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Abstract

The infimum of the least eigenvalues of all finite induced subgraphs of an
infinite graph is defined to be its least eigenvalue. In [P.J. Cameron, J.M.
Goethals, J.J. Seidel and E.E. Shult, Line graphs, root systems, and elliptic

geometry, J. Algebra 43 (1976) 305–327], the class of all finite graphs whose
least eigenvalues > −2 has been classified: (1) If a (finite) graph is con-

nected and its least eigenvalue is at least −2, then either it is a generalized

line graph or it is represented by the root system E8. In [A. Torgas̆ev, A note

on infinite generalized line graphs, in: Proceedings of the Fourth Yugoslav
Seminar on Graph Theory, Novi Sad, 1983 (Univ. Novi Sad, 1984) 291–
297], it has been found that (2) any countably infinite connected graph with
least eigenvalue > −2 is a generalized line graph. In this article, the fam-
ily of all generalized line graphs—countable and uncountable—is described
algebraically and characterized structurally and an extension of (1) which
subsumes (2) is derived.
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For unexplained graph theoretic terms and notation, the reader is referred to
[15]. For information on Hilbert spaces, we rely on [6]. Each graph considered
in this article is simple; its order need not be finite. Let G be a graph; let a, b
be two vertices of G; we write 〈〈a, b〉〉 = 1 to mean that a, b are adjacent whereas
〈〈a, b〉〉 = 0 implies that they are not adjacent. The set N(a) ∪ {a}, known as
the closed neighbourhood of a, is denoted by N [a] or NG[a]. The order of G is
denoted by |G|. Any graph obtained from G by deleting some vertices—known
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as an induced subgraph of G—is called in this article an innergraph of G. To
denote that a graph H is an innergraph of G, we write H 4 G. If X ⊆ V (G),
then the innergraph of G with vertex set X is denoted by G[X]; any innergraph
with a finite vertex set {x1, x2, . . . , xn} is denoted by G[x1, x2, . . . , xn] also. Let
H be a finite subgraph of G; if there is a vertex p in V (G) \ V (H) such that
|N(p) ∩ V (H)| is odd, then H is called odd in G; otherwise it is even in G. Let
e be an edge of G; when the degree of one of its endpoints is 1, it is called a
pendant edge; in that case, the other endpoint is said to support e. As in [11], the
infimum of the least eigenvalues of all finite innergraphs of G—note that when G
is finite, this infimum coincides with the least eigenvalue of G—is defined to be
the least eigenvalue of G and denoted by λ(G). The line graph L(G) is defined
as follows: its vertex set is E(G); two vertices of L(G) are adjacent if and only
if they have a common vertex in G. A family F of subgraphs of G is called a
decomposition of G, if every edge of G appears in exactly one member of F. The
following results have been obtained in [8] and [12], respectively:

Theorem 1. A graph G is a line graph if and only if it decomposes into complete

subgraphs such that each vertex of G appears in at most two of these subgraphs.

Theorem 2. A graph G is a line graph if and only if no innergraph is K1,3 and

whenever an innergraph is K1,1,2, one of its triangles is even in G.

The above results are usually confined to finite graphs. However, since their
proofs involve neither counting arguments nor induction, they work for infinite
graphs also. (See [15, Pages 280–82]; for proving the second result for infinite
graphs, we need the following: If H is a complete subgraph of a graph G, then
there exists a maximal complete subgraph of G containing H; this fact can be
proved by using Zorn’s lemma.)

Let L denote the family of all graphs with least eigenvalues > −2. A notable
property of finite line graphs is that they belong to L. (For information in this
regard and for a proof in particular, see [2]. If G is an infinite line graph, then for
any finite innergraph H of G, λ(H) > −2 because H also is a line graph whence
λ(G) = inf{λ(H) : H 4 G and |H| < ∞} > −2. Therefore infinite line graphs
also belong to L.) This fact has prompted many authors to study intensively the
set of all finite graphs in L, denoted by Lf in this article. Hoffman has found
an important subfamily of Lf , whose members are called generalized line graphs.
(See [7].) For our purpose, we extend Hoffman’s definition of these graphs, as
done in [11].

Definition 3. Any graph in which every vertex is adjacent to all other vertices
except one—i.e., any graph obtained from a complete graph by removing a perfect
matching—is called a cocktail party graph. For any nonnegative integer n, the
cocktail party graph with 2n vertices is denoted by CP(n). Let G be a graph and
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{Hα : α ∈ V (G)} be a collection of cocktail party graphs such that for each α ∈
V (G), V (Hα) ∩ E(G) = ∅ and for all distinct α, β ∈ V (G), V (Hα) ∩ V (Hβ) = ∅.
Then the generalized line graph L[G; Hα, α ∈ V (G)] is obtained from the union
of L(G) and the graphs Hα, α ∈ V (G) by forming additional edges: a vertex e in
L(G) is adjacent to all vertices in Hα whenever α is an endpoint of e in G. When
V (G) is finite, say {v1, v2, . . . , vn} and for each i 6 n, the cocktail party graph
associated with vi is a finite graph, say CP(σi), then the generalized line graph
is denoted by L(G;σ1, σ2, . . . , σn) also. Let G denote the family of all generalized
line graphs.

Remark 4. (1) The generalized line graph described above coincides with L(G)
when all cocktail party graphs are null; it is a cocktail party graph when
G = K1. Thus line graphs and cocktail party graphs belong to G.

(2) Let Γ be an innergraph of a generalized line graph L[G; Hα, α ∈ V (G)].
For each α ∈ V (G), let Aα = {v ∈ V (Γ) ∩ V (Hα) : for some x ∈ V (Γ) ∩
V (Hα) \ {v}, 〈〈x, v〉〉 = 0} and Bα = (V (Γ) ∩ V (Hα)) \ Aα. (Note that for
each α ∈ V (G), Γ[Aα] is a cocktail party graph.) Let G′ be the graph defined
according to the following three conditions: V (G′) = V (G) ∪ [∪α∈V (G)Bα];
V (Γ) ∩ E(G) ⊂ E(G′); if α ∈ V (G), then for each x ∈ Bα, αx ∈ E(G′).
Now, for each α ∈ V (G′), let H ′

α be the cocktail party graph defined as
follows: if α ∈ V (G), then H ′

α = Γ[Aα]; if α ∈ (V (G′) \ V (G)), then H ′

α =
CP(0). It can be verified that Γ can be taken as the generalized line graph
L[G′; H ′

α, α ∈ V (G′)]. Thus it follows that any innergraph of a generalized
line graph also is a generalized line graph.

(3) Note that L(K2; 1, 1) = K1,4 whence K1,3 also belongs to G and L(K3; 1, 0,
0) = K1,1,3.

(4) Since any finite generalized line graph belongs to Lf—see [7] or [2] for a
proof—it follows that G ⊂ L.

Let Gf be the family of all finite generalized line graphs; a characterization of
this family, analogous to that of the family of all finite line graphs given by
Theorem 1 has been obtained in [4]. The following definition conceptualizes the
characterization given by [4].

Definition 5. A graph Ω is called an extended line graph, if there exists a de-
composition F = {Fj : j ∈ J} of Ω such that the following hold.

(1) For any j ∈ J , every vertex of Fj is adjacent to all other vertices of Fj

except at most one vertex, i.e., Fj can be obtained from a complete graph
by removing a matching.

(2) For all distinct j, k ∈ J , Fj and Fk have at most one common vertex.

(3) Every vertex lies in at most two members of F.
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(4) If a vertex v lies in two distinct members Fj , Fk of F, then v is adjacent to
all vertices in [V (Fj) ∪ V (Fk)] \ {v}.

Let X be the family of all extended line graphs; note that by Theorem 1, line
graphs belong to this family.

Remark 6. Let Ω = L[G; Hα, α ∈ V (G)] be a generalized line graph; for each
α ∈ V (G), let Fα = Ω[V (Hα) ∪ Eα] where Eα is the set of all edges in G which
are incident with α. Taking J = V (G), it is easy to check that (1), (2), (3) and
(4) of Definition 5 hold, i.e., Ω is an extended line graph. Therefore, G ⊆ X.

Let W be a subset of a Hilbert space such that the norm of each vector in W is√
2. (Every Hilbert space H considered in this article is real; the inner product of

any two vectors α, β ∈ H is denoted by 〈α, β〉.) If ψ is a map from the vertex set
of a graph G to W such that for all distinct x, y ∈ V (G), 〈ψ(x), ψ(y)〉 = 〈〈x, y〉〉,
then ψ is called a representation of G in W . The family of all representable
graphs is denoted by R. If a graph has a representation in some set {±µ ± ν :
µ, ν ∈ O and µ 6= ν} where O is an orthonormal set in a Hilbert space, then it is
called amicable. The family of all amicable graphs is denoted by A.

Let {e1, e2, . . . , e8} be an orthonormal basis of R8. The set E8—known as an
exceptional root system in the literature—is defined to be

{±ei±ej : 1 6 i < j 6 8}∪
{

1
2

∑8
i=1 εiei : for all i 6 8, εi = ±1 and

∏8
i=1 εi = 1

}

.

A representation of a graph in E8 is shown in Figure 1. Note that this graph
appears in Figure 2. Later, we will prove that no graph in this figure is amicable.
Therefore, A ( R.

e1 + e2 e2 + e3 e3 + e4
12 (e1 � e2 + e3 + e4 � e5 + e6 + e7 + e8)e4 + e5 e5 + e6

Figure 1. A representation of a graph in E8.

Lemma 7. Every extended line graph is amicable.

Proof. Let Ω be an extended line graph; then there exists a decomposition {Fj :
j ∈ J} of Ω such that the conditions (1), (2), (3) and (4) of Definition 5 hold.
For each j ∈ J , let Aj be a subset of V (Fj) such that for each v ∈ V (Fj), there
is exactly one vertex x ∈ Aj with 〈〈v, x〉〉 = 0 (x and v may be same). We can
assume that O := J ∪ V (Ω) is an orthonormal set in a Hilbert space and Ω does
not have isolated vertices. Let ξ : V (Ω) → {±µ± ν : µ, ν ∈ O and µ 6= ν} be the
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map defined as follows: Let u ∈ V (Ω). If u is a vertex of two members of F, say
Fα, Fβ , then let ξ(u) = α + β. Suppose that u belongs to exactly one member,
say Fα. If u ∈ Aα, let ξ(u) = α + u; otherwise let ξ(u) = α − v where v is the
vertex in Aα such that 〈〈u, v〉〉 = 0. It is easy to verify that ξ is a representation
of Ω.

It has been proved that {G ∈ Lf \Gf : G is connected} is finite—see [2, Theorem
4.10]. This fact and the natural relationship between line graphs and generalized
line graphs have motivated various authors to study Gf comprehensively. Let Mf

be the class of all minimal forbidden graphs for Gf . (Let G be a hereditary family
of graphs; if a graph G does not belong to G, whereas every proper innergraph
of G belongs to G, then G is called a minimal forbidden graph for G.) Note
that Mf determines Gf : A finite graph G is a generalized line graph if and only
if no innergraph of G belongs to Mf . Various algebraic properties of Gf have
been found in [4, 5] and five different methods of computing Mf have been found
in [4, 9, 13, 5, 14]. Countably infinite graphs in L also have been studied: in
[10], it has been shown that any countably infinite connected graph with least
eigenvalue > −2 is a generalized line graph and in [11], all countably infinite
connected graphs with least eigenvalues > −2 have been determined. The current
article generalizes many of the results on Lf . We describe G by using vectorial
representability of its members, characterize it structurally and find the set of all
minimal forbidden graphs for G, denoted in this article by M. In this process we
obtain a classification of L, and prove that M = Mf and that G is determined by
M. The main tool for proving our results is a notion introduced in [14]:

Definition 8. A graph G is called an enhanced line graph when the following
conditions hold for every innergraph H of G.

(E1) If H = C4, then it is even in G.

(E2) If H = K1,3, then two vertices of H have same neighbourhood in G.

(E3) IfH = K1,1,2, then either its nonadjacent vertices have same neighbourhood
in G or one of its triangles is even in G.

(E4) If H = K1,1,3, then for some x, y ∈ V (H), NG(x) = NG(y) and H − {x, y}
is an even triangle in G.

(E5) If H is connected and V (H) has three distinct vertices such that their
neighbourhoods in H are same, then H is either K1,3 or K1,4 or K1,1,3.

Let E denote the family of all enhanced line graphs. By using Theorem 2, it
can be easily verified that every line graph belongs to this family; we can even
prove a generalization of this fact: A is a subfamily of E; the latter fact itself is
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subsumed by Proposition 9, to derive which, we need the following: Let ψ be a
representation of a graph G in a set {±µ± ν : µ, ν ∈ O and µ 6= ν} where O is an
orthonormal set in a Hilbert space. If a, b are two distinct vertices such that ψ(a)
and ψ(b) are linear combinations of the same vectors in O—i.e., ψ(a) and ψ(b) are
of the forms ±α± β and ±α∓ β—then a and b are called associates with respect

to ψ. Note that a vertex cannot be an associate of two different vertices. If two
vertices a, b are associates, then N(a) = N(b) because for any x ∈ V (G) \ {a, b},
〈ψ(a), ψ(x)〉 = 〈ψ(b), ψ(x)〉 and 〈ψ(a), ψ(b)〉 = 0.

Proposition 9. Let G be a graph such that every finite innergraph of G is ami-

cable. Then G is an enhanced line graph.

Proof. Let O be a countably infinite orthonormal set in a Hilbert space. Let
O∗ = {−ν, ν : ν ∈ O} and W = {±µ ± ν : µ, ν ∈ O and µ 6= ν}; note that by
the hypothesis, every finite innergraph of G has a representation in W . First,
suppose that a, b, c, d are vertices of G such that H := G[a, b, c, d] = C4 and
〈〈a, c〉〉 = 0. Let p ∈ V (G) \ {a, b, c, d} and ψ be a representation of G[a, b, c,
d, p] in W . It is easy to verify that ‖ψ(a) − ψ(b) + ψ(c) − ψ(d)‖2 = 0 whence
ψ(a) +ψ(c) = ψ(b) +ψ(d); therefore |N(p)∩ V (H)| = ∑

x∈V (H) 〈〈p, x〉〉 = 2〈ψ(p),
ψ(a)+ψ(c)〉; so, it follows that H is even, i.e., the conclusion of (E1) holds.

Now, suppose that (E2) does not hold. Then, there are vertices p, a, b, c such
that H := G[p, a, b, c] = K1,3, degH p = 3 and a, b, c have different neighbour-
hoods in G. Therefore, there are three vertices x, y, z such that in K := G[p, a,
b, c, x, y, z], a, b, c have different neighbourhoods. Let ψ be a representation of K
in W . It is easy to verify that two of {a, b, c} are associates with respect to ψ;
these two have same neighbourhood in K—a contradiction.

Now suppose that (E3) does not hold. Then there are vertices a, b, p, q such
that G[a, b, p, q] = K1,1,2, 〈〈p, q〉〉 = 0, N(p) 6= N(q) and both G[a, b, p] and
G[a, b, q] are odd. Therefore, there are vertices x, y, z such that in K := G[a,
b, p, q, x, y, z], p, q have different neighbourhoods and both G[p, a, b] and G[q, a,
b] are odd. Let ψ be a representation of K in W . Then for some α, β, γ ∈ O∗,
{ψ(a), ψ(b)} = {α + β, α + γ}. If 〈α, ψ(p)〉 6= 0 6= 〈α, ψ(q)〉, then ψ(p), ψ(q) are
associates whence NK(p) = NK(q)—a contradiction. Therefore, we can assume
that 〈α, ψ(p)〉 = 0. Then ψ(p) = β + γ whence G[a, b, p] is even in K—again, a
contradiction.

Next, suppose that (E4) does not hold; i.e., there are vertices p, q, a, b, c such
that H := G[p, q, a, b, c] = K1,1,3, degH p = degH q = 4 and the conclusion of
(E4) does not hold. Then, there are vertices x, y, z ∈ [V (G) \ V (H)] such that
the following statements hold:

• either 〈〈x, b〉〉 6= 〈〈x, c〉〉 or |N(x) ∩ {p, q, a}| is odd;
• either 〈〈y, c〉〉 6= 〈〈y, a〉〉 or |N(y) ∩ {p, q, b}| is odd;
• either 〈〈z, a〉〉 6= 〈〈z, b〉〉 or |N(z) ∩ {p, q, c}| is odd.
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Thus the conclusion of (E4) does not hold when G is replaced by K := G[p, q, a,
b, c, x, y, z]. Let ψ be a representation of K in W . Then for some α, β, γ, δ ∈ O∗,
{ψ(p), ψ(a), ψ(b), ψ(c)} = {α + β, β + γ, α + δ, α − δ}; from this we find that
ψ(q) = α+ γ whence the vertices which are associates have same neighbourhood
in K and the rest of V (H) form an even triangle in K—a contradiction.

Now, suppose that a, b, c are distinct vertices of a connected innergraph H
such that NH(a) = NH(b) = NH(c). Let p ∈ NH(a); then G[p, a, b, c] = K1,3.
Let K be a maximal connected innergraph of H such that p, a, b, c ∈ V (K) and
|K| 6 6. Let ψ be a representation of K in W . Then for some α, β, γ, δ ∈ O∗,
{ψ(p), ψ(a), ψ(b), ψ(c)} = {α + β, β + γ, α + δ, α − δ}. If |K| = 4, then H = K
whence the conclusion of (E5) holds. So, let q be a vertex in V (K) \ {p, a, b, c}
such that G[p, q, a, b, c] is connected; note that ψ(q) is either α + γ or β − γ; in
each case, the connectivity of K and the property of a, b, c ensure that V (K) does
not have any other vertex of G, whence K = K1,4 or K1,1,3. Now, by the choice
of K, it follows that H = K. Thus the conclusion of (E5) holds.

Summarizing, we find that all the conditions of Definition 8 hold; therefore,
G is an enhanced line graph.

Using Theorem 2 effectively, the set of all minimal forbidden graphs for the family
of all line graphs has been found in [1]. In this article, the next result—its finite
version has been derived in [14]—is similarly used for determining the set of all
minimal forbidden graphs for the family of all generalized line graphs.

Theorem 10. Any enhanced line graph G—possibly infinite—is a generalized

line graph.

Proof. Since every component of G is an enhanced line graph and the conclusion
holds for G when it does for every component, we can assume that G is connected;
let its vertex set be V . If three distinct vertices of G have same neighbourhood,
then by connectivity of G and by (E5), G ∈ {K1,3, K1,4, K1,1,3} whence by
Remark 4, G ∈ G. Therefore, we assume that for each v ∈ V , |{x ∈ V : N(x) =
N(v)}| 6 2. Let U be a subset of V such that for each x ∈ V , there is exactly one
vertex u ∈ U with N(u) = N(x). It is easy to verify that F := G[U ] is connected.
We can assume that F 64 K3 for otherwise being an innergraph of CP(3), G ∈ G

by Remark 4. Now from (E2), (E3) and Theorem 2 it follows that F is a line
graph, i.e., there is a graph I with L(I) = F .

Let q be any vertex in V \ U . Then there is a (unique) vertex p ∈ U with
N(p) = N(q). If a, b are two distinct nonadjacent vertices in NF (p), then by the
choice of U , there is a vertex x with 〈〈x, a〉〉 6= 〈〈x, b〉〉 whence G[p, a, q, b] is odd—a
contradiction to (E1). Therefore, NF [p] is a clique. Now we claim that p is a
pendant edge in the graph I. Otherwise, there are edges a, b in E(I) \ {p} such
that they are incident with different ends of p. Since G[p, a, b] = K3, in I, p, a,
b form a triangle. Therefore, G[p, a, b] is even in F . Since NF [p] is a clique, it
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follows that degF p = 2. Since F 6= K3, there is a vertex r ∈ U \ {p, a, b} such
that G[p, a, b, r] is connected. Obviously 〈〈a, r〉〉 = 〈〈b, r〉〉 = 1 and 〈〈r, p〉〉 = 0.
Since N(r) 6= N(p), there must be a vertex x ∈ U \ {a, b} with 〈〈r, x〉〉 = 1. Since
G[p, a, b] is even, 〈〈a, x〉〉 = 〈〈b, x〉〉. Now we find that (E4) is violated. So, our
claim holds.

For each α ∈ V (I), let Xα = {u ∈ U : for some v ∈ (V \ U), N(u) = N(v)
and α supports u in I} and Yα = {v ∈ (V \U) : for some u ∈ Xα, N(v) = N(u)}.
Let K be the spanning subgraph of I whose edge set is U \ ∪α∈V (I)Xα. Now we
observe the following: L(K) = G[U \ ∪α∈V (K)Xα]; {E(K), Xα, Yα : α ∈ V (K)}
is a partition of V ; for each α ∈ V (K), Hα := G[Xα ∪ Yα] is a cocktail party
graph; if α ∈ V (K), u ∈ E(K) and v ∈ V (Hα), then 〈〈u, v〉〉 = 1 if and only if
u is incident with α in K; for all distinct α, β ∈ V (K), there is no edge from
Xα ∪Yα to Xβ ∪Yβ. From the preceding five facts, it follows that G is L[K; Hα,
α ∈ V (K)].

The next result yields a set of different descriptions of G, including a characteri-
zation using which M is computed by Theorem 13.

Theorem 11. For any graph G—possibly infinite—the following are equivalent.

(1) G is a generalized line graph.

(2) G is an extended line graph.

(3) G is an amicable graph.

(4) G is an enhanced line graph.

Proof. Remark 6 is (1) ⇒ (2); Lemma 7 is (2) ⇒ (3); by Proposition 9, (3) ⇒
(4); Theorem 10 is (4) ⇒ (1).

Theorem 12 generalizes the result that every countably infinite connected graph
with least eigenvalue > −2 is a generalized line graph [10] and yields an objective
of this article, viz., the classification of L.

Theorem 12. For a connected graph G—possibly infinite—the following are

equivalent.

(1) The least eigenvalue of G is at least −2.

(2) G is representable.

(3) Either G is a generalized line graph or it has a representation in E8.

Proof. It is a well known fact that the result holds when G is finite. (For a
proof, see [2]; for additional details, see [3].) So, let us assume that G is infinite.
First, suppose that (1) holds. Let X be a finite subset of V (G). We can choose
a finite subset Y of V (G) such that X ⊂ Y , G[Y ] is connected and it cannot
be represented by E8. (Note that E8 is finite.) Since λ(G[Y ]) > −2, by the
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fact mentioned in the beginning of the proof, G[Y ] is a generalized line graph;
therefore, G[X] also is a generalized line graph whence by Theorem 11, we find
that G[X] ∈ A; now by Proposition 9, G ∈ E whence by Theorem 10, G ∈ G;
therefore, (3) holds.

Now, suppose that (3) holds. Since G cannot have a representation in E8,
G ∈ G; therefore, by Theorem 11, G ∈ A; since A ⊂ R, (2) holds. Next, suppose
that (2) holds. Let X be any finite subset of V (G). Then G[X] ∈ R whence
by the fact mentioned in the beginning of this proof, λ(G[X]) > −2. Therefore,
λ(G) > −2, i.e., (1) holds.

It is easy to verify that Mf ⊆ M; let G ∈ M; then for each v ∈ V (G), G− v ∈ G;
therefore, G is finite for otherwise by Proposition 9 and Theorem 11, G would
belong to G. Therefore, G ∈ Mf . Thus it follows that Mf and M are same. In
[14], Mf has been computed by using the finite version of Theorem 10 but not
directly. (See [4, 9, 5] for different methods.) This has been done in [13] and
[3] by using results for finite graphs which are similar to Theorem 10. For the
sake of completeness, we give a method of computing M which is similar to the
method of [13] but shorter.

Theorem 13. A graph G—possibly infinite—is a generalized line graph if and

only if no innergraph of G belongs to M := {Gi : 1 6 i 6 31}. (See Figure 2.)

Proof. Routinely but easily, the following can be verified.

• For each i ∈ {10, 11}, (E1) does not hold in Gi.

• For each i ∈ {18, 23, 24, 25, 26, 27, 28, 29, 30, 31}, (E2) does not hold in Gi.

• For each i ∈{12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 25, 26, 28, 29, 30}, (E3) does
not hold in Gi.

• For each i ∈ {4, 7, 8, 9}, (E4) does not hold in Gi.

• For each i ∈ {1, 2, 3, 4, 5, 6, 7}, (E5) does not hold in Gi.

From this information, it follows that for each i 6 31, Gi /∈ E; therefore, if G ∈ G,
then by Theorem 11, no innergraph of G belongs to M. Conversely, proving the
following is enough: if a graph is not an enhanced line graph, then one of its
innergraphs belongs to M. Let G /∈ E. Then for an innergraph H of G, one of
the conditions of Definition 8 fails.

Case E1. H is isomorphic to C4 and odd in G. Then, there is a vertex
p ∈ V (G) \V (H) such that |N(p)∩V (H)| is odd whence G[{p}∪V (H)] is either
G10 or G11.

Case E2. H = K1,3 and all vertices of H have different neighbourhoods. Let
V (H) = {p, a, b, c} and assume that degH p = 3. Since N(a) 6= N(b), there is
a vertex x ∈ V (G) with 〈〈x, a〉〉 6= 〈〈x, b〉〉. Let S = G[p, a, b, c, x]. Leaving the
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G1 G2 G3 G4 G5 G6

G7 G8 G9 G10 G11 G12

G13 G14 G15 G16 G17 G18 G19

G20 G21 G22 G23 G24 G25

G26 G27 G28 G29 G30 G31

Figure 2. The set of all minimal forbidden graphs for E.

possibility that x ∈ (N(c) \N(p)), for then S = G11, we find that S is one of the
graphs H1, H2, H3 in Figure 3. Note that NS(c) 6= NS(a) or NS(b). Therefore,

H1 H2 H3 H4 H5 H6

Figure 3. Some auxiliary graphs in E.

by the hypothesis there is a vertex y such that NT (b) 6= NT (c) 6= NT (a) where
T = G[p, a, b, c, x, y]. It can be verified that either T ∈ {G18}∪{Gi : 23 6 i 6 31}
or G11 4 T .
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Case E3. There are vertices a, b, p, q such that G[a, b, p, q] = K1,1,2, 〈〈p, q〉〉 =
0, N(p) 6= N(q) and both G[a, b, p] and G[a, b, q] are odd. Then there is a vertex
x ∈ V (G) with 〈〈x, p〉〉 6= 〈〈x, q〉〉. Note that I := G[a, b, p, q, x] is one of the
graphs H4, H5, H6 in Figure 3 and either G[a, b, p] or G[a, b, q] is odd in I. By
the hypothesis, there is a vertex y such that both G[a, b, p] and G[a, b, q] are odd
in K := G[a, b, p, q, x, y]. It can be verified that either G10 4 K or G11 4 K or
K ∈ {Gi : 12 6 i 6 22} ∪ {G25, G26, G28, G29, G30}.

Case E4. There are vertices p, q, a, b, c such that H := G[p, q, a, b, c] = K1,1,3,
degH p = degH q = 4 and the conclusion of (E4) does not hold. If a, b, c have
different neighbourhoods, then Case E2 holds. So, let us assume that N(a) =
N(b). Then by the hypothesis, G[p, q, c] is odd whence for some x ∈ V (G),
|N(x) ∩ {p, q, c}| is odd. It is easy to verify that for some i ∈ {4, 7, 8, 9, 10, 11},
Gi 4 G[p, q, a, b, c, x].

Case E5. There are three distinct vertices a, b, c in a connected innergraph
H of G such that NH(a) = NH(b) = NH(c) and H /∈ {K1,3,K1,4,K1,1,3}. By
connectivity of H, there is a vertex p ∈ NH(a); then G[p, a, b, c] = K1,3. Since
H 6= K1,3, there is a vertex x ∈ V (H) \ {p, a, b, c} such that S := G[p, a, b, c, x] is
connected. If x /∈ N(p), then S = G1; so let 〈〈x, p〉〉 = 1; then S is K1,4 or K1,1,3.
Then there has to be a vertex y ∈ V (G) \ {p, a, b, c, x} such that T = G[p, a, b, c,
x, y] is connected whence we find that either G1 4 T or T ∈ {Gi : 2 6 i 6 7}.

Let G ∈ M; then by Theorem 13, G /∈ G and for each v ∈ V (G), it is easy to
verify that G − v ∈ A whence by Theorem 11, G − v ∈ G; therefore G ∈ M.
Conversely, let G ∈ M; then by Theorem 13, an innergraph H of G belongs to
M; since H /∈ G, we find that G = H, i.e., G ∈ M. Thus, it follows that M = M.
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