RAINBOW CONNECTION NUMBER OF DENSE GRAPHS

Xueliang Li ${ }^{1}$, Mengmeng Liu ${ }^{1}$
Center for Combinatorics and LPMC-TJKLC
Nankai University
Tianjin 300071, China
e-mail: lxl@nankai.edu.cn
liumm05@163.com
AND
Ingo Schiermeyer ${ }^{2}$
Institut für Diskrete Mathematik und Algebra echnische Universität Bergakademie Freiberg 09596 Freiberg, Germany
e-mail: Ingo.Schiermeyer@tu-freiberg.de

Abstract

An edge-colored graph G is rainbow connected, if any two vertices are connected by a path whose edges have distinct colors. The rainbow connection number of a connected graph G, denoted $r c(G)$, is the smallest number of colors that are needed in order to make G rainbow connected. In this paper we show that $r c(G) \leq 3$ if $|E(G)| \geq\binom{ n-2}{2}+2$, and $r c(G) \leq 4$ if $|E(G)| \geq\binom{ n-3}{2}+3$. These bounds are sharp.

Keywords: edge-colored graph, rainbow coloring, rainbow connection number.

2010 Mathematics Subject Classification: 05C15, 05C40.

[^0]
1. Introduction

We use [1] for terminology and notation not defined here and consider finite and simple graphs only.

An edge-colored graph G is called rainbow connected, if any two vertices are connected by a path whose edges have different colors. The concept of rainbow connection in graphs was introduced by Chartrand et al. in [2]. The rainbow connection number of a connected graph G, denoted by $r c(G)$, is the smallest number of colors that are needed in order to make G rainbow connected. The rainbow connection number has been studied for several graph classes. These results are presented in a recent survey [5]. Rainbow connection has an interesting application for the secure transfer of classified information between agencies, see [3].

In [4] the following problem was suggested:
Problem 1. For every $k, 1 \leq k \leq n-1$, compute and minimize the function $f(n, k)$ with the following property: If $|E(G)| \geq f(n, k)$, then $r c(G) \leq k$.

The authors of [4] got the following results:
Proposition 2. $f(n, k) \geq\binom{ n-k+1}{2}+(k-1)$.
For convenience we repeat the proof given in [4].

Proof. We construct a graph G_{k} as follows: Take a $K_{n-k+1}-e$ and denote the two vertices of degree $n-k-1$ with u_{1} and u_{2}. Now take a path P_{k} with vertices labeled $w_{1}, w_{2}, \ldots, w_{k}$ and identify the vertices u_{2} and w_{1}. The resulting graph G_{k} has order n and size $\left|E\left(G_{k}\right)\right|=\binom{n-k+1}{2}+(k-2)$. For its diameter we obtain $d\left(u_{1}, w_{k}\right)=\operatorname{diam}(G)=k+1$. Hence $f(n, k) \geq\binom{ n-k+1}{2}+(k-1)$.

Moreover, in [4] $f(n, k)$ has been determined for $k=1,2, n-1, n-2$.
Proposition 3. $f(n, 1)=\binom{n}{2}, f(n, n-1)=n-1, f(n, n-2)=n$.
Theorem 4. Let G be a connected graph of order $n \geq 3$. If $\binom{n-1}{2}+1 \leq|E(G)| \leq$ $\binom{n}{2}-1$, then $r c(G)=2$.

Hence $f(n, 2)=\binom{n-1}{2}+1$. In this paper we will show that $f(n, 3)=\binom{n-2}{2}+2$ and $f(n, 4)=\binom{n-3}{2}+3$. One might think that equality in Proposition 1.2 always holds for any $1 \leq k \leq n$. But, as one will see, our proof technique cannot be easily used for general $k \geq 5$.

2. Main Results

At first, we give some notation which will be used in the sequel.
Definition. Let G be a connected graph. The distance between two vertices u and v in G, denoted by $d(u, v)$, is the length of a shortest path between them in G. The distance between a vertex v and a set $S \subset V(G)$ is defined as $d(v, S)=$ $\min _{x \in S} d(v, x)$. The k-step open neighborhood of a set $S \subset V(G)$ is defined as $N^{k}(S)=\{x \in V(G) \mid d(x, S)=k\}, k \in\{0,1,2, \ldots\}$. When $k=1$, we may omit the qualifier " 1 -step" in the above name and the superscript 1 in the notation. The neighborhood of a vertex v in \bar{G}, denoted by $\bar{N}(v)$, is defined as $\bar{N}(v)=\{x \mid x v \notin E(G)\}$.

We will first present a new and shorter proof for Theorem 4, which we restate for convenience.

Theorem 5. Let G be a connected graph of order $n \geq 3$. If $\binom{n-1}{2}+1 \leq|E(G)| \leq$ $\binom{n}{2}-1$, then $r c(G)=2$.

Proof. Our proof will be by induction on n. For $n=3$, we have $f(n, n-1)=$ $n-1=2=\binom{3-1}{2}+1$. For $n=4$, we have $f(n, n-2)=n=4=\binom{4-1}{2}+1$. So we may assume $n \geq 5$.

Since $|E(G)| \leq\binom{ n}{2}-1$, we have $1 \leq \delta(G) \leq n-2$. Choose a vertex $w \in V(G)$ with $d(w)=\delta(G)$ and set $d(w)=n-2-t$ with $0 \leq t \leq n-3$. Let $H=G-w$. Then $|E(H)| \geq\binom{ n-1}{2}+1-d(w)=\binom{n-2}{2}+n-2+1-(n-2-t)=\binom{n-2}{2}+1+t=$ $\binom{(n-1)-1}{2}+1+t \geq\binom{ n-2}{2}+1$. Hence, H is connected; otherwise $E(H)<\binom{n-2}{2}+1$.

Now let $\bar{N}(w)=\left\{v_{1}, v_{2}, \ldots, v_{t}, v_{t+1}\right\}$.
Claim. $N\left(v_{i}\right) \cap N(w) \neq \emptyset$ for $1 \leq i \leq t+1$.
Proof of the Claim. Suppose $N\left(v_{i}\right) \cap N(w)=\emptyset$ for some i with $1 \leq i \leq t+1$. Then $d\left(v_{i}\right) \leq(t+1)-1=t$, thus $E(\bar{G}) \geq\left|\bar{N}_{H}\left(v_{i}\right)\right|+\left|\bar{N}_{G}(w)\right| \geq(n-t-2)+$ $(t+1)=n-1>n-2$, a contradiction, since $E(\bar{G}) \leq n-2$.

Hence for every vertex v_{i}, there is a vertex $u_{i} \in N(w)$ such that $u_{i} v_{i} \in E(G)$ for $1 \leq i \leq t+1$. Let H^{\prime} be a subgraph of H with $V\left(H^{\prime}\right)=V(H)$ and $E\left(H^{\prime}\right)=$ $E(H)-\left\{v_{1} u_{1}, \ldots, v_{t} u_{t}\right\}$. Then $\left|E\left(H^{\prime}\right)\right| \geq\binom{ n-2}{2}+1+t-t=\binom{n-2}{2}+1=$ $\binom{(n-1)-1}{2}+1$. So H^{\prime} is connected, and by induction we have $r c\left(H^{\prime}\right) \leq 2$. Now take a 2-rainbow coloring of H^{\prime}. Let $c\left(v_{t+1} u_{t+1}\right)=1$. Then, set $c\left(v_{i} u_{i}\right)=1$ for $1 \leq i \leq t$ and $c(e)=2$ for all edges e which are incident with w. It is easy to check that G is 2-rainbow connected.

In the following we give the new results of this paper.

Theorem 6. Let G be a connected graph of order $n \geq 4$. If $|E(G)| \geq\binom{ n-2}{2}+2$, then $r c(G) \leq 3$.

Proof. Our proof will be by induction on n. For $n=4$, we have $f(n, n-1)=$ $n-1=3=\binom{4-2}{2}+2$. For $n=5$, we have $f(n, n-2)=n=5=\binom{5-2}{2}+2$. So we may assume $n \geq 6$.

By Theorem 5 , we have $r c(G) \leq 2$ for $|E(G)| \geq\binom{ n-1}{2}+1$. Hence we may assume $|E(G)| \leq\binom{ n-1}{2}$. This implies $\delta(G) \leq \frac{(n-1)(n-2)}{n}=n-3+\frac{2}{n}<n-2$.
Claim 1. $\operatorname{diam}(G) \leq 3$.
Proof of Claim 1. Suppose $\operatorname{diam}(G) \geq 4$ and consider a diameter path v_{1}, v_{2}, \ldots, v_{D+1} with $D \geq 4$. Then $d\left(v_{1}\right)+d\left(v_{4}\right) \leq n-2$ and $d\left(v_{2}\right)+d\left(v_{5}\right) \leq n-2$, implying $|E(G)| \leq\binom{ n}{2}-2(2 n-3-(n-2))=\binom{n}{2}-2(n-1)=\binom{n-2}{2}-1<\binom{n-2}{2}+2$, a contradiction.

Claim 2. If $\delta(G)=1$, then $r c(G) \leq 3$.
Proof of Claim 2. Let w be a vertex with $d(w)=\delta(G)=1$, and let $H=G-w$. Then $|E(H)| \geq\binom{ n-2}{2}+2-1=\binom{n-2}{2}+1=\binom{(n-1)-1}{2}+1$. Hence $r c(H) \leq 2$ by Theorem 5. Take a 2-rainbow coloring for H, and set $c(e)=3$ for the edge incident with w. Then $r c(G) \leq 3$.

Hence we may assume $\delta(G) \geq 2$. Let $w_{1}, w_{2} \in V(G)$ with $w_{1} w_{2} \notin E(G)$. Suppose $N\left(w_{1}\right) \cap N\left(w_{2}\right)=\emptyset$. Let $H=G-\left\{w_{1}, w_{2}\right\}$. Then $|E(H)| \geq\binom{ n-2}{2}+2-(n-2)=$ $\binom{n-3}{2}+1=\binom{(n-2)-1}{2}+1$. Thus H is connected. Hence $r c(H) \leq 2$ by Theorem 5 . Consider a 2-rainbow coloring of H with colors 1 and 2 . Since $\operatorname{diam}(G) \leq 3$, there is a $w_{1} w_{2}$-path $w_{1} u_{1} u_{2} w_{2}$. Let $c\left(u_{1} u_{2}\right)=1$, and then set $c\left(w_{1} u_{1}\right)=2, c\left(w_{2} u_{2}\right)=3$ and $c(e)=3$ for all other edges incident with w_{1} or w_{2}. Then G is 3-rainbow connected.

Hence we may assume $N\left(w_{1}\right) \cap N\left(w_{2}\right) \neq \emptyset$ if $w_{1}, w_{2} \in V(G)$ and $w_{1} w_{2} \notin$ $E(G)$. Choose a vertex w with $d(w)=\delta(G)$ and set $d(w)=n-2-t$ with $1 \leq t \leq n-4$. As in the proof of Theorem 5, there exist vertices $u_{i} \in N(w)$ such that $u_{i} v_{i} \in E(G)$ for $1 \leq i \leq t+1$, where $\bar{N}(w)=\left\{v_{1}, v_{2}, \ldots, v_{t}, v_{t+1}\right\}$. Let $H=G-w$, and let H^{\prime} be a subgraph of H with $V\left(H^{\prime}\right)=V(H)$ and $E\left(H^{\prime}\right)=E(H)-\left\{u_{1} v_{1}, \ldots, u_{t-1} v_{t-1}\right\}$. Then $\left|E\left(H^{\prime}\right)\right| \geq\binom{ n-2}{2}+2-(n-2-t)-$ $(t-1)=\binom{n-2}{2}-n+5=\binom{(n-1)-2}{2}+2$.

Hence, if H^{\prime} is connected, then by induction, H^{\prime} is 3-rainbow connected. Now take a 3-rainbow coloring of H^{\prime}. Let $c\left(u_{i} v_{i}\right) \in\{1,2\}$ for $i=t, t+1$, and then set $c\left(u_{i} v_{i}\right)=1$ for $1 \leq i \leq t-1$ and $c(e)=3$ for all edges e incident with w. Then G is 3 -rainbow connected.

Claim 3. If H^{\prime} is disconnected, then H^{\prime} has at most 2 components and one of them is a single vertex.

Proof of Claim 3. Suppose, on the contrary, that H^{\prime} has $k \geq 3$ components. Let n_{i} be the number of vertices of the i th component. Thus $n_{1}+\cdots+n_{k}=n-1$, and then

$$
\begin{aligned}
\left|E\left(H^{\prime}\right)\right| & \leq\binom{ n_{1}}{2}+\cdots+\binom{n_{k}}{2}=\sum_{i=1}^{k} \frac{n_{i}^{2}-n_{i}}{2} \\
& =\frac{1}{2}\left(\sum_{i=1}^{k} n_{i}^{2}-(n-1)\right) \leq \frac{1}{2}\left[1+1+(n-1-2)^{2}-n+1\right] \\
& =\frac{1}{2}\left(n^{2}-7 n+12\right)<\binom{n-3}{2}+2,
\end{aligned}
$$

a contradiction. So H^{\prime} has two components, that is, $n_{1}+n_{2}=n-1$. If $n_{1} \geq 2$, then

$$
\begin{aligned}
\left|E\left(H^{\prime}\right)\right| & \leq\binom{ n_{1}}{2}+\binom{n_{2}}{2}=\frac{n_{1}^{2}+n_{2}^{2}-(n-1)}{2} \\
& \leq \frac{1}{2}\left[2^{2}+(n-3)^{2}-n+1\right] \\
& =\frac{1}{2}\left(n^{2}-7 n+14\right)<\binom{n-3}{2}+2
\end{aligned}
$$

thus completing the proof.
Let $H_{1}=\{v\}, H_{2}$ be two components of H^{\prime}. We know $v \in N(w)$ (otherwise, $\delta(G)=1)$. Let $N(v)=\left\{w, v_{1}, \ldots, v_{d(v)-1}\right\}$. Obviously, $d(v) \leq t$, and all edges $v_{i} v, 1 \leq i \leq d(v)-1$ are deleted edges. Since $\left|E\left(H_{2}\right)\right|=\left|E\left(H^{\prime}\right)\right| \geq\binom{(n-2)-1}{2}+2$, H_{2} is 2-rainbow connected by Theorem 5. Consider a 2-rainbow coloring of H_{2} with colors 1,2. Set $c\left(v v_{i}\right)=3,1 \leq i \leq d(v)-1, c(w v)=1, c(e)=3$ for all other edges incident with $w, c(e)=2$ for all other deleted edges. Then for every $x \in V(G) \backslash w$, there is a rainbow path between w and x, and for every $x \in N(w)$, there is a rainbow path $v w x$. For every $x \in N^{2}(w) \backslash N(v)$, we know $x v \notin E(G)$, and then $N(x) \cap N(v) \neq \emptyset$, which means that there exist some $v_{i}, 1 \leq i \leq d(v)-1$ with $v_{i} \in N(x) \cap N(v)$, i.e., there is a rainbow path between v and x. So G is 3 -rainbow connected.
Theorem 7. Let G be a connected graph of order $n \geq 5$. If $|E(G)| \geq\binom{ n-3}{2}+3$, then $r c(G) \leq 4$.
Proof. We apply the proof idea from the proof of Theorem 6.
Our proof will be by induction on n. For $n=5$, we have $f(n, n-1)=n-1=$ $4=\binom{5-3}{2}+3$, and for $n=6$, we have $f(n, n-2)=n=6=\binom{6-3}{2}+3$. So we may assume $n \geq 7$.

By Theorem 6, we have $r c(G) \leq 3$ for $|E(G)| \geq\binom{ n-2}{2}+2$. Hence we may assume $|E(G)| \leq\binom{ n-2}{2}+1$. This implies $\delta(G) \leq \frac{(n-2)(n-3)+2}{n}=n-5+\frac{8}{n}<n-3$.

Claim 4. $\operatorname{diam}(G) \leq 4$.
Proof of Claim 4. Suppose $\operatorname{diam}(G) \geq 5$ and consider a diameter path v_{1}, v_{2}, \ldots, v_{D+1} with $D \geq 5$. Then $d\left(v_{i}\right)+d\left(v_{i+3}\right) \leq n-2$ for $i=1,2,3$, implying $|E(G)| \leq\binom{ n}{2}-3(2 n-3-(n-2))=\binom{n}{2}-3(n-1)=\binom{n-3}{2}-3<\binom{n-3}{2}+3$, a contradiction.

Claim 5. If $\delta(G)=1$, then $r c(G) \leq 4$.
Proof of Claim 5. Let w be a vertex with $d(w)=\delta(G)=1$, and let $H=G-w$. Then $|E(H)| \geq\binom{ n-3}{2}+3-1=\binom{n-3}{2}+2=\binom{(n-1)-2}{2}+2$. Hence $r c(H) \leq 3$ by Theorem 6 . Take a 3 -rainbow coloring for H, and set $c(e)=4$ for the edge incident with w. Then $r c(G) \leq 4$.

Hence we may assume $\delta(G) \geq 2$.
Case 1. There are $w_{1}, w_{2} \in V(G), w_{1} w_{2} \notin E(G)$, with $N\left(w_{1}\right) \cap N\left(w_{2}\right)=\emptyset$ and $d\left(w_{1}\right)+d\left(w_{2}\right) \leq n-3$.

Let $H=G-\left\{w_{1}, w_{2}\right\}$. Then $|E(H)| \geq\binom{ n-3}{2}+3-(n-3)=\binom{n-4}{2}+2=$ $\binom{(n-2)-2}{2}+2$. We claim that H is connected. Otherwise, by the proof of Theorem 6 , we know that H has at most 2 components and one of them is a single vertex. Thus $\delta(G)=1$, a contradiction. Then $r c(H) \leq 3$ by Theorem 6 . Consider a 3 -rainbow coloring of H with colors $1,2,3$. If there is a rainbow path $P=x y z$ of length 2 between $N\left(w_{1}\right)$ and $N\left(w_{2}\right)$, where $x \in N\left(w_{1}\right), z \in N\left(w_{2}\right)$, then let $c(x y)=1, c(y z)=2$ and set $c\left(w_{1} x\right)=3, c\left(w_{2} z\right)=4$ and $c(e)=4$ for all other edges incident with w_{1} or w_{2}. Then G is 4 -rainbow connected. If all paths of length 2 between $N\left(w_{1}\right)$ and $N\left(w_{2}\right)$ are not rainbow, then we choose a path $P=x y z$, where $x \in N\left(w_{1}\right), z \in N\left(w_{2}\right)$. Let $c(x y)=c(y z)=1$, and then keep the colors of all the edges in $E(H)$ except for $y z$. Then set $c(y z)=4, c\left(w_{1} x\right)=$ $2, c\left(w_{2} z\right)=3$ and $c(e)=4$ for all other edges incident with w_{1} or w_{2}. It is only need to check that G is 4 -rainbow connected. Since $\delta \geq 2$, then there exists a v such that $c\left(w_{1} v\right)=4$. For every $w \in V(G) \backslash N\left(w_{1}\right)$, there is a rainbow path P from w_{1} to w not containing $y z$. Otherwise, there is a rainbow path of length 2 between $N\left(w_{1}\right)$ and $N\left(w_{2}\right)$, and so $w_{1} v P w$ is a rainbow path. For w_{2}, the proof is similar.

Case 2. For all $w_{1}, w_{2} \in V(G), w_{1} w_{2} \notin E(G)$, we have $N\left(w_{1}\right) \cap N\left(w_{2}\right) \neq \emptyset$ or $d\left(w_{1}\right)+d\left(w_{2}\right) \geq n-2$.

We know that in this case $\operatorname{diam}(G) \leq 3$. Choose a vertex w with $d(w)=$ $\delta(G)$, and set $d(w)=n-2-t$ with $2 \leq t \leq n-4$.

Subcase 2.1. $N^{3}(w)=\emptyset$. As in the proof of Theorem 5, there exist vertices $u_{i} \in N(w)$ such that $u_{i} v_{i} \in E(G)$ for $1 \leq i \leq t+1$, where $\bar{N}(w)=$ $\left\{v_{1}, v_{2}, \ldots, v_{t}, v_{t+1}\right\}$. Let $H=G-w$, and let H^{\prime} be a subgraph of H with
$V\left(H^{\prime}\right)=V(H)$ and $E\left(H^{\prime}\right)=E(H)-\left\{u_{1} v_{1}, \ldots, u_{t-2} v_{t-2}\right\}$. Then $\left|E\left(H^{\prime}\right)\right| \geq$ $\binom{n-3}{2}+3-(n-2-t)-(t-2)=\binom{n-3}{2}-n+7=\binom{(n-1)-3}{2}+3$.

If H^{\prime} is connected, then by induction, H^{\prime} is 4-rainbow connected. Now take a 4-rainbow coloring of H^{\prime}. Let $c\left(u_{i} v_{i}\right) \in\{1,2,3\}$ for $i=t-1, t, t+1$. Then set $c\left(u_{i} v_{i}\right)=1$ for $1 \leq i \leq t-2$ and $c(e)=4$ for all edges e incident with w. Then G is 4-rainbow connected.

If H^{\prime} is disconnected, we claim that H^{\prime} has at most 3 components. Otherwise, $\left|E\left(H^{\prime}\right)\right|<\binom{n-4}{2}+3$. If H^{\prime} has exactly 3 components H_{1}, H_{2}, H_{3}, we may assume that $\left|H_{3}\right| \geq\left|H_{2}\right| \geq\left|H_{1}\right| \geq 1,\left|H_{1}\right|+\left|H_{2}\right|+\left|H_{3}\right|=n-1$. If $\left|H_{2}\right| \geq 2$, then $\left|E\left(H^{\prime}\right)\right| \leq\binom{\left|H_{1}\right|}{2}+\binom{\left|H_{2}\right|}{2}+\binom{\left|H_{3}\right|}{2} \leq 1+\binom{n-4}{2}<\binom{n-4}{2}+3$. So $\left|H_{1}\right|=\left|H_{2}\right|=1$, and let $V\left(H_{1}\right)=\left\{u_{1}\right\}, V\left(H_{2}\right)=\left\{u_{2}\right\}$ and $u_{1}, u_{2} \in N(w)$. Then $\left|E\left(H_{3}\right)\right| \geq\binom{ n-4}{2}+3 \geq$ $\binom{(n-3)-1}{2}+3$. Hence, by Theorem $5, H_{3}$ is 2-rainbow connected. Now consider a 2-rainbow coloring of H^{\prime} with colors 1,2 . Set $c\left(w u_{1}\right)=1, c\left(w u_{2}\right)=2, c(e)=4$ for all the edges e incident with w, and set $c(f)=3$ for all edges f incident with u_{1} or u_{2} except for $w u_{1}, w u_{2}$, as well as $c(g)=1$ for all other deleted edges g. Then G is 4-rainbow connected.

If H^{\prime} has exactly 2 components H_{1}, H_{2}, we may assume that $\left|H_{2}\right| \geq\left|H_{1}\right| \geq 1$. First, $\left|H_{1}\right|=1$, and let $V\left(H_{1}\right)=\left\{u_{1}\right\}$ and $u_{1} \in N(w)$. Then $\left|E\left(H_{2}\right)\right| \geq\binom{ n-4}{2}+$ $3 \geq\binom{(n-2)-2}{2}+3$. Hence, by Theorem $6, H_{2}$ is 3-rainbow connected. Now consider a 3-rainbow coloring of H^{\prime} with colors $1,2,3$. Set $c\left(w u_{1}\right)=1, c(e)=4$ for all edges e incident with w or u_{1} except for $w u_{1}$ and set $c(g)=2$ for all other deleted edges g. Then G is 4-rainbow connected. Second, $\left|H_{1}\right| \geq 2$. Since $n \geq 7$, then $\left|H_{2}\right| \geq 3$. Thus if $\left|H_{1}\right| \geq 3$, we have

$$
\begin{aligned}
\left|E\left(H_{1}\right)\right| & \geq\binom{ n-4}{2}+3-\binom{\left|H_{2}\right|}{2} \\
& =\frac{1}{2}\left[\left|H_{1}\right|^{2}-3\left|H_{1}\right|+4\right]+\left|H_{1}\right|\left|H_{2}\right|-3\left|H_{2}\right|-2\left|H_{1}\right|+7 \\
& \geq\binom{\left|H_{1}\right|-1}{2}+1+3(n-4)-3(n-1)+\left|H_{1}\right|+7 \\
& \geq\binom{\left|H_{1}\right|-1}{2}+1 .
\end{aligned}
$$

Similarly, $\left|E\left(H_{2}\right)\right| \geq\binom{\left|H_{2}\right|-1}{2}+1$. Obviously if $\left|H_{1}\right|=2, H_{1}, H_{2}$ are 2-rainbow connected. Hence when $\left|H_{1}\right| \geq 2$, both H_{1}, H_{2} are 2-rainbow connected. Consider a 2-rainbow coloring of H^{\prime} with colors 1,2 . Set $c(w v)=4$ for all $v \in V\left(H_{1}\right)$, $c(w v)=3$ for all $v \in V\left(H_{2}\right), c(u v)=4$ for all $u \in V\left(H_{2}\right) \cap N(w), v \in V\left(H_{1}\right) \cap$ $N^{2}(w), c(u v)=3$ for all $u \in V\left(H_{1}\right) \cap N(w), v \in V\left(H_{2}\right) \cap N^{2}(w), c(e)=1$ for all other edges e. Then G is 4-rainbow connected.

Subcase 2.2. $\quad N^{3}(w) \neq \emptyset$. For every $u \in N^{3}(w), w u \notin E(G)$ and $N(w) \cap$ $N(u)=\emptyset$, then $d(w)+d(u)=n-2$, that is, $N(u)=N^{2}(w) \cup N^{3}(w) \backslash\{u\}$. Let
$N(w)=\left\{u_{1}, \ldots, u_{n-t-2}\right\}, N^{2}(w)=\left\{v_{1}, \ldots, v_{p}\right\}, p \geq 1, N^{3}(w)=\left\{v_{p+1}, \ldots, v_{t+1}\right\}$. If $p=1, v_{1}$ is a cut vertex and $G\left[N^{2}(w) \cup N^{3}(w)\right]$ is a complete graph. Let H_{1}, H_{2} be two blocks of $G-v_{1}$, we may assume that H_{2} is a complete graph. Let $N_{H_{1}}\left(v_{1}\right)=\left\{u_{1}, \ldots, u_{s}\right\}, 1 \leq s \leq n-t-2$. Then $K_{2, s}$ is a spanning subgraph of $G\left[w, v_{1}, u_{1}, \ldots, u_{s}\right]$. If $s \geq 2$, then $K_{2, s}$ is 4-rainbow connected. Now we give a 4-coloring of $K_{2, s}$ as follows:

$$
c(e)= \begin{cases}j+1, & \text { if } e=u_{i} w, i \in\{3 j+1,3 j+2,3 j+3\} \text { for } 0 \leq j \leq 2, \\ 4, & \text { if } e=u_{i} w \text { for } i>9, \\ i \bmod 3, & \text { if } e=v_{1} u_{i} \text { for } i \leq 9, \\ 3, & \text { if } e=v_{1} u_{i} \text { for } i>9 .\end{cases}
$$

For every $u_{k}(s<k \leq n-t-2), u_{k} v_{j} \notin E(G)$ and $N\left(u_{k}\right) \cap N\left(v_{j}\right)=\emptyset$ for $2 \leq j \leq t+1$, then $N\left(u_{k}\right)=N(w) \cup\{w\} \backslash\left\{u_{k}\right\}$. Set $c\left(u_{k} u_{j}\right)=c\left(w u_{j}\right)$ for $1 \leq j \leq s, c(e)=1$ for all other edges e in $E\left(H_{1}\right), c(e)=4$ for $e \in E\left(H_{2}\right)$. Then G is 4 -rainbow connected. If $s=1$, then G is 3 -rainbow connected.

If $p=2$, let $H_{1}=G\left[w \cup N(w) \cup N^{2}(w)\right], H_{2}=G\left[N^{2}(w) \cup N^{3}(w)\right]$, then $\left|H_{1}\right|+\left|H_{2}\right|=n+2,\left|H_{1}\right| \geq 5,\left|H_{2}\right| \geq 3$. If $\left|H_{2}\right|=3$, then $d\left(v_{3}\right)=2=d(w)$, thus $n=6$. If $\left|H_{2}\right|=4, n=7$, set $c\left(w u_{1}\right)=4, c\left(w u_{2}\right)=3, c\left(u_{1} v_{1}\right)=2, c\left(u_{2} v_{2}\right)=$ $1, c(e)=1$ for all $e \in E\left(H_{2}\right)$, then G is 4-rainbow connected. If $\left|H_{2}\right|=4, n \geq 8$, $\left|E\left(H_{1}\right)\right| \geq\binom{ n-3}{2}+3-5=\binom{(n-2)-2}{2}+n-6$, then H_{1} is 3-rainbow connected. Consider a 3-rainbow coloring of H_{1} with $2,3,4$. Set $c(e)=1$ for all $e \in E\left(H_{2}\right)$, then G is 4-rainbow connected. If $\left|H_{2}\right| \geq 5,\left|H_{1}\right| \geq 6$, then

$$
\begin{aligned}
\left|E\left(H_{1}\right)\right| & \geq\binom{ n-3}{2}+3-\binom{\left|H_{2}\right|}{2} \\
& =\frac{1}{2}\left[\left|H_{1}\right|^{2}-5\left|H_{1}\right|+6\right]+2+\left|H_{1}\right|\left|H_{2}\right|-3\left|H_{1}\right|-5\left|H_{2}\right|+13 \\
& \geq\binom{\left|H_{1}\right|-2}{2}+2+5(n+2-5)-5(n+2)+2\left|H_{1}\right|+13 \\
& \geq\binom{\left|H_{1}\right|-2}{2}+2
\end{aligned}
$$

Hence H_{1} is 3-rainbow connected. Consider a 3-rainbow coloring of H_{1} with colors $2,3,4$. Set $c(e)=1$ for all $e \in E\left(H_{2}\right)$, then G is 4-rainbow connected. When $\left|H_{2}\right| \geq 5,\left|H_{1}\right|=5$, set $c\left(w u_{1}\right)=4, c\left(w u_{2}\right)=3, c\left(u_{1} v_{1}\right)=2, c\left(u_{2} v_{2}\right)=1, c(e)=1$ for all $e \in E\left(H_{2}\right)$, then G is 4-rainbow connected.

Now we may assume that $p \geq 3$. For every $v_{i} \in N^{2}(w)$, there is a vertex $u_{i} \in$ $N(w)$ such that $u_{i} v_{i} \in E(G)$. Let H be the graph be deleting w and edges $u_{i} v_{i}$ for $v_{i} \in N^{2}(w) \backslash\left\{v_{1}, v_{2}, v_{3}\right\}$ and edges $v_{1} v_{i}$ for $p+1 \leq i \leq t+1$, then $|E(H)| \geq\binom{ n-4}{2}+$ 3. If H is connected, then by induction, H is 4-rainbow connected. Consider a 4-rainbow coloring of H with colors $1,2,3,4$. Let $c\left(u_{i} v_{i}\right) \in\{1,2,3\}$ for $i=1,2,3$.

We may assume that $c\left(u_{1} v_{1}\right)=1$. Set $c(e)=4$ for all edges e incident with w, $c\left(v_{1} v_{i}\right)=2, p+1 \leq i \leq t+1, c\left(v_{i} u_{i}\right)=3$ for all other edges between $N(w)$ and $N^{2}(w)$. Then G is 4-rainbow connected.

If H is disconnected, then similarly as in the proof of Subcase 2.1, H has at most 3 components. If H has exactly 3 components with two single vertices in $N(w)$, denoted by u, u^{\prime}, then H_{3} is 2 -rainbow connected. Consider a 2 -rainbow coloring of H_{3} with colors 1, 2. Let $c\left(u_{1} v_{1}\right)=1$, set $c(w u)=c\left(w u^{\prime}\right)=3, c(e)=4$ for all edges e incident with $w, c\left(v_{1} v_{i}\right)=2, p+1 \leq i \leq t+1, c(f)=3$ for all edges f incident with u except for $w u, c(g)=4$ for all edges g incident with u^{\prime} except for $w u^{\prime}, c(h)=1$ for all the remaining edges h. Then G is 4-rainbow connected.

Assume that H has exactly two components H_{1}, H_{2}. First, $\left|H_{1}\right|=1$, let $V\left(H_{1}\right)=\{u\} \subseteq N(w)$, then H_{2} is 3-rainbow connected by the proof of Subcase 2.1. Now consider a 3 -rainbow coloring of H_{2} with colors $1,2,3$. Set $c(w u)=$ $1, c(e)=4$ for all edges e incident with w or u except for $w u, c(f)=1$ for all the remaining edges f. Then G is 4 -rainbow connected. Second, $\left|H_{1}\right| \geq 2$, then both H_{1}, H_{2} are 2-rainbow connected by the proof of Subcase 2.1. We may assume that H_{2} contains $N^{3}(w)$. Now consider a 2-rainbow coloring of H_{1}, H_{2} with colors 1,2 . Set $c(w v)=3$ for all $v \in V\left(H_{1}\right), c(w v)=4$ for all $v \in V\left(H_{2}\right)$ $c\left(v_{1} v_{i}\right)=4, p+1 \leq i \leq t+1, c(e)=3$ for all the remaining edges e. Then G is 4 -rainbow connected.

Acknowledgement

We thank the referees for some valuable comments.

References

[1] J.A. Bondy and U.S.R. Murty, Graph Theory (GTM 244, Springer, 2008).
[2] G. Chartrand, G.L. Johns, K.A. McKeon and P. Zhang, Rainbow connection in graphs, Math. Bohem. 133 (2008) 85-98.
[3] A.B. Ericksen, A matter of security, Graduating Engineer \& Computer Careers (2007) 24-28.
[4] A. Kemnitz and I. Schiermeyer, Graphs with rainbow connection number two, Disscuss. Math. Graph Theory 31 (2011) 313-320.
doi:10.7151/dmgt. 1547
[5] X. Li and Y. Sun, Rainbow Connections of Graphs (SpringerBriefs in Math., Springer, New York, 2012). doi:10.1007/978-1-4614-3119-0

[^0]: ${ }^{1}$ Supported by NSFC No. 11071130.
 ${ }^{2}$ This research was performed while the third author was visiting Nankai University. Financial support is gratefully acknowledged.

