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Abstract

An edge-colored graph G is rainbow connected, if any two vertices are
connected by a path whose edges have distinct colors. The rainbow connec-
tion number of a connected graph G, denoted r¢(G), is the smallest number
of colors that are needed in order to make G rainbow connected. In this
paper we show that rc¢(G) < 3 if |E(G)| > (";2) + 2, and r¢(G) < 4 if
|E(G)| > ("3?) + 3. These bounds are sharp.
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1. INTRODUCTION

We use [1] for terminology and notation not defined here and consider finite and
simple graphs only.

An edge-colored graph G is called rainbow connected, if any two vertices are
connected by a path whose edges have different colors. The concept of rainbow
connection in graphs was introduced by Chartrand et al. in [2]. The rainbow
connection number of a connected graph G, denoted by rc¢(G), is the smallest
number of colors that are needed in order to make G rainbow connected. The
rainbow connection number has been studied for several graph classes. These
results are presented in a recent survey [5]. Rainbow connection has an interesting
application for the secure transfer of classified information between agencies, see
[3].

In [4] the following problem was suggested:

Problem 1. For every k,1 < k < n — 1, compute and minimize the function
f(n, k) with the following property: If |E(G)| > f(n, k), then r¢(G) < k.

The authors of [4] got the following results:
Proposition 2. f(n,k) > ("_SH) + (k—1).

For convenience we repeat the proof given in [4].

Proof. We construct a graph Gy, as follows: Take a K,,_r+1 — e and denote the
two vertices of degree n — k — 1 with uy and us. Now take a path P with vertices
labeled wi,wo, ..., w; and identify the vertices us and w;. The resulting graph
G} has order n and size |E(Gy)| = (”_I;Ll) + (k — 2). For its diameter we obtain

d(ur,wy,) = diam(G) = k + 1. Hence f(n,k) > (" 5) + (k- 1). =
Moreover, in [4] f(n, k) has been determined for k =1,2,n — 1,n — 2.
Proposition 3. f(n,1) = (), f(n,n—1)=n—1, f(n,n—2) =n.

Theorem 4. Let G be a connected graph of order n > 3. If ("51) +1<|E(G)| <
(5) — 1, then re(G) = 2.

Hence f(n,2) = (ngl) + 1. In this paper we will show that f(n,3) = (”;2) +2
and f(n,4) = (”;3) + 3. One might think that equality in Proposition 1.2 always
holds for any 1 < k < n. But, as one will see, our proof technique cannot be
easily used for general k > 5.
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2. MAIN REsSULTS
At first, we give some notation which will be used in the sequel.

Definition. Let G be a connected graph. The distance between two vertices u
and v in G, denoted by d(u,v), is the length of a shortest path between them in
G. The distance between a vertex v and a set S C V(G) is defined as d(v, S) =
mingeg d(v,x). The k-step open neighborhood of a set S C V(G) is defined
as N¥(S) = {z € V(@) | d(z,S) = k},k € {0,1,2,...}. When k = 1, we
may omit the qualifier “1-step” in the above name and the superscript 1 in the
notation. The neighborhood of a vertex v in G, denoted by N(v), is defined as

N@w)={z|2v ¢ E(G)}.

We will first present a new and shorter proof for Theorem 4, which we restate for
convenience.

Theorem 5. Let G be a connected graph of ordern > 3. If (”;1) +1 < |E(G)| <
(5) — 1, then rc(G) = 2.

Proof. Our proof will be by induction on n. For n = 3, we have f(n,n —1) =
n—1=2= (351) + 1. For n = 4, we have f(n,n—2)=n=4= (4;1)—0—1. So
we may assume n > 9.

Since |E(G)| < (3) —1, we have 1 < §(G) < n—2. Choose a vertex w € V(G)
with d(w) = §(G) and set d(w) =n—2—t with 0 <t <n-—3. Let H =G — w.
Then |E(H)| > (";") +1—d(w) = (";%)+n—2+1—(n—2—1) = (";}) + 1+t =
(=D 4 14¢ > ("5%) +1. Hence, H is connected; otherwise E(H) < ("3%) +1.

Now let N(w) = {v1,va,...,v, V41 }-

Claim. N(v;) " N(w) #0 for 1 <i<t+1.

Proof of the Claim. Suppose N(v;) N N(w) = for some 7 with 1 <4 < ¢+ 1.
Then d(v;) < (t+1) =1 =t, thus E(G) > [Ng(vi)| + [Ng(w)| > (n —t —2) +

(t+1) =n—1>mn—2, a contradiction, since F(G) <n — 2. 0

Hence for every vertex v;, there is a vertex u; € N(w) such that u;v; € E(G) for
1 <i<t+1. Let H be a subgraph of H with V(H') = V(H) and E(H') =
E(H) — {vu1,...,vu}. Then |E(H')| > (";2) +14+t-t = (”52) +1 =
((n_;)_l) + 1. So H’ is connected, and by induction we have r¢(H') < 2. Now
take a 2-rainbow coloring of H'. Let ¢(virquir1) = 1. Then, set ¢(vju;) = 1 for
1 <i<tand c(e) =2 for all edges e which are incident with w. It is easy to
check that GG is 2-rainbow connected. ]

In the following we give the new results of this paper.
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Theorem 6. Let G be a connected graph of order n > 4. If |E(G)| > ("52) + 2,
then rc(G) < 3.

Proof. Our proof will be by induction on n. For n = 4, we have f(n,n —1) =
n—1=3= (4;2) + 2. For n =5, we have f(n,n—2)=n=>5= (552)4—2. So
we may assume n > 6.

By Theorem 5, we have r¢(G) < 2 for |E(G)| > (”51) + 1. Hence we may

assume |E(G)| < (”;1) This implies 0(G) < W =n-3+2<n-2
Claim 1. diam(G) < 3.

Proof of Claim 1. Suppose diam(G) > 4 and consider a diameter path vy, ve,

,up41 with D > 4. Then d(v1) + d(vy) < n — 2 and d(va) + d(vs) < n — 2,
implying | E(G)| < (1) —2(2n—3—(n—2)) = (3)—2(n—1) = (";%) -1 < (";?)+2,
a contradiction. O

Claim 2. If §(G) =1, then re(G) < 3.

Proof of Claim 2. Let w be a vertex with d(w) = 0(G) = 1, and let H = G—w.
Then |E(H)| > (") +2-1= ("?) +1= (("_;)_1) + 1. Hence rc(H) < 2
by Theorem 5. Take a 2-rainbow coloring for H, and set c¢(e) = 3 for the edge
incident with w. Then r¢(G) < 3. 0

Hence we may assume 0(G) > 2. Let wi, wy € V(G) with wyws ¢ E(G). Suppose
N(wi)NN(w2) = 0. Let H = G— {w1, ws}. Then |E(H)| > ("}?)+2—(n—2) =
(n;?’) +1= (("_g)_l) +1. Thus H is connected. Hence rc¢(H) < 2 by Theorem 5.
Consider a 2-rainbow coloring of H with colors 1 and 2. Since diam(G) < 3, there
is a wywg-path wiujusws. Let c(ujug) = 1, and then set c(wiuy) = 2, c(waug) = 3
and c(e) = 3 for all other edges incident with w; or we. Then G is 3-rainbow
connected.

Hence we may assume N(w;) N N(wz) # 0 if wi,wy € V(G) and wiwy ¢
E(G). Choose a vertex w with d(w) = §(G) and set d(w) = n — 2 — t with
1 <t <n-—4. As in the proof of Theorem 5, there exist vertices u; € N(w)
such that wv; € E(G) for 1 < i < t+ 1, where N(w) = {vi,ve,..., 0,41}
Let H = G — w, and let H be a subgraph of H with V(H') = V(H) and
E(H") = B(H) — {wiv1,...,u—1v¢—1}. Then |[E(H")| > (";*) +2—(n—2—1) —
(t-1)=("3%) —n+5=("D7?) +2.

Hence, if H' is connected, then by induction, H’ is 3-rainbow connected. Now
take a 3-rainbow coloring of H'. Let c(u;v;) € {1,2} for i = ¢,t+ 1, and then set
c(uv;)) =1for 1 <i<t—1and c(e) = 3 for all edges e incident with w. Then
G is 3-rainbow connected.

Claim 3. If H' is disconnected, then H' has at most 2 components and one of
them is a single vertex.
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Proof of Claim 3. Suppose, on the contrary, that H’ has k& > 3 components.
Let n; be the number of vertices of the ¢th component. Thus ny+---+np =n—1,

and then
ny ng\ k n?fni
(5) -+ (3) =20
1 koo, 1 9
= = Z ny —(n—1) §§[1+1+(n—1—2) —n+1]

|E(H)|

IN

2 i=1
1 n—3
= 5(n2_7n+12) < ( 5 >+2,
a contradiction. So H' has two components, that is, nqy +no =n — 1. If ny > 2,
then
2 2
ny N9 ny+ns—(n—1)
EH)H| < =
= (2)+(3) -2
1
< 3 [22—1—(71—3)2—71—1—1]
= = -7 14) < 2
5 (n n -+ ) < 9 > + 2,
thus completing the proof. 0

Let Hy = {v}, H2 be two components of H'. We know v € N(w) (otherwise,
6(G) = 1). Let N(v) = {w,v1,...,v4)-1}- Obviously, d(v) < ¢, and all edges
viv,1 <i < d(v) — 1 are deleted edges. Since |E(Hs)| = |E(H')| > ((”_g)_l) +2,
Hj is 2-rainbow connected by Theorem 5. Consider a 2-rainbow coloring of Hs
with colors 1,2. Set c(vv;) = 3,1 < i < d(v) — 1,c(wv) = 1,¢(e) = 3 for all
other edges incident with w, c(e) = 2 for all other deleted edges. Then for every
x € V(G)\w, there is a rainbow path between w and x, and for every z € N(w),
there is a rainbow path vwz. For every z € N?(w)\N(v), we know zv ¢ E(G),
and then N(z)NN(v) # (), which means that there exist some v;,1 <14 < d(v)—1
with v; € N(z) N N(v), i.e., there is a rainbow path between v and x. So G is
3-rainbow connected. ]

Theorem 7. Let G be a connected graph of order n > 5. If |[E(G)| > (nES) + 3,
then rc(G) < 4.

Proof. We apply the proof idea from the proof of Theorem 6.

Our proof will be by induction on n. For n = 5, we have f(n,n—1) =
4= (553) + 3, and for n = 6, we have f(n,n —2) =n =6 = (6;3) + 3. So we
may assume n > 7.

By Theorem 6, we have r¢(G) < 3 for |E(G)| > (”;2) + 2. Hence we may

assume |E(G)| < ("52)4—1. This implies §(G) < w =n—5+2 <n-3.
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Claim 4. diam(G) < 4.

Proof of Claim 4. Suppose diam(G) > 5 and consider a diameter path vy, va,
...,vpy1 with D > 5. Then d(v;) + d(viys) < n — 2 for i = 1,2,3, implying
B@G) < () -32n-3-(n-2)=(3) -3n—-1)=("3")-3<(3°) +3,a
contradiction. 0

Claim 5. If §(G) =1, then re(G) < 4.

Proof of Claim 5. Let w be a vertex with d(w) = §(G) = 1, and let H = G—w.
Then |E(H)| > (”;3) +3-1= ("53) +2= ((”_;)_2) + 2. Hence rc(H) < 3
by Theorem 6. Take a 3-rainbow coloring for H, and set c(e) = 4 for the edge
incident with w. Then r¢(G) < 4. 0

Hence we may assume §(G) > 2.

Case 1. There are wi,ws € V(G),wiwe ¢ E(G), with N(w1) N N(wz) = 0
and d(wi) + d(w2) < n — 3.

Let H = G — {w,ws}. Then |[E(H)| > ("}°) +3—-(n—3) = ("}") +2 =
(("_g)_Q) +2. We claim that H is connected. Otherwise, by the proof of Theorem
6, we know that H has at most 2 components and one of them is a single vertex.
Thus 0(G) = 1, a contradiction. Then rc¢(H) < 3 by Theorem 6. Consider a
3-rainbow coloring of H with colors 1,2,3. If there is a rainbow path P = zyz
of length 2 between N(w;) and N(ws), where z € N(w1),z € N(ws), then let
c(xy) = 1,¢c(yz) = 2 and set c(wix) = 3,c(wez) = 4 and c(e) = 4 for all other
edges incident with wy or we. Then G is 4-rainbow connected. If all paths of
length 2 between N(w;) and N(wgy) are not rainbow, then we choose a path
P = zyz, where x € N(w1),z € N(w2). Let ¢(zy) = c(yz) = 1, and then keep
the colors of all the edges in F(H) except for yz. Then set c(yz) = 4, c(wz) =
2,c(wez) = 3 and c(e) = 4 for all other edges incident with w; or wy. It is only
need to check that G is 4-rainbow connected. Since § > 2, then there exists a v
such that c(wjv) = 4. For every w € V(G) \ N(wy), there is a rainbow path P
from w; to w not containing yz. Otherwise, there is a rainbow path of length 2
between N(w;) and N (ws), and so wjvPw is a rainbow path. For ws, the proof
is similar.

Case 2. For all wy,ws € V(G),wiwe ¢ E(G), we have N(wy) N N(ws2) # 0
or d(wy) + d(w2) > n — 2.

We know that in this case diam(G) < 3. Choose a vertex w with d(w) =
d(G), and set d(w) =n—2—t with2 <t <n—4.

Subcase 2.1. N3(w) = (). As in the proof of Theorem 5, there exist ver-
tices u; € N(w) such that wv; € E(G) for 1 < i < t+ 1, where N(w) =
{v1,v2,..., 0,041} Let H = G — w, and let H' be a subgraph of H with
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V(H') = V(H) and E(H') = E(H) — {ujv1,...,u—2v4—2}. Then |E(H')| >
(A +3-m—2-0)—(t-2)= (") —n+7= (")) +3.

If H' is connected, then by induction, H' is 4-rainbow connected. Now take
a 4-rainbow coloring of H'. Let c(u;v;) € {1,2,3} for i = ¢ — 1,¢,¢t + 1. Then set
c(uv;) =1 for 1 < <t—2and c(e) = 4 for all edges e incident with w. Then
G is 4-rainbow connected.

If H' is disconnected, we claim that H’ has at most 3 components. Otherwise,
\E(H')| < ("3") +3. If H' has exactly 3 components Hy, Ha, H3, we may assume
that |H3| > |H2| > ’H1| > 1, |H1| + |H2| + |H3‘ =n-—1 1If |H2| > 2, then
\E(H")| < () + (H2h) 4 (|H3|) <1+("Y) < ("M +3. S0 |Hy| = |[Ha| = 1, and
let V(H1) = {u1}, V(Ha2) = {us} and u1, us € N(w). Then |E(H3)| > ("5*)+3 >
((”72’)71) + 3. Hence, by Theorem 5, Hj is 2-rainbow connected. Now consider a
2-rainbow coloring of H' with colors 1,2. Set ¢(wu;) = 1, c(wug) = 2, ¢(e) = 4 for
all the edges e incident with w, and set ¢(f) = 3 for all edges f incident with u
or ug except for wuy, wuz, as well as ¢(g) = 1 for all other deleted edges g. Then
G is 4-rainbow connected.

If H' has exactly 2 components Hy, Ho, we may assume that |Ha| > |Hy| > 1.
First, |H;| = 1, and let V(H;) = {u1} and w1 € N(w). Then |E(Hs)| > (",*) +
3> (("73)72) +3. Hence, by Theorem 6, Hy is 3-rainbow connected. Now consider
a 3-rainbow coloring of H’ with colors 1,2, 3. Set c¢(wuy) = 1, ¢(e) = 4 for all edges
e incident with w or u; except for wuy and set ¢(g) = 2 for all other deleted edges
g. Then G is 4-rainbow connected. Second, |[H1| > 2. Since n > 7, then |Hs| > 3.
Thus if |Hi| > 3, we have

n—4 ’HQ’
FE(H > —
\<1>|_<2)+3 (")
= §[|H1|2—3|H1|+4]+\H1HH2|—3|H2|—2|H1|+7
H
> <| 12 >+1+3(n—) 3(n—1)+ |Hi|+7
>

(")

Similarly, |E(Hz)| > ("271) + 1. Obviously if |Hy| = 2, Hy, Hy are 2-rainbow
connected. Hence when |Hy| > 2, both Hy, Hy are 2-rainbow connected. Consider
a 2-rainbow coloring of H' with colors 1,2. Set c(wv) = 4 for all v € V(H)),
c(wv) = 3 for all v € V(Ha), c¢(uv) = 4 for all w € V(Hz) N N(w),v € V(Hy) N
N2(w), c(uv) = 3 for all u € V(Hy) N N(w),v € V(Hs) N N%(w), c(e) = 1 for all
other edges e. Then G is 4-rainbow connected.

Subcase 2.2. N3(w) # (). For every u € N3(w), wu ¢ E(G) and N(w) N
N(u) = 0, then d(w) + d(u) = n — 2, that is, N(u) = N?(w) U N3(w)\{u}. Let
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N<w): {ulv v 7un—t—2}7N2(w) = {Ulv v 7vp}7p Z 17 Ng(w): {Up—i-la ) vt—i—l}-

If p=1, v1 is a cut vertex and G[N?(w) U N3(w)] is a complete graph. Let
Hy, Hs be two blocks of G —v1, we may assume that Hs is a complete graph. Let
Ni, (v1) = {u1,...,us}, 1 <s <n—t—2. Then Ky, is a spanning subgraph of
Glw,vi,u1,...,us]. If s > 2, then Ky, is 4-rainbow connected. Now we give a
4-coloring of K 4 as follows:

j+1,  ife=ww, i€{3j+1,3j+23j+3for0<j <2,

ole) = 4, if e = w;w for ¢ > 9,
) imod 3, ife=uwvu; fori<9,
3, if e = vqu; for i > 9.

For every ui(s < k < n—t—2),upv; ¢ E(G) and N(uy) N N(v;) = 0 for
2 < j <t+1, then N(ux) = N(w) U {w}\{ur}. Set c(uruj) = c(wu;) for
1 <j<s,c(e) =1 for all other edges e in E(H;), c¢(e) =4 for e € E(H3). Then
G is 4-rainbow connected. If s = 1, then G is 3-rainbow connected.

If p =2, let H = GlwU N(w) U N%(w)], Hy = G[N?(w) U N3(w)], then
|Hi| + |Ha| = n+2,|H;i| > 5,|Hz| > 3. If |Ha| = 3, then d(v3) = 2 = d(w), thus
n=06. If |Ho| =4,n =17, set c(wui) = 4, c(wuz) = 3,c(uiv1) = 2,c(ugvy) =
1,c(e) =1 for all e € E(Hz), then G is 4-rainbow connected. If |Hy| = 4,n > 8,
\BE(Hy)| > (",°) +3 -5 = (("_g)_Q) +n — 6, then H; is 3-rainbow connected.
Consider a 3-rainbow coloring of H; with 2,3,4. Set c¢(e) = 1 for all e € E(H3),
then G is 4-rainbow connected. If |Ha| > 5,|H;| > 6, then

n—3 |H2|
(") == (%)
[[H:1[* = 5|H1| + 6] + 2+ | H||Ha| — 3|H1| — 5| Ho| + 13

Hy| -2
N <| 1|2 )+2+5(n+2_5)_5(n+2)+2yH1!+13

|Hy| -2
> ) +2.

Hence H; is 3-rainbow connected. Consider a 3-rainbow coloring of H; with colors
2,3,4. Set c(e) = 1 for all e € E(H2), then G is 4-rainbow connected. When
|Ha| > 5,|Hi| =5, set c(wuy) = 4, c(wug) = 3, c(u1v1) = 2, c(ugvz) = 1,¢c(e) =1
for all e € E(Hz), then G is 4-rainbow connected.

Now we may assume that p > 3. For every v; € N?(w), there is a vertex u; €
N (w) such that u;v; € E(G). Let H be the graph be deleting w and edges u;v; for
v; € N2(w)\{v1, v, v3} and edges viv; for p+1 < i < t+1, then |E(H)| > (”;4)—1—
3. If H is connected, then by induction, H is 4-rainbow connected. Consider a
4-rainbow coloring of H with colors 1,2,3,4. Let c¢(u;v;) € {1,2,3} fori = 1,2, 3.

|E(Hy)|

Y

1
2
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We may assume that c(ujv;) = 1. Set c(e) = 4 for all edges e incident with w,
c(vivi)) =2,p+1<i <t+1, ¢(viu;) = 3 for all other edges between N(w) and
N?(w). Then G is 4-rainbow connected.

If H is disconnected, then similarly as in the proof of Subcase 2.1, H has at
most 3 components. If H has exactly 3 components with two single vertices in
N(w), denoted by wu,u’, then Hj is 2-rainbow connected. Consider a 2-rainbow
coloring of Hjz with colors 1,2. Let c(ujvy) = 1, set c(wu) = c(wu') = 3,¢(e) = 4
for all edges e incident with w, c(viv;) = 2,p+1 <i < t+1, ¢(f) = 3 for all edges
f incident with u except for wu, ¢(g) = 4 for all edges g incident with «’ except
for wu’, ¢(h) =1 for all the remaining edges h. Then G is 4-rainbow connected.

Assume that H has exactly two components Hy, Hy. First, |Hq| = 1, let
V(Hi) = {u} € N(w), then Hj is 3-rainbow connected by the proof of Subcase
2.1. Now consider a 3-rainbow coloring of Hy with colors 1,2,3. Set c¢(wu) =
1,¢(e) = 4 for all edges e incident with w or u except for wu, ¢(f) = 1 for
all the remaining edges f. Then G is 4-rainbow connected. Second, |Hi| > 2,
then both Hy, Hy are 2-rainbow connected by the proof of Subcase 2.1. We may
assume that Ho contains N 3(w). Now consider a 2-rainbow coloring of Hi, Ho
with colors 1,2. Set c(wv) = 3 for all v € V(Hy), ¢(wv) = 4 for all v € V(Hs)
c(viv;)) =4,p+1<i<t+1,¢c(e) = 3 for all the remaining edges e. Then G is
4-rainbow connected. ]
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