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Abstract

For a fixed graph F , a graph G is F -saturated if there is no copy of F
in G, but for any edge e 6∈ G, there is a copy of F in G+ e. The minimum
number of edges in an F -saturated graph of order n will be denoted by
sat(n, F ). A graph G is weakly F -saturated if there is an ordering of the
missing edges of G so that if they are added one at a time, each edge added
creates a new copy of F . The minimum size of a weakly F -saturated graph
G of order n will be denoted by wsat(n, F ). The graphs of order n that
are weakly F -saturated will be denoted by wSAT(n, F ), and those graphs
in wSAT(n, F ) with wsat(n, F ) edges will be denoted by wSAT(n, F ).
The precise value of wsat(n, T ) for many families of sparse graphs, and in
particular for many trees, will be determined. More specifically, families of
trees for which wsat(n, T ) = |T |−2 will be determined. The maximum and
minimum values of wsat(n, T ) for the class of all trees will be given. Some
properties of wsat(n, T ) and wSAT(n, T ) for trees will be discussed.
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1. Introduction

Only finite graphs without loops or multiple edges will be considered. Notation
will be standard, and generally follow the notation of [3]. For a graph G the
vertex set V (G) and the edge set E(G) will be represented by just G when it is
clear from the context.

For a fixed graph F , a graph G is F -saturated if there is no copy of F in
G, but for any edge e 6∈ G, there is a copy of F in G + e. The collection of F -
saturated graphs of order n is denoted by SAT(n, F ), and the saturation number,
denoted sat(n, F ), is the minimum number of edges in a graph in SAT(n, F ). A
graph G is weakly F -saturated if there is an ordering of the missing edges of G
so that if they are added one at a time, they form a complete graph and each
edge added creates a new copy of F . The minimum size of a weakly F -saturated
graph G of order n will be denoted by wsat(n, F ). The graphs of order n that
are weakly F -saturated will be denoted by wSAT(n, F ), and those graphs in
wSAT(n, F ) with wsat(n, F ) edges will be denoted by wSAT(n, F ). Clearly
wsat(n, F ) ≤ sat(n, F ) as any F -saturated graph is also weakly F -saturated.

There are several general results on saturated and weakly saturated graphs
and hypergraphs in print. These include a paper by Tuza [14] on sparse saturated
graphs, results by Sidorowicz [11] and Borowiecki and Sidorowicz [1] on weakly
saturated graphs, and papers by Erdős, Füredi, and Tuza [4] on saturated r-
uniform hypergraphs, and Pikhurko [10] on weakly saturated hypergraphs. A
survey of such results can be found in a paper by J. Faudree, R. Faudree, and
Schmitt [6].

The objective is to determine the exact value of wsat(n, F ) for many families
of sparse graphs F , and in particular when F is a tree. Also, general bounds on
wsat(n, F ) will be presented.

Families of graphs F for which wsat(n, F ) = |E(F )| − 1 will be exhibited,
and in particular trees for which wsat(n, T ) = |T | − 2 will be presented. The
maximum and minimum values of wsat(n,G) for graphs in general and in partic-
ular values of wsat(n, T ) for the class of all trees will be given. Some properties
of wsat(n,G) and wSAT(n,G) for sparse graphs and in particular for trees will
be discussed.

2. Known Results

Clearly wsat(n, F ) ≤ sat(n, F ) as any F -saturated graph is also weakly F -
saturated. Lovász [9] proved the following result, which was earlier conjectured
by Bollobás and verified for 3 ≤ p < 7 in [2].

Theorem 1 [9]. For integers n and p, wsat(n,Kp) = sat(n,Kp) =
(

n
2

)

−
(

n−p+2
2

)

.
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The graph Kp−2 +Kn−p+2 ∈ wSAT(n,Kp) and has a minimal number of edges.
In the special case when p = 3, it is easily seen that any tree Tn on n vertices is
in wSAT(n,K3). Thus, there is not a unique graph in wSAT(n,K3), and the
same is true for wSAT(n,Kp).

Borowiecki and Sidorowicz [1]) considered the weak saturation number of
cycles, and proved the following results.

Theorem 2 [1]. For n ≥ 2p+ 1, wsat(n,C2p+1) = n− 1.

Theorem 3 [1]. For n ≥ 2p, wsat(n,C2p) = n.

It is clear that Pn ∈ wSAT(n,C2k+1), and it is easily verified that any tree Tn

on n vertices with diameter at least 2k is in wSAT(n,C2k+1). Also, it is easily
verified that Cn for n odd, and the graph obtained from Cn−1 by adding a pendant
edge for n even are in wSAT(n,C2k). These examples verify that it is not true
in general that sat(n, F ) = wsat(n, F ), since, for example, sat(n,C4) = ⌊3n−5

2 ⌋
(see Ollmann [12]) and wsat(n,C4) = n.

The following natural question was first raised by Tuza in [13].

Question 1 [13]. Are there necessary and/or sufficient conditions for wsat(n, F )
to equal sat(n, F )?

3. General Elementary Preliminary Results

Consider a graph F of order p with q edges and with minimum degree δ = δ(F ).
If G ∈ wSAT(n, F ), then when the appropriate first edge is added, there must be
a copy of F . Thus, there are at least q−1 edges in the p vertices that give a copy
of F . Also, every vertex v of G must have degree at least δ − 1, since when the
first edge is added incident to v, this must result in a vertex of degree at least δ.
Thus, wsat(n,G) ≥ (2(q−1)+(n−p)(δ−1))/2 = q−1+(δ−1)(n−p)/2. Also,
observe that the graph H(δ) obtained from Kp−1 ∪Kn−p+1 by adding precisely
δ − 1 edges from each vertex in the Kn−p+1 to Kp−1 is in wSAT(n, F ) and has
(

p−1
2

)

+(δ−1)(n−p+1) edges. This upper bound in the next result was observed
by Sidorowicz (Theorem 2, [11]) in a more general setting, but an example which
implies the upper bound was given here since it is easily described and completes
the proof of the result. This gives the following theorem.

Theorem 4. Let F be a graph with p vertices, q edges, and minimal degree δ.
Then, q − 1 + (δ − 1)(n− p)/2 ≤ wsat(n, F ) ≤ (δ − 1)n+ (p− 1)(p− 2δ)/2 for

any n ≥ p.

Both the lower bound and the upper bound in Theorem 4 occur for appropriate δ.
For example, consider the graph Fp,δ of order p obtained from the complete graph
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Kp−1 by attaching a vertex of degree δ. If δ = 1, then it is easily verified that
Kp−1 ∪Kn−p+1 implies wsat(n, Fp,1) =

(

p−1
2

)

, and if δ = p− 1, then Theorem 1
of Lovász gives the result wsat(n, Fp,p−1) = (δ − 1)n+ (p− 1)(p− 2δ)/2.

For δ > 1 a stronger lower bound can be proved. Consider a graph F with
minimum degree δ = δ(F ), and assume G ∈ wSAT(n, F ) for n sufficiently large.
Partition the vertices of G into two sets A and B, with B being the vertices of
degree δ − 1 and A the remaining vertices. Let |B| = k, and so |A| = n − k.
The vertices in B form an independent set, since the addition of a first edge to
a vertex v ∈ B must result in v and all of its neighbors having degree at least
δ. Likewise, each vertex in A must have degree at least δ − 2 relative to A to be
able to add edges between B and A, since at most 2 vertices of B can be used.
This gives the following inequality:

(δ − 1)k + (δ − 2)(n− k) ≤ δ(n− k).

This implies k ≤ 2n/(δ + 1), and so

wsat(n, F ) ≥ (δ − 1)(
2n

δ + 1
) +

δ(n− 2n
δ+1)

2
=

δn

2
−

n

δ + 1
.

Theorem 5. If F is a graph with p vertices and minimal degree δ, then,

δn

2
−

n

δ + 1
≤ wsat(n, F ) ≤ (δ − 1)n+

(p− 1)(p− 2δ)

2

for any n sufficiently large.

This lower bound cannot be improved significantly. Consider the graph F2δ that
consists of two vertex disjoint complete graphs Kδ ∪ Kδ along with a perfect
matching between the δ vertices in each complete graph. Thus, F2δ is δ-regular
graph with 2δ vertices and δ2 edges. See Figure 1 for the graph F2δ when δ = 4.
Consider the graph H2δ. This graph consists of two vertex disjoint copies of
Kδ ∪Kδ along with a matching between the first δ − 1 vertices of each complete
graph Kδ and also δ − 1 edges from the last vertex of the second Kδ to the first
δ − 1 vertices of the first Kδ. Thus, H2δ has 2δ vertices and δ2 + δ − 2 edges.
See Figure 1 for the graph H2δ when δ = 4. It is straightforward to check that
H2δ ∈ wSAT(2δ, F2δ). First add the edge between the last two vertices in the
Kδ’s, then the remaining edges from the last vertex in the first Kδ to the vertices
in the second Kδ, and then the remaining edges can be added in any order.

Let H3δ be the graph obtained from H2δ by adding a vertex disjoint Kδ and
δ − 1 matching edges between H2δ and the new Kδ. Likewise, H(i+1)δ can be
formed from Hiδ in the same way. It is straightforward to confirm that H3δ ∈
wSAT(3δ, F2δ), and more generally Hiδ ∈ wSAT(iδ, F2δ) for any i ≥ 2. For m ≥
3 the graph Hmδ has mδ vertices and m(δ + 2)(δ − 1)/2 edges. Thus, if n = mδ,
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Figure 1

then Hn ∈ wSAT(n, F2δ) and has n(δ + 2)(δ − 1)/(2δ) = (δ/2 + 1/2 − 1/δ)n
edges.

Theorems 4 and 5 imply there are constants c1 and c2 dependent on F but
independent of n such that (δ − 1)n/2 + c1 ≤ wsat(n, F ) ≤ (δ − 1)n + c2 and

( δ
2+δ−2
2δ+2 )n+ c1 ≤ wsat(n, F ) ≤ (δ − 1)n+ c2 respectively. Observe that if δ = 1,

such as what would be true for trees, then c1 ≤ wsat(n, F ) ≤ c2, or more
specifically, q − 1 ≤ wsat(n, F ) ≤

(

p−1
2

)

. On the other hand if δ(F ) ≥ 2, then

wsat(n, F ) ≥ ( δ
2+δ−2
2δ+2 )n, and so is not independent of n.

If in the argument made for the lower bound for Theorem 4, the requirement
that when the first edge is added incident to the vertex v, the degree must be
at least δ − 1 relative to the vertices that have already had an edge added, then
this would imply that wsat(n, F ) ≥ q − 1 + (δ − 1)(n − p). Thus, the following
question is a natural one.

Question 2. What properties will insure that a graph F with p vertices, q edges,
and minimal degree δ will satisfy

q − 1 + (δ − 1)(n− p) ≤ wsat(n, F ) ≤ (p− 1)(p− 1)/2 + (δ − 1)(n− p+ 1)

for any n ≥ p?

A slightly stronger result can be stated if more is known about the graph F . For
example if wsat(p, F ) is known, then the complete graph Kp−1 in Theorem 4 can
be replaced by any graph in wSAT(p, F ). This gives the following result.

Theorem 6. Let F be a graph with p vertices, q edges, and minimal degree δ.
Then,

wsat(n, F ) ≤ wsat(p, F ) + (δ − 1)(n− p)

for any n ≥ p.

Clearly, for any tree Tp of order p, wsat(n, Tp) ≥ p − 2, since the addition of
any edge to a graph in wSAT(n, Tp) results in a graph with at least p− 1 edges.
Also, the graph Kp−1 ∪Kn−p+1 ∈ wSAT(n, Tp), since the addition of any edge
incident to a vertex in Kp−1 results in a copy of Tp containing the edge. Thus,
the following is true.
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Corollary 7. For any tree Tp with p vertices,

p− 2 ≤ wsat(n, Tp) ≤

(

p− 1

2

)

,

and each of the bounds is sharp.

Each of the bounds in the previous corollary is attained. In particular, it will be
shown later that the lower bound is true for Pp and the upper bound by K1,p−1.

Before stating the next general result, several definitions are needed.

Definition. Given a graph G, a rooted tree T with root v is an endtree of G if
there is a cutvertex v′ of G such that some of the components of G − v′ along
with v′ induce a tree rooted at v′ isomorphic to T .

More specifically, there is a special endtree which is a star.

Definition. Given a graph F , an endstar S = K1,s of F is an induced star of F
such that the center of S has degree s + 1 in F and s of the other vertices of S
have degree 1 in F . The minimal enddegree of F , denoted by δe(F ), is the degree
of the smallest endstar.

For example, the broom Br1,r2 with r1 + r2 vertices containing a path with r1
vertices in the handle and a star with r2 vertices of degree 1 would have enddegree
1 if r1 ≥ 3. It would also have an endstar K1,r2 . A double star with 2 centers of
stars connected by an edge with r1 ≤ r2 vertices of degree 1 respectively, would
have enddegree r1.

Definition. A rooted tree T with root v is minimum weakly saturated, if
wsat(n, T ) = |T | − 2 for any n ≥ |T |, and v is the root of each of the copies of T
obtained when edges are added to obtain the complete graph.

Examples of minimum weakly saturated rooted trees appear in Figure 2. It is
easy to verify that each of the rooted trees T in Figure 2 are minimum weakly
saturated. For example, consider the tree T ∗

1 = (v1, v2, v3). Starting with the
edge v1v2 in a graph G of order n ≥ 3 containing only the edge v1v2, the edges
in G can be added in the following order to get a complete graph such that each
new edge is in a new copy of T ∗

1 : edges incident to v2, edges incident to v1, and
the remaining edges of G. In the case of T ∗

2 , consider the tree T ′ obtained from
T ∗

2 by deleting the vertex u2. Starting with the tree T ′ in a graph G of order
n ≥ |T ∗

2 | containing only the edges of the tree T ′, the edges in G can be added
in the same order as for T ∗

1 (edges from v1, then v2, and then the remaining
edges) to obtain a complete graph such that each new edge is in a new copy of
T ∗

2 . Similar arguments can be made for the remaining trees T ∗

i for i ≥ 3.
The saturation number of a graph that has a rooted endtree that is minimum

weakly saturated is easily determined as the following result verifies.
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Figure 2. Some examples of minimum weakly saturated rooted trees.

Theorem 8. Let F be a graph of order p with q edges that contains a rooted

endtree Tp′ of order p
′ that is minimum weakly saturated. Then, for n ≥ 2p−p′−1,

wsat(n, F ) = q − 1.

Proof. Let G be a graph of order n containing the graph F ′ obtained from F by
deleting an edge from the tree Tp′ . Let S be the vertices of G not in F ′. Since
Tp′ is minimum weakly saturated, edges can be added generating new copies of
F such that the graph spanned by S ∪Tp′ is complete. Since this complete graph
has at least p vertices, G can be extended to a complete graph as well. This
completes the proof of Theorem 8.

4. Results for General Graphs

The existence of endstars in a graph F has a significant impact on the weak
saturation number. The following results gives upper bounds on wsat(n, F ).

Theorem 9. Let F be a graph with p vertices and q edges with δe(F ) = k ≥ 1.
If n ≥ 2p− k, then

wsat(n, F ) ≤ q − 1 +

(

k

2

)

.

Proof. Let v be the center of the endstar S with k edges, u the vertex of S
adjacent to v not in the endstar with k edges, and F ′ the graph obtained from
F by deleting one of the edges from the endstar. Consider the graph H =
F ′ ∪Kk ∪Kn−p−k+1. The claim is that H ∈ wSAT(n,G). New copies of F are
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obtained by adding edges in the following order: edges from v to Kk∪Kn−p−k+1,
edges from u to Kk, edges from a vertex in Kk to a vertex in Kn−p−k+1, edges
from u to Kn−p−k+1, and finally edges in Kn−p−k+1. This results in a complete
graph with at least p vertices, and thus all remaining edges of F ′ can be added.
This completes the proof of Theorem 9.

Let F = F (p, q, k, s) be a connected graph of order p with q edges such that
δe(F ) = k, and F contains an induced subgraph isomorphic to the broom B3,s

for s ≥ 1. Let (u0, u1, u2) be the path in B3,s, and so dF (u1) = 2 and dF (u2) =
s + 1. Let V = {v1, v2, . . . , vs} the vertices of degree 1 in B3,s not on the path
(u0, u1, u2).

Theorem 10. If n ≥ 2p − k, k ≥ 1, and F = F (p, q, k, s) contains an induced

broom B3,s for s ≥ 1, then

wsat(n,G) ≤ q + ks.

Proof. Let F ′ be the graph obtained from F by deleting the edge u0u1, adding k
vertices U = {u2,1, u2,2, . . . , u2,k}, adding all edges between U and V , and finally
adding the edge u2u2,1. New copies of F are obtained by adding edges in the
following order: the edges u0u1, u0u2,1, u0u2, the edges u2,1u2,i for i ≥ 2, the
edges u0u2,i for i ≥ 2, and then the remaining edges of U . This results in a
complete graph Kk that is disjoint from a copy of G. Then the proof of Theorem
9 implies that this graph can be completed to a complete graph, which completes
the proof of Theorem 10.

The special case when s = 1 of Theorem 10 gives the following immediate corol-
lary.

Corollary 11. If n ≥ 2p− k, k ≥ 1, and F is a connected graph of order p with

q edges that contains an induced path with at least 4 vertices and δe(F ) = k, then

wsat(n, F ) ≤ q + k.

The saturation numbers wsat(n, F ) for all connected graphs of order at most 5
can be obtained from the previous results along with those that will be proved
for trees in the next section, except for three graphs—namely K2,3, K5 − K2,
and K5 − 2K2. That is one rationale for raising the following two questions and
proving the results for K2,3 and K5 −K2.

The difference between upper bounds and the lower bounds on wsat(n, F )
for graphs with δ(F ) = 1 have been shown to be independent of n. For δe(F ) ≥ 2
this is not in general known. It would be of interest to know if there are are
results for wsat(n, Fp,δ), where Fp,δ is the graph of order p obtained from a Kp−1

by adding a vertex of degree δ. In particular, does wsat(n, Fp,δ) have the form
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of Theorem 1? More specifically, there is the following question, which is known
to be true for δ = 1 and δ = p− 1.

Question 3. Is wsat(n, Fp,δ) =
(

p−1
2

)

+ (n− p+ 1)(δ − 1) for 2 ≤ δ < p− 1?

A similar question could be asked for the family of graphs Kp − sK2 for s ≤ p/2.
More specifically, there is the following question.

Question 4. Is wsat(n,Kp − sK2) =
(

p−1
2

)

− s+ (n− p+ 1)(p− 3) for 1 ≤ s <
(p− 1)/2?

In Question 3, the case when p = 5 and δ = 3 (F5,3) can be answered.

Theorem 12. For n ≥ 5, wsat(n,K5 −K2) = 2n− 2.

Proof. To prove the result it is sufficient to show that if G ∈ wSAT(n,K5−K2),
then G has at least 2n − 2 edges. The addition of the first edge implies the
existence of a subgraph H of G with 5 vertices and 8 edges. This completes to a
complete graph H1 with 5 vertices. If a vertex v ∈ G has two adjacencies in H1,
then an additional edge from v to H1 can be added to get a copy of K5−K2, and
this will yield a complete graph with 6 vertices. This can be continued. If this
terminates in a Kn, then G would have at least 8+2(n−5) = 2n−2 edges. If not,
then it terminates in a complete graph H∗ with m < n vertices that contains at
least 2m− 2 edges of the original graph G. Also, each vertex of G−H∗ will have
at most 1 adjacency in H∗. This process can be started again with a subgraph
H ′ with 5 vertices and 8 edges that will end in a complete graph H

′
∗ with m′

edges just as before. However, with no loss of generality one can assume that
H∗ and H

′
∗ have a vertex in common by selecting the correct starting subgraph

H ′. The two graphs H∗ and H
′
∗ will contain m + m′ − 1 vertices and at least

(2m− 2) + (2m′ − 2) = 2(m+m′ − 1)− 2 edges. This process can be continued,
until all n vertices of G are contained in one of the complete graphs implying
that G has at least 2n− 2 vertices.

The question concerning wsat(n,K2,3) can easily be answered, which is the next
result.

Theorem 13. For n ≥ 5, wsat(n,K2,3) = n+ 1.

Proof. Consider the graphH5 obtained from the cycle C = (x1, x2, x3, x4, x5, x1)
by adding the chord x1x3. The graph H5 ∈ wSAT(5,K2,3), since the addition of
the chords x2x4, x3x5, x4x1, x5x2 in that order will generate new copies of K2,3.
The only possible graph of order 5 and size 5 in wSAT(5,K2,3) is K2,3 − e,
and it is easily checked that this graph is not weakly K2,3-saturated. Thus,
wsat(5,K2,3) = 6, and H5 ∈ wSAT(5,K2,3).
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Consider the graph Gn obtained from H5 by placing the center of an induced star
with n − 5 edges at one of the vertices of H5. The graph Gn ∈ wSAT(n,K2,3),
since edges can be added to H5 until it is complete, edges from each vertex of
Gn −H5 to a vertex in H5 can be added, and then edges can be added between
any pair of vertices in Gn −H5 obtaining a new copy of K2,3 in each case. Thus,
wsat(n,K2,3) ≤ n+ 1.

Assume G ∈ wSAT(n,K2,3) with at most n edges. Since G must be con-
nected there is a subgraph H ′ of order 5 that contains an induced K2,3 − e and
the graph induced by G − E(H ′) is a forest. This follows from the fact that if
|E(H ′)| ≥ 6, then |E(G)| ≥ n + 1. The only edges that can be added to G that
generate a new K2,3 is one edge of H ′ and any edge from a vertex in G−H ′ to
one of the vertices of degree 3 in H ′, if the vertex is adjacent to the other vertices
of degree 3 in H ′. This, however implies that wsat(n,K2,3) > n, which gives a
contradiction that completes the proof of Theorem 13.

5. Results for Trees

Consider the class Tp of labeled trees of order p. Since for many trees wsat(n, Tp)
= p − 2, it is natural to question whether this is true for nearly all trees. The
following result answers that question about the probability P (wsat(n, Tp) =
p− 2).

Theorem 14. For the class of labeled trees Tp ∈ Tp,

lim
n→∞

P (wsat(n, Tp) = p− 2) → 1.

Proof. The Cayley Tree Formula implies that there are pp−2 non-identical la-
beled trees on p vertices. For each pair of labels i < j ∈ Ip = {1, 2, . . . p},
consider the family Fi,j of (p − 2)p−4 non-identical trees with labels I − {i, j}.
For each tree T ∈ Fi,j , find a longest path in T , say with endvertices with labels
k < ℓ. Form a tree T1 with p vertices from T by adding a vertex with label i
adjacent to the vertex with label k and adding a vertex with label j adjacent to
the vertex with label ℓ. Repeat this construction to form a tree T2 except that
the vertex with label i is made adjacent to the vertex with label ℓ and the vertex
with label j is made adjacent to the vertex with label k. This process generates
2
(

p
2

)

(p − 2)p−4 = p(p − 1)(p − 2)p−4 trees of order p. It is easily seen that these
trees are pairwise non-identical.

Each of these p(p − 1)(p − 2)p−4 trees T ′ has a suspended endpath with 3
vertices, which implies by Theorem 8 that the tree is minimally weakly saturated,
and so wsat(n, T ′) = p− 2. Since

lim
p→∞

p(p− 1)(p− 2)p−4

pp−2
= 1,
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this completes the proof of Theorem 14.

The existence of induced brooms and paths in trees impacts the magnitude of the
weak saturation number. The following two corollaries are a result of Theorem
10 applied to trees.

Corollary 15. If n ≥ 2p− k and T is a tree of order p that contains an induced

broom K3,s for s ≥ 1 and δe(T ) = k, then

wsat(n, T ) ≤ p− 1 + ks.

Corollary 16. If n ≥ 2p− k and T is a tree of order p that contains an induced

path with at least 4 vertices and δe(T ) = k, then

wsat(n, T ) ≤ p+ k − 1.

The following result for trees follows immediately from Theorem 9.

Corollary 17. Let T be a tree with p vertices with δe(G) = k ≥ 1. If n ≥ 2p−k,
then

wsat(n, T ) ≤ p− 2 +

(

k

2

)

.

Note that if T is a tree of order p with δe(T ) = 1, then wsat(n, T ) = p− 2, and
if δe(T ) = 2, then wsat(n, T ) ≤ p − 1. Thus, for all binary trees T , (and tree
with ∆(T ) ≤ 3),

p− 2 ≤ wsat(n, T ) ≤ p− 1.

Definition. For a tree T , the internal tree TI is the subtree of T obtained by
deleting the vertices of degree 1 of T . The maximum internal degree ∆I(T ) of T
is ∆(TI).

If T is a tree such that ∆I(T ) = ℓ, then the vertices of T of degree 1 can be
partitioned into ℓ sets, which implies there is some endstar with at most (p−1)/ℓ
vertices of degree 1. This gives the following result.

Corollary 18. If n ≥ 2p− p−1
ℓ

and T is a tree of order p with ∆I(T ) = ℓ, then

wsat(n, T ) ≤ p− 2 +

(p−1
ℓ

− 1

2

)

.

In the remainder of this section the weak saturation number for special classes
of trees will be determined starting with the star, which has the largest weak
saturation number. The following result was proved by Borowiecki and Sidorowicz
(Theorem 13, [1]). The proof is given here, since it is short and the idea is used
elsewhere.
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Theorem 19 [1]. For k ≥ 2 and n > k,

wsat(n,K1,k) =

(

k

2

)

.

Proof. Consider the graph Kk ∪Kn−k. Adding an edge between a vertex not in
Kk to a vertex in Kk generates a K1,k. Addition of the rest of these edges results
in a graph in which each vertex has degree at least k. It is easily seen that any
additional edge added gives a K1,k containing the edge.

Let G be a graph of order n in wSAT(n,K1,k). When the first edge is added
to G it must be incident to a vertex v1 that has degree at least k− 1 in G. All of
the remaining edges that would be incident to v1 can be added to form G1. The
next edge added to G1 must be incident to a vertex v2 that now has degree k− 1
in G1, and so v2 must have degree at least k − 2 in G− v1. Thus argument can
be continued to obtain vertices v3, . . . , vk−1 such that vj has degree at least k− j

in G− {v1, v2, . . . , vj−1}. Thus, G has at least 1 + 2 + · · ·+ (k − 1) =
(

k
2

)

edges.
This completes the proof of Theorem 19.

For positive integers k1 ≤ k2 and s ≥ 2, let B(k1, k2, s) denote the tree composed
of 2 stars with k1 and k2 edges with their centers connected by a path with s
vertices. This tree, sometimes called a double broom, has p = k1+k2+s vertices.
In the case when s = 2, the tree B(k1, k2, s) is called a double star. The following
result gives the weak saturation numbers for these trees.

Theorem 20. For positive integers k1 ≤ k2 and s ≥ 2, let Tp = B(k1, k2, s),
where p = k1 + k2 + s. Then for n ≥ 2p,

(1) wsat(n, Tp) = p− 2 if s ≥ 4 and is even,

(2) wsat(n, Tp) = p− 1 if s ≥ 5 and is odd,

(3) wsat(n, Tp) = p− 2 +
(

k1
2

)

if s = 3, and

(4) wsat(n, Tp) = p− 2 +
(

k1−1
2

)

if s = 2.

Proof. Let T = Tp, and let v1, v2, . . . , vs be the vertices of the path with s
vertices with v1 the center of the star with k1 edges and vs the center of the star
with k2 edges.

(1) Consider the tree T ′ obtained from T by deleting one of the edges from
the star with k2 edges. Start with a graph G with n vertices that contains just
the edges in the tree T ′, and let S be the set of vertices of G not in T ′. Adding
edges in G in the following order will always result in a new copy of T : edges
between vertices in S and vs, vs−2, . . . , v2, v1, v3, . . . , vs−1. Thus, all vertices of
S are adjacent to all of the vertices {v1, v2, . . . , vs} of the path. Then all edges
between vertices in S can be added, and so this results in a complete graph with
at least p vertices. Clearly, then the edges of G can be added until a complete
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graph is reached. At least p − 2 edges are needed for a tree of order p, so this
completes the proof of this case.

(2) Consider the tree T ′ obtained from T by adding a vertex v∗, edges
v1v

∗, v∗v2 and deleting the edge v1v2. Let P = (v1, v∗, v2, . . . , vs). Start with
a graph G with n vertices that contains just the edges in the tree T ′, and let S be
the set of vertices of G not in T ′. Adding edges in G in the following order will
always result in a new copy of T : chords of length 2 along the path P starting
with v1v2, chords of length 3 along the path P starting with v1v3, edges between
vertices in S and vs, vs−1, . . . , v2, v∗, v1. Then all edges between vertices in S
can be added, and so this results in a complete graph with at least p vertices.
Clearly, then the edges of G can be added until a complete graph is reached.

If the starting T -saturated graph G has just p − 2 edges, then after the
addition of the first edge there will be a copy of the tree T . It is easily checked
that the only edges that can be added in the closure process are edges incident to
the vertices {v1, v3, . . . , vs}. This will result in a complete bipartite graph with
the vertices {v1, v3, . . . , vs} adjacent to all of the remaining vertices of G. No
additional edges can be added. Thus, wsat(n, T ) > p− 2.

(3) and (4) Let T ′ be the tree obtained from T by deleting one of the edges
in the star with k2 edges. Let G be the graph of order n with edges from the tree
T ′ and a disjoint Kk1 (Kk1−1 in case (4)). Let S be the vertices of G not in T ′

and S′ the vertices in G not in T ′ or Kk1 (Kk1−1 in case (4)). Adding edges in
G in the following order will always result in a new copy of T : each of the edges
from vs to S, each of the edges from v1 to S, each of the edges from v2 to the
vertices of Kk1 in case (3), each of the edges from a vertex in Kk1 (Kk1−1 in case
(4)) to S′, and the edges between vertices in S′. This results in a complete graph
with at least p vertices, and so G can clearly be extended to a complete graph.

Observe that in the case when s = 2, (Case (4)), each edge in T is incident
to a vertex of degree at least k1. Thus, if G ∈ wSAT(n, T ), then there must be
a vertex, u1 6= v1, vs that will have degree at least k1 − 2 in G − {v1, vs}. Also,
there must be a vertex, u2 6= v1, vs, u1 that will have degree at least k1 − 3 in
G−{v1, vs, u1}. This pattern continues, and so there must be at least 1+2+ · · ·+
k1−2 =

(

k1−1
2

)

edges in G not in T . Thus, in Case (4) wsat(n, T ) = p−2+
(

k1−1
2

)

.
The same argument holds in case (3) except that k1 is replaced by k1 − 1. This
completes the proof of Theorem 20

For nonnegative integers d1, d2, . . . , dr, with r ≥ 3 and d1, dr > 0, the tree T =
C(d1, d2, . . . , dr) is the caterpillar with spine the path (v1, v2, . . . , vr) of r vertices
such that for each i (1 ≤ i ≤ r) there is a star with di edges off of the path and
centered a vertex vi. Thus, T has r+d1+d2+ · · ·+dr ≥ 5 vertices. The following
gives the weak saturation numbers for caterpillars.

Theorem 21. Let T = C(d1, d2, . . . , dr) with p = r+ d1 + d2 + · · ·+ dr vertices.
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(1) If di = k > 0 for some i, and both di−1, di+1 > 0, then wsat(n, T ) ≤
p− 2 +

(

k−1
2

)

.

(2) If di = k > 0 for some i, and precisely one of di−1, di+1 > 0, then

wsat(n, T ) ≤ p− 2 +
(

k
2

)

.

(3) If di = k > 0 for some i, and both di−1, di+1 = 0, then wsat(n, T ) ≤
p− 2 +

(

k+1
2

)

.

(4) If d1 = k and d2 > 0 (with the same property for ds), then wsat(n, T ) ≤
p− 2 +

(

k−1
2

)

.

(5) If d1 = k and d2 = 0 (with the same property for ds), then wsat(n, T ) ≤
p− 2 +

(

k
2

)

.

(6) If there is precisely an even positive number of consecutive di = 0, then

wsat(n, T ) = p− 2.

(7) If there is precisely an odd number at least 3 of consecutive di = 0, then

wsat(n, T ) ≤ p− 1.

Proof. Let G ∈ wSAT(n, T ). (1) Let T ′ be the tree obtained from T by deleting
one of the endvertices of one of the stars. Let G be a graph of order n containing
the induced tree T ′ and a vertex disjoint Kk−1. Let S be the vertices of G− T ′

and label the vertices in Kk−1 by {w1, w2, . . . wk−1}. Additional copies of T can
be obtained by adding the edges to G in the following order: the edge deleted
from T to obtain T ′, edges from vi to S if di > 0. At this point all of the vertices
of vi ∈ T with di > 0 will be adjacent to all of the vertices of S. Adding an edge,
say u1w1 with u1 ∈ S −Kk−1 and w1 ∈ Kk−1 will allow the vertex vi of the path
in T to be replaced by w1 with w1 being the center of a star with k edges in the
new copy of T . Consecutively adding the edges u1w2, . . . , u1wk−1 will result in
new copies of T . This results in a complete graph Kk, and this can be continued.
Thus, all of the edges in S can be added, which results in a complete graph with
at least p vertices. Hence, edges can be added to G to make it complete.

(2) This proof of is identical to that of (1) except that the complete graph
disjoint from T ′ is a Kk, and the edges u1wj are part of path from vi−1 to vi+2

instead of being part of a star with k edges.

(3) This proof is identical to that of (1) except that the complete graph
disjoint from T ′ is a Kk+1, and the edges u1wj are part of path from vi−2 to vi+1

(along with an edge of Kk+1) instead of being part of a star with k edges.

(4) and (5) The proofs of (4) and (5) are analogues of the proofs of (1) and
(2).

(6) Let T ′ be the tree obtained from T by deleting one of the endvertices
of one of the stars, and let G of a graph of order n containing an induced copy
of T ′. Let S be the vertices of G not in T ′. Let w1, w2, . . . , w2r be the vertices
of a path such that d(wi) = 0 for 1 < i < 2r and such that d(w1), d(w2r) > 0.
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Figure 3. Weak saturation numbers for small graphs.
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Additional copies of T can be obtained by adding the edges of G in the following
order: the edge deleted from T to obtain T ′, edges from vi to S if di > 0, the
edges from vertices in S to w3, . . . , w2r−1, and the edges from vertices in S to
w2r−2, . . . , w2. At this point all vertices in S are adjacent to all of the vertices of
{w1, w2, . . . , w2r}, and so any edge between vertices of S can be added and it will
be on a path that can replace the path (w1, w2, . . . , w2r). This gives a complete
graph with |S| vertices, which can be extended to a complete graph for G.

(7) Let T ′ be the tree obtained from T by deleting one of the endvertices
of one of the stars, and let G of a graph of order n containing the an induced
copy of T ′. Let S be the vertices of G not in T ′, and add an edge e in S. Let
w1, w2, . . . , w2r+1 be the vertices of a path such that d(wi) = 0 for 1 < i < 2r and
such that d(w1), d(w2r) > 0. Additional copies of T can be obtained by adding
the edges of G in the following order: the edge deleted from T to obtain T ′, edges
from vi to S if di > 0, and the edges from vertices in S to w3, . . . , w2r−1. At this
point all vertices in S are adjacent to all of the vertices of {w1, w3, . . . , w2r+1},
and so any edge between a vertex of S and a vertex of e can be added and it will
be on a path that can replace the path (w1, w2, . . . , w2r). A repetition of this will
result in a complete graph with |S| vertices, which can be extended to a complete
graph for G. This completes the proof of (7) and of Theorem 21.

Using the results of this section, wsat(n, T ) can easily be determined for all small
order trees, and in particular all trees with at most 10 vertices. For trees with at
most p ≤ 6 vertices the weak saturation number is p−2 except for stars. For trees
with at most p ≤ 10 vertices the weak saturation number is also p− 2 except for
stars, double stars in which each endstar has at least 3 edges, double brooms with
connecting paths with a odd number of vertices, one caterpillar C(2, 0, 2, 0, 2),
and the tree of order 10 obtained from a K1,3 by adding endstars with 2 edges to
each vertex of the K1,3. Thus, all but 22 of the 202 trees Tp of order at most 10
have wsat(n, Tp) = p− 2.

In Figure 3 is a list of all connected graphs F with at most 5 vertices along
with their weak saturation number wsat(n, F ) and a graph in wSAT(n, F ).

Acknowledgement

The authors would like to thank the referees for their careful reading of the
manuscript and their suggestions to improve the paper.

References

[1] M. Borowiecki and E. Sidorowicz, Weakly P-saturated graphs, Discuss. Math. Graph
Theory 22 (2002) 17–22.
doi:10.7151/dmgt.1155

http://dx.doi.org/10.7151/dmgt.1155


Weak Saturation Numbers for Sparse Graphs 693

[2] B. Bollobás, Weakly k-saturated graphs, Beiträge ur Graphentheorie, Kolloquium,
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