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Abstract

An edge coloring of a plane graph G is facially proper if no two face-
adjacent edges of G receive the same color. A facial (facially proper) parity
edge coloring of a plane graph G is an (facially proper) edge coloring with the
property that, for each color c and each face f of G, either an odd number
of edges incident with f is colored with c, or color c does not occur on the
edges of f . In this paper we deal with the following question: For which
integers k does there exist a facial (facially proper) parity edge coloring of
a plane graph G with exactly k colors?
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1. Introduction and Notations

The following definitions are taken from [2]. A parity partition of a set is a
partition such that the parity of all partition classes is the same. A partition is
odd (even) if every class has an odd (even) number of elements. Note that every
set of even cardinality admits both odd and even partitions, but a set of odd
cardinality only has odd ones. Let F be a set system over a finite underlying set
X. Assume that F is the disjoint union of four set systems,

F = O ∪ E0 ∪ E1 ∪ E2,

where all sets in O have odd cardinality and all sets in E0 ∪ E1 ∪ E2 have even
cardinality. We say that a mapping ϕ : X → N is a parity coloring of F if it
induces

• an even partition on each F ∈ E0,

• an odd partition on each F ∈ E1 ∪ O,

• a parity partition on each F ∈ E2.

If a set system F is given but the partition O∪E0 ∪ E1 ∪ E2 is not specified, then
we assume that all F ∈ F of even cardinality belong to E2. Another approach
interesting in its own right is if one assumes that all F ∈ F of even cardinality
belong to E1. In this case we use the term odd coloring. On the other hand, if all
F ∈ F have even cardinalities, then it is also natural to consider even colorings
that means F = E0.

A set system F is parity colorable if it admits at least one parity coloring;
and otherwise it is called uncolorable. Assuming that F is parity colorable, we
denote by χp(F) and χp(F) the minimum and maximum possible numbers of
colors in a parity coloring of F .

The feasible set Φp = Φp(F) of F consists of those integers k for which F
admits a parity coloring with exactly k colors. Hence, χp = χp(F) and χp =
χp(F) are the smallest and the largest elements of Φp, respectively.

We say that the feasible set of F is

• continuous if it is an interval of integers, i.e. Φp = {i | χp ≤ i ≤ χp} ;

• ℓ-continuous if {i | ℓ ≤ i ≤ χp} ⊆ Φp ;

• semi-continuous if, for every k ∈ Φp with k ≤ χp−2, also k+2 ∈ Φp holds.

The notions above are meaningful for odd colorings, too. In this case the notation
χo, χo, Φo has a natural interpretation accordingly, where subscript refers to
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‘odd’ instead of ‘parity’. Similarly, if all F ∈ F = E0 have even cardinality, the
corresponding even colorings with χe, χe, Φe are of interest, too.

Given a sample graph H, in any graph G we may consider the subgraphs
isomorphic to H, and view them (their vertex sets or edge sets) as the sets in
a set system. Also more generally, instead of a fixed graph H, one can consider
a fixed type of subgraphs; for example, the cycles of G, induced cycles of G,
subpaths, or subtrees, etc. Some classes of graphs offer families of subgraphs in
a very natural way, notably the facial cycles in plane graphs.

Let G = (V,E, F ) be a connected plane graph with vertex set V , edge set
E, and face set F . For a face f ∈ F let E(f) denote the set of all edges incident
with f . We say that two edges are face-adjacent if they are consecutive edges in
the facial walk of some face of G. For a face f ∈ F let E2(f) denote the set of
all face-adjacent pairs of edges incident with f . Let us also introduce the further
notation

F1 = {E(f) | f ∈ F}

for the set system consisting of all facial cycles of G, and

F2 = {E(f) | f ∈ F} ∪ {e1e2 ∈ E2(f) | f ∈ F}

for the set system consisting of all facial cycles and all pairs of face-adjacent edges
of G.

In this paper we deal with the following questions:

Question 1. For which plane graphs G = (V,E, F ) is the feasible set Φo(F1)
continuous or at least semi-continuous?

Question 2. For which plane graphs G = (V,E, F ) is the feasible set Φo(F2)
continuous or at least semi-continuous?

In this paper we prove that Φo(F1) and Φo(F2) are semi-continuous for any 2-
edge-connected plane graph G. Moreover, if G is 3-edge-connected, then Φo(F1)
is 5-continuous and Φo(F2) is 12-continuous.

The partitions of the edge set in Question 1 (Question 2) correspond to facial
(facially proper) parity edge colorings. In this terminology we say that an edge
coloring of a plane graph G is facially proper if no two face-adjacent edges of G
receive the same color. A facial (facially proper) parity edge coloring of a plane
graph G is an (facially proper) edge coloring with the property that, for each
color c and each face f of G, either an odd number of edges incident with f is
colored with c, or color c does not occur on the edges of f .
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2. Results

In this paper we consider only 2-edge-connected plane graphs since any non-2-
edge-connected plane graph contains a face whose boundary is not a cycle.

2.1. Facial parity edge coloring

In this section we deal with Question 1. We show that the feasible set Φo(F1) of
every 2-edge-connected plane graph is semi-continuous. Moreover, if G is 3-edge-
connected, then Φo(F1) is 5-continuous.

Let ϕ be a facial parity edge coloring of a 2-edge-connected plane graph G.
This coloring induces a coloring of the dual graph G∗ in a natural way. Observe
that in G∗, the edges in each color class induce a factor of G∗ with the degrees
of all the vertices either odd or zero, i.e. it is an odd subgraph.

We say that an edge coloring of a plane graph is odd if each color class induces
an odd subgraph.

Observation 3. Let G be a 2-edge-connected plane graph. Then G has a facial

parity edge coloring with k colors if and only if the dual graph G∗ has an odd

edge coloring with k colors.

2.1.1. 2-edge-connected plane graphs

Proposition 4. There exist 2-edge-connected plane graphs for which the feasible
set Φo(F1) is not continuous.

Proof. For any cycle Cℓ of length ℓ, a facial parity edge coloring with exactly k
colors exists if and only if 1 ≤ k ≤ ℓ and k ≡ ℓ (mod 2).

Proposition 5. The feasible set Φo(F1) is semi-continuous for any 2-edge-
connected plane graph.

Proof. Let G be a 2-edge-connected plane graph and let G∗ be its dual. Let ϕ
be a facial parity edge coloring of G which uses k colors. Clearly, we can assume
that k ≤ |E(G)| − 2. This coloring induces a coloring of G∗ in a natural way.
From Observation 3 it follows that each color class induces an odd subgraph of
G∗. Consider one such subgraph, say H, on at least three edges.

Let P be a longest path in H; denote its ends by x and y. If the length of
P equals one, then H is a matching. In this case we recolor two edges of H with
two new colors.

Suppose that P is incident with at least 3 vertices. If both vertices x and y

have degree one in H, then we recolor the edges of this path alternately with two
new colors. Otherwise, since P is a longest path in H, at least one end of P has
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at least three neighbors on P , therefore H contains a cycle of even length. We
recolor all the edges of this cycle alternately with two new colors.
Now assume that each color class contains at most two (independent) edges.

We select two classes, say H1 and H2, both of cardinality 2. They exist since
k ≤ |E(G)| − 2. We recolor two edges, one from H1 and one from H2, with two
new colors.
In each case we obtain an odd edge coloring of the dual graph with k + 2

colors. From Observation 3 it follows that G has a facial parity edge coloring
with k + 2 colors.

2.1.2. 3-edge-connected plane graphs

In 1991, Pyber [8] proved the following:

Theorem 6 [8]. The edges of any simple graph can be colored with at most 4
colors so that each color class induces a graph with all vertices having odd degree.

Moreover, if a graph has an even number of vertices, then 3 colors are sufficient.

Mátrai [6] constructed an infinite sequence of finite simple graphs which require
4 colors in any such coloring.
Observe that if G is a 3-edge-connected plane graph, then its dual G∗ is a

simple plane graph. Hence, for this class of graphs, Pyber’s result can be stated
as follows:

Theorem 7. Let G be a 3-edge-connected plane graph. Then the edges of G can
be colored with at most 4 colors so that, for any color c and any face f of G,

either no edge or an odd number of edges on the boundary of f is colored with

color c.

Corollary 8. If G is a 3-edge-connected plane graph, then 3 ∈ Φo(F1) or 4 ∈
Φo(F1).

Proof. The assertion immediately follows from Theorem 7 and Proposition 5.

Proposition 9. There exist 3-edge-connected plane graphs for which Φo(F1) is
not continuous.

Proof. It is sufficient to consider a 3-edge-connected plane graph G which has
an odd dual G∗. Clearly, 1 ∈ Φo(F1), while 2 6∈ Φo(F1) because an odd coloring
of G∗ with at most two colors means monochromatic stars at each vertex, and
then the number of colors is 1, due to connectivity.

Theorem 10. If G is a 3-edge-connected plane graph, then Φo(F1) is 5-conti-
nuous.
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Proof. From Proposition 5 it follows that Φo(F1) is semi-continuous. So it is
sufficient to show that Φo(F1) contains two consecutive integers from {2, 3, 4, 5}.
Let G∗ be the dual of G. The graph G∗ is a simple plane graph since G

is 3-edge-connected. Let e1 and e2 be two non-adjacent edges of G
∗, and let

H = G∗ \ {e1, e2} be the graph obtained from G∗ by deleting the edges e1 and
e2. Theorem 6 implies that H has an odd coloring with k colors for some k ∈
{1, 2, 3, 4}. We can extend this coloring to odd colorings of G∗ with k + 1 and
k + 2 colors by assigning the edges e1 and e2 to one new common color or two
new colors, respectively. From Observation 3 it follows that k+1, k+2 ∈ Φo(F1)
for some k ∈ {1, 2, 3, 4}.

2.2. Facially proper parity edge coloring

In this Section we deal with Question 2: For which plane graphs the feasible
set Φo(F2) is continuous or at least semi-continuous, where the set system F2

consists of all facial cycles and all pairs of face-adjacent edges of G?
Recall that a facially proper parity edge coloring of a plane graph G is a

facially proper edge coloring with the following property: for each color c and
each face f of G either no edge or an odd number of edges incident with f is
colored with color c.
Let ϕ be a facially proper parity edge coloring of a 2-edge-connected plane

graph G. Then in the dual graph G∗, the edges in each color class induce an
odd graph. Moreover, since ϕ is a facially proper edge coloring in G, it induces
a facially proper edge coloring in G∗ as well.

Observation 11. Let G be a 2-edge-connected plane graph. Then G has a

facially proper parity edge coloring with k colors if and only if the dual graph G∗

has a facially proper odd edge coloring with k colors.

Proposition 12. The feasible set Φo(F2) is semi-continuous for any 2-edge-
connected plane graph.

Proof. We can use the same argument as in the proof of Proposition 5.

2.2.1. 3-edge-connected plane graphs

In 1965, Vizing [10] proved that planar simple graphs with maximum degree at
least eight have chromatic index (edge chromatic number) equal to their maxi-
mum degree. He conjectured the same if the maximum degree is seven or six.
For ∆ = 7, this conjecture was proved independently by Grünewald [4], Sanders
and Zhao [9], and Zhang [11].
Note that, by Vizing’s classic theorem, every graph with maximum degree ∆

has chromatic index equal to ∆ or ∆+ 1. These results can be reformulated in
the following way:
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Theorem 13. Let G be a 3-edge-connected plane graph with maximum face size
∆∗(G). Then the edges of G can be colored with ∆∗(G) + 1 colors in such a
way that any two edges on the boundary of any face of G are colored distinctly.

Moreover, if ∆∗(G) ≥ 7 also holds, then an edge coloring of this kind exists with
∆∗(G) colors.

Corollary 14. Let G be a 3-edge-connected plane graph and let ∆∗(G) be the
maximum face size of G. Then the feasible set Φo(F2) is (∆

∗(G)+1)-continuous,
and also ∆∗(G)-continuous if ∆∗(G) ≥ 7.

Proof. It follows from Theorem 13 that the edges of G can be colored with
∆∗(G) + 1 colors (and also with ∆∗(G) colors if ∆∗(G) ≥ 7) in such a way that
the edges bounding every face of G are colored distinctly. Using this coloring of
G we can find a facially proper parity edge coloring which uses k colors, for any k
in the range ∆∗(G) < k ≤ |E(G)|, since if we recolor any edge with a new color,
we again get a facially proper parity edge coloring of G.

Kotzig [5] proved that every simple planar graph with minimum degree at least
3 has an edge such that the sum of degrees of its two ends is small.

Theorem 15 [5]. Let G be a simple planar graph with minimum degree at least
3. Then it contains an edge uv such that deg(u) + deg(v) ≤ 13.

Corollary 16. Let G be a 3-edge-connected simple plane graph. Then it contains
two adjacent faces f and h such that deg(f) + deg(h) ≤ 13.

Proof. The dual of G is a simple plane graph with minimum vertex degree at
least 3, hence it has an edge uv such that deg(u)+ deg(v) ≤ 13. The ends u, v of
this edge correspond to two adjacent faces which have the required property.

Nash-Williams [7] proved that each planar graph has an edge decomposition into
at most three forests. Gonçalves [3] proved a similar theorem, replacing trees
with outerplanar graphs.

Theorem 17 [3]. Let G = (V,E) be a simple planar graph. Then its edge set
has a bipartition E = A ∪B such that the graphs induced by these subsets, G[A]
and G[B], are outerplanar.

Recall that a (planar) graph is outerplanar if it can be embedded in the plane in
such a way that all the vertices are on the boundary of the outer face. Note that
for a given plane embedding of a planar graph G, the two outerplanar graphs
given in Theorem 17 need not be outerplanarly embedded.

Lemma 18 [1]. Any plane embedding of a simple outerplanar graph has a facially
proper odd edge coloring which uses at most 6 colors.
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Lemma 19. Let G be an arbitrary plane embedding of a simple outerplanar

graph with m edges. If G has a facially proper odd edge coloring with k colors,

k ≤ m− 2, then it also has such a coloring with k + 2 colors.

Proof. We can use similar arguments as in the proof of Proposition 5.

Theorem 20. Let G be a 3-edge-connected plane graph. Then the feasible set
Φo(F2) is 12-continuous.

Proof. Since Φo(F2) is semi-continuous, it is sufficient to show that 12, 13 ∈
Φo(F2). To prove this, let e be an edge of G such that the incident faces f, h
have size together at most 13 (see Corollary 16). Let G∗ be the dual of G and
let A,B be a bipartition of its edge set such that the graphs induced by these
subsets, G∗[A] and G∗[B], are outerplanar. We can assume that the edge e∗ of
G∗ corresponding to e in G belongs to A. The graphs G∗[A]\{e∗} and G∗[B] are
outerplanar, hence they have facially proper odd edge colorings using at most 6
colors (see Lemma 18). We can assume that these colorings use together ℓ colors
for some ℓ ∈ {11, 12} (see Lemma 19). The coloring of G∗ \ {e∗} corresponds to
a coloring of G \ {e} in a natural way.

Case 1. Assume that ℓ = 12. Note that deg((f ∪ h) \ {e}) ≤ 11. If we color
the edge e with a color which occurs in G \ {e} but does not appear on the faces
f and h, we obtain a facially proper parity edge coloring of G with 12 colors. If
we color e with a (new) color not used in the 12-coloring of G \ {e}, we obtain a
facially proper parity edge coloring of G with 13 colors.

Case 2. Let ℓ = 11. If we color the edge e with a (new) color, say c, not used
in the 11-coloring of G \ {e}, we obtain a facially proper parity edge coloring of
G which uses 12 colors. So there is a facially proper parity edge 14-coloring of G
which uses the color c exactly once (see Proposition 12 and its proof). Hence, if
we recolor e with an existing color which does not appear on the faces f and h,
we obtain a facially proper parity edge coloring of G which uses 13 colors.

3. Open Problems

Let G be a 3-edge-connected plane graph. We know that 3 ∈ Φo(F1) or 4 ∈
Φo(F1) (see Corollary 8). On the other hand, we proved that the feasible set
Φo(F1) is 5-continuous.

Problem 21. Is it true that Φo(F1) is 4-continuous for every 3-edge-connected
plane graph?

Observe that if 1 ∈ Φo(F1), then 2 6∈ Φo(F1). So we can ask the following.
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Problem 22. Let G be a 3-edge-connected plane graph such that χo(F1) 6= 1.
Is it true that Φo(F1) is continuous?

Pyber [8] proved that χo(F1) ≤ 4 for any plane graph; moreover, Mátrai [6]
proved that this bound is attained for infinitely many graphs. Czap et al. [1]
showed that χo(F2) ≤ 20 for 2-edge-connected plane graphs and χo(F2) ≤ 12 for
3-edge-connected plane graphs.

Problem 23. Determine the best upper bound on χo(F2) for the class of 2-edge-
connected (3-edge-connected) plane graphs.

Problem 24. Let G be a 3-edge-connected plane graph. Is it true that Φo(F2)
is continuous?
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