 for all e ∈ E(H2),
then G is 4-rainbow connected. If |H2| ≥ 5, |H1| ≥ 6, then

|E(H1)| ≥

(

n− 3

2

)

+ 3−

(

|H2|

2

)

=
1

2

[

|H1|
2 − 5|H1|+ 6

]

+ 2 + |H1||H2| − 3|H1| − 5|H2|+ 13

≥

(

|H1| − 2

2

)

+ 2 + 5(n+ 2− 5)− 5(n+ 2) + 2|H1|+ 13

≥

(

|H1| − 2

2

)

+ 2.

HenceH1 is 3-rainbow connected. Consider a 3-rainbow coloring ofH1 with colors
2, 3, 4. Set c(e) = 1 for all e ∈ E(H2), then G is 4-rainbow connected. When
|H2| ≥ 5, |H1| = 5, set c(wu1) = 4, c(wu2) = 3, c(u1v1) = 2, c(u2v2) = 1, c(e) = 1
for all e ∈ E(H2), then G is 4-rainbow connected.

Now we may assume that p ≥ 3. For every vi ∈ N2(w), there is a vertex ui ∈
N(w) such that uivi ∈ E(G). Let H be the graph be deleting w and edges uivi for
vi ∈ N2(w)\{v1, v2, v3} and edges v1vi for p+1 ≤ i ≤ t+1, then |E(H)| ≥

(

n−4
2

)

+
3. If H is connected, then by induction, H is 4-rainbow connected. Consider a
4-rainbow coloring of H with colors 1, 2, 3, 4. Let c(uivi) ∈ {1, 2, 3} for i = 1, 2, 3.
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We may assume that c(u1v1) = 1. Set c(e) = 4 for all edges e incident with w,
c(v1vi) = 2, p + 1 ≤ i ≤ t + 1, c(viui) = 3 for all other edges between N(w) and
N2(w). Then G is 4-rainbow connected.

If H is disconnected, then similarly as in the proof of Subcase 2.1, H has at
most 3 components. If H has exactly 3 components with two single vertices in
N(w), denoted by u, u′, then H3 is 2-rainbow connected. Consider a 2-rainbow
coloring of H3 with colors 1, 2. Let c(u1v1) = 1, set c(wu) = c(wu′) = 3, c(e) = 4
for all edges e incident with w, c(v1vi) = 2, p+1 ≤ i ≤ t+1, c(f) = 3 for all edges
f incident with u except for wu, c(g) = 4 for all edges g incident with u′ except
for wu′, c(h) = 1 for all the remaining edges h. Then G is 4-rainbow connected.

Assume that H has exactly two components H1, H2. First, |H1| = 1, let
V (H1) = {u} ⊆ N(w), then H2 is 3-rainbow connected by the proof of Subcase
2.1. Now consider a 3-rainbow coloring of H2 with colors 1, 2, 3. Set c(wu) =
1, c(e) = 4 for all edges e incident with w or u except for wu, c(f) = 1 for
all the remaining edges f . Then G is 4-rainbow connected. Second, |H1| ≥ 2,
then both H1, H2 are 2-rainbow connected by the proof of Subcase 2.1. We may
assume that H2 contains N3(w). Now consider a 2-rainbow coloring of H1, H2

with colors 1, 2. Set c(wv) = 3 for all v ∈ V (H1), c(wv) = 4 for all v ∈ V (H2)
c(v1vi) = 4, p + 1 ≤ i ≤ t + 1, c(e) = 3 for all the remaining edges e. Then G is
4-rainbow connected.
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