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Abstract

Let n ≥ 3 and λ ≥ 1 be integers. Let λKn denote the complete multi-
graph with edge-multiplicity λ. In this paper, we show that there exists a
symmetric Hamilton cycle decomposition of λK2m for all even λ ≥ 2 and
m ≥ 2. Also we show that there exists a symmetric Hamilton cycle decom-
position of λK2m − F for all odd λ ≥ 3 and m ≥ 2. In fact, our results
together with the earlier results (by Walecki and Brualdi and Schroeder)
completely settle the existence of symmetric Hamilton cycle decomposition
of λKn (respectively, λKn − F , where F is a 1-factor of λKn) which exist
if and only if λ(n − 1) is even (respectively, λ(n − 1) is odd), except the
non-existence cases n ≡ 0 or 6 (mod 8) when λ = 1.

Keywords: complete multigraph, 1-factor, symmetric Hamilton cycle, de-
composition.
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1. Introduction

Let n ≥ 3 and λ ≥ 1 be integers. Let λKn denote the complete multigraph
obtained from the complete graph Kn by replacing each edge with λ edges. A
partition of λG into edge-disjoint Hamilton cycles is called Hamilton cycle decom-

position of λG. A Hamilton cycle decomposition H of G is cyclic if V (G) = Zn,
and (v0 + 1, v1 + 1, . . . , vn−1 + 1) ∈ H whenever (v0, v1, . . . , vn−1) ∈ H. It is 1-
rotational if V (G) = Zn−1∪{∞}, and (v0+1, v1+1, . . . , vn−1+1) ∈ H whenever
(v0, v1, . . . , vn−1) ∈ H, where ∞ + 1 = ∞ is meaningful. Let the vertex set of
λKn be labeled as follows:
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V (λKn) =

{

{0, 1, 2, 3, . . . ,m, 1, 2, 3, . . . ,m}, if n is odd, say n = 2m+ 1;
{1, 2, 3, . . . ,m, 1, 2, 3, . . . ,m}, if n is even, say n = 2m.

A Hamilton cycle (or a 2-factor) of λKn or λKn − F is said to be symmetric

if it is invariant under the involution i → i, where i = i and the vertex 0 is
a fixed point of this involution. A Hamilton cycle decomposition of λK2n+1

(respectively, λK2n) is symmetric if it admits an involutory automorphism fixing
all its cycles and fixing exactly one vertex (respectively, fixing no vertices). Also
a Hamilton cycle decomposition of λK2n+1 − F is symmetric if it admits an
involutary automorphism switching all pairs of vertices that are adjacent in F . A
symmetric Hamilton cycle (or a 2-factor) in Kn,n with bipartition {1, 2, 3, . . . , n}
and {1̄, 2̄, 3̄, . . . , n̄} containing the edge ij̄ should also contain īj. The cartesian

product, G1�G2, of the graphs G1 and G2 has the vertex set V (G1)×V (G2) and
edge set E(G1�G2) = {(u1, v1)(u2, v2) | u1 = u2 and v1v2 ∈ E(G2) or v1 = v2
and u1u2 ∈ E(G1)}.

Buratti and Del Fra [6] proved that a cyclic Hamilton cycle decomposition of
Kn exists if and only if n 6= 15 and n /∈ {pα | p is an odd prime and α ≥ 2}. Jordon
and Morris [9] proved that for an even n ≥ 4, there exists a cyclic Hamilton cycle
decomposition of Kn − F if and only if n ≡ 2, 4 (mod 8) and n 6= 2pα where p
is an odd prime and α ≥ 1. Buratti et al. [5] completely solved the existence
of cyclic Hamilton cycle decomposition of λKn and of λ(K2n − F ) for every λ.
In general, finding necessary and sufficient conditions for the existence of cyclic
m-cycle decomposition of Kn is an interesting problem and has received much
attention in recent days.

Walecki [10] proved the existence of a Hamilton cycle decomposition of Kn

(when n is odd) and Kn − F (when n is even), where F is a 1-factor of Kn.
Further, it is easy to observe that the addition by n−1

2
gives an involutory map

fixing every cycle of the decomposition to be symmetric. Akiyama [1] et al. also
constructed a new symmetric Hamilton cycle decomposition of Kn for odd n > 7,
but is not isomorphic to Walecki decomposition.

Brualdi and Schroeder [4] proved that Kn − F has a decomposition into
Hamilton cycles which are symmetric with respect to the 1-factor F if and only
if n ≡ 2 or 4 (mod 8), and also show that the complete bipartite graph Kn,n

(respectively Kn,n − F ) has a symmetric Hamilton cycle decomposition if and
only if n is even (respectively n is odd). As Hamilton/ symmetric Hamilton cycle
decomposition of Kn for even n does not exists, considering the existence of such
decomposition in λKn gets merit (for suitable λ and n), since it covers a wider
class of graphs.

Recently, Buratti and Merola [7] observed that every cyclic Hamilton cycle
decomposition of λK2n or λK2n−F whose cycles having stabilizer of even order is,
in particular symmetric: the required involutory automorphism would be in fact
the addition by n, and also pointed that the existence of a symmetric Hamilton
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cycle decomposition of Kn − F for n ≡ 4 (mod 8) (part of the main result of the
paper by Brualdi and Schroeder [4]) implicitly follows from the result of Jordon
and Morris [9]. Also, the result of Buratti et al. [5] gives, implicitly, the existence
of a symmetric Hamilton cycle decomposition of 2K4m, m ≥ 1.

In this paper, we show that there exists a symmetric Hamilton cycle decom-
position of λK2m for all even λ ≥ 2 and m ≥ 2. Also we show that there exists
a symmetric Hamilton cycle decomposition of λK2m − F for all odd λ ≥ 3 and
m ≥ 2. In fact, our results together with the results of Walecki, Brualdi and
Schroeder prove that the complete multigraph λKn ( respectively, λKn −F ) has
a symmetric Hamilton cycle decomposition if and only if λ(n−1) is even (respec-
tively, λ(n − 1) is odd) except the non-existence cases n ≡ 0 or 6 (mod 8) when
λ = 1, which were proved by Brualdi and Schroeder.

2. Notation and Preliminaries

Throughout this paper, we use the following notation:

• V (λKn) =

{

{0, 1, 2, 3, . . . , r, 1, 2, 3, . . . , r}, if n is odd, say n = 2r + 1;
{1, 2, 3, . . . , r, 1, 2, 3, . . . , r}, if n is even, say n = 2r.

• λK⋆
r is the complete multigraph with the vertex set {1, 2, . . . , r}.

• λK
⋆

r is the complete multigraph with the vertex set {1, 2, . . . , r}.

• λK2s,2s is the complete bipartite multigraph with bipartition {1, 2, . . . , 2s}
and {1, 2, . . . , 2s}.

• (1, 2, . . . ,m, 1, 2, . . . ,m) denotes a symmetric cycle of length 2m.

• For our convenience, we view λK2r, λK2r − F as follows:

(i) λK2r= λK⋆
r ⊕ λKr,r ⊕ λK

⋆

r

(ii) λK2r − F= λK⋆
r ⊕ λKr,r − F ⊕ λK

⋆

r , where F = {ii ∈ E(Kr,r) | 1 ≤
i ≤ r}.

• F ′ denotes the 1-factor {i(s+ i), (s+i)i ∈ E(K2s,2s) | 1 ≤ i ≤ 2s} of K2s,2s.

• I denotes the 1-factor {i(s+ i) ∈ E(K⋆
2s) | 1 ≤ i ≤ s} of K⋆

2s.

• I denotes the 1-factor {i(s+ i) ∈ E(K
⋆

2s) | 1 ≤ i ≤ s} of K
⋆

2s.

To prove our results we state the following.

Proposition 1 [1]. Let p ≥ 7 be a prime. There exists a Hamilton cycle decom-

position Gp of Kp which is not isomorphic to the Walecki’s decomposition Wp of

Kp.
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Theorem 2 [1]. Let n > 7 be an odd integer. There exists a symmetric Hamilton

cycle decomposition of Kn which is not isomorphic to the Walecki’s Hamilton

cycle decomposition Wn. Further, it is not isomorphic to Gn when n is a prime.

Theorem 3 [4]. For each integer m ≥ 1, there exist a symmetric Hamilton cycle

decomposition of K2m,2m, and K2m+1,2m+1 − F , where F is a 1-factor.

Theorem 4 [4]. Let n > 2 be an integer. Then Kn−F has a symmetric Hamilton

cycle decomposition if and only if n ≡ 2, 4 (mod 8).

Remark 5 [4]. Consider the complete bipartite graphK2m,2m with V (K2m,2m) =
{1, 2, . . . , 2m, 1, 2, . . . , 2m}. Let Ek = {ab ∈ E(K2m,2m) | a + b ≡ k (mod 2m)}.
Clearly, each Si = E2i ∪ E2i+1 is a symmetric Hamilton cycle of K2m,2m and
{S1, S2, . . . , Sm} gives a symmetric Hamilton cycle decomposition of K2m,2m.
Note that each Si contain the edges {i(i+ 1), i(i + 1), (m+ i)(m + i + 1), (m +
i)(m+ i+ 1), ii, (m + i)(m+ i)}, 1 ≤ i ≤ m and the additions are taken with
modulo 2m.

Remark 6. Let V (K⋆
2m)={1, 2, . . . , 2m}. Then H = (1, 2, 2m, 3, 2m− 1, 4, 2m−

2, . . . ,m + 2,m + 1, 1)={ab ∈ E(K⋆
2m) | a + b ≡ 2 or 3 (mod 2m)} is a Hamil-

ton cycle of K⋆
2m. Now we define an injective map fi : {1, 2, 3, . . . , 2m} →

{1, 2, 3, . . . , 2m}, 1 ≤ i ≤ 2m− 1 as follows:

fi(1) = 1,

fi(x) =

{

x+ i− 1, if x ∈ {2, 3, . . . , 2m− i+ 1};
x− 2m+ i, if x ∈ {2m− i+ 2, 2m− i+ 3, . . . , 2m}.

Let Hi = fi(H). Then {H1, H2, . . . , H2m−1}, {H1, H2, . . . , Hm} and {Hm+1,
Hm+2, . . . , H2m−1} respectively give a Hamilton cycle decomposition of multi-
graphs 2K⋆

2m, K⋆
2m⊕I and K⋆

2m−I, where I = {i(m+i) ∈ E(K⋆
2m) | 1 ≤ i ≤ m}.

Note that each Hi contain the edges {i(i + 1), (m + i)(m + i + 1)}, 1 ≤ i ≤ m
(see Figure 1).

Also we observe that the Hamilton cycle decompositions given above will
imply a 1-rotational Hamilton cycle decomposition of 2K⋆

2m, K⋆
2m⊕I and K⋆

2m−I
by just replacing the symbols 1 by ∞ and x, 2 ≤ x ≤ 2m, by x− 1.

3. Complete Multigraphs

In this section, we investigate the existence of a symmetric Hamilton cycle decom-
position of complete multigraph λKn, when λ(n−1) is even. Since the symmetric
Hamilton cycle decomposition of λKn, when n odd, exists from the well known
Walecki’s construction [10], our main focus is to find a symmetric Hamilton cycle
decomposition of 2K2m.



Symmetric Hamilton Cycle Decompositions of ... 699

b

b

b

b

b 1
2m2m� 12m� 2

b
b H1m+ 1m+ 2

b

b

b

2 3 4
b m

5
b

b

b

b

b

b 1 32m2m� 12m� 2
b

b

b
bm+ 2 m+ 1m+ 3

b

b

H2
b7
4 56

2
b

b

b

b

b 1
2 32m

m+ 2 b
b

bm+ 4m+ 3
b

b

4
b7 56

H3 m+ 2
b

b

bb

1
2 32m

b

b

b

b

b

2m� 1
b m� 1

2m� 2
mm+ 1H2m�1

Figure 1. H1, H2, H3, . . . , H2m−1 of K2m+1.

Lemma 7. For all integers m ≥ 1, there exists a symmetric Hamilton cycle

decomposition of K2m�K2.

Proof. Let V (K2m) = {u1, u2, . . . , u2m} and V (K2) = {v1, v2}. For our conve-

nience, we denote V (K2m�K2) =
2
⋃

s=1

Vs, where V1 = {i | i = (ui, v1), 1 ≤ i ≤

2m}, V2 = {i | i = (ui, v2), 1 ≤ i ≤ 2m} and E(K2m�K2) = {ij, i j, ii | i 6=
j, i, j = 1, 2, . . . , 2m}. For 1 ≤ k ≤ 2m, 1 ≤ l ≤ m, we define

Ek = {ij ∈ E(K2m�K2) | i 6= j, i+ j ≡ k (mod 2m)},

Ek = {i j ∈ E(K2m�K2) | i 6= j, i+ j ≡ k (mod 2m)},

Jl = {ii ∈ E(K2m�K2) | 2i ≡ 2l (mod 2m)}.

Note that E2l ∪ E2l+1 and E2l ∪ E2l+1 are Hamilton paths with end vertices l,
m+ l and l, m+ l of K⋆

2m and K
⋆

2m respectively. For each l, 1 ≤ l ≤ m, we define
Hl = E2l ∪ E2l+1 ∪ Jl ∪ E2l ∪ E2l+1. Clearly, each Hl is a symmetric Hamilton
cycle and {H1, H2, . . . , Hm} gives a symmetric Hamilton cycle decomposition of
K2m�K2.

Lemma 8. For all integers m ≥ 1, there exists a symmetric Hamilton cycle

decomposition of 2(K2m+1�K2).

Proof. Let V (K2m+1) = {u1, u2, u3, . . . , u2m+1} and V (K2) = {v1, v2}. We

denote V (K2m+1�K2) =
2
⋃

s=1

Vs where V1 = {i | i = (ui, v1), 1 ≤ i ≤ 2m},

V2 = {i | i = (ui, v2), 1 ≤ i ≤ 2m} and E(K2m+1�K2) = {ij, i j, ii |, i 6= j, i, j =
1, 2, . . . , 2m+ 1}.
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For all k, 1 ≤ k ≤ 2m+ 1, we define

Ek = {ij ∈ E(K2m+1�K2) | i 6= j, i+ j ≡ k (mod 2m+ 1)},

Ek = {i j ∈ E(K2m+1�K2) | i 6= j, i+ j ≡ k (mod 2m+ 1)}.

Note that E2l ∪ E2l+1, E2l−1 ∪ E2l and E1 ∪ E2m+1 are Hamilton paths of K⋆
2m

with end vertices l, m+1+ l; l, m+ l; and m+1, 2m+ l respectively. Similarly,
E2l ∪ E2l+1, E2l−1 ∪ E2l and E1 ∪ E2m+1 are Hamilton paths of K

⋆

2m with end
vertices l, m+ 1 + l; l, m+ l; and m+ 1, 2m+ l respectively.

For each l, 1 ≤ l ≤ m, we define

Hl = E2l ∪ E2l+1 ∪ {ll, (m+ 1 + l)(m+ 1 + l)} ∪ E2l ∪ E2l+1,

H ′

l = E2l−1 ∪ E2l ∪ {ll, (m+ l)(m+ l)} ∪ E2l−1 ∪ E2l,

H2m+1 = E1 ∪ E2m+1 ∪ {(2m+ 1)(2m+ 1), (m+ 1)(m+ 1)} ∪ E1 ∪ E2m+1.

Clearly, each Hl, H
′

l are symmetric Hamilton cycles and {H1, H2,. . . ,Hm, H ′

1,
H ′

2,. . . ,H
′

m, H2m+1} gives a symmetric Hamilton cycle decomposition of 2(K2m+1

�K2).

Remark 9. Note that the symmetric Hamilton cycles Hl and H ′

l , 1 ≤ l ≤ m
obtained in Lemma 8 contain the edges {l(l+1), l(l + 1)} and {(2m+ l+1)(2m+
1 + l + 1), (2m+ l + 1)(2m+ 1 + l + 1)} respectively.

Note 10. It is observed that for every Hamilton path decomposition of K2m we
can find a symmetric Hamilton cycle decomposition of K2m,2m and K2m�K2,
also to every Hamilton path decomposition of 2K2m+1 we can find a symmetric
Hamilton cycle decomposition of 2(K2m+1�K2).

Theorem 11. For all integers m ≥ 1, there exists a symmetric Hamilton cycle

decomposition of 2K4m+2.

Proof. Let V (2K4m+2) = {1, 2, . . . , 2m + 1, 1, 2, . . . , 2m+ 1}. Now the com-
plete multigraph 2K4m+2 can be viewed as follows: 2K4m+2 = 2(K2m+1�K2) ⊕
2(K2m+1,2m+1 − F ), where F = {ii ∈ E(K2m+1,2m+1) | 1 ≤ i ≤ 2m + 1} is a
1-factor of K2m+1,2m+1. We know that 2(K2m+1�K2) and (K2m+1,2m+1 − F )
have symmetric Hamilton cycle decompositions by Lemma 8 and Theorem 3,
respectively.

We recall that Buratti and Merola [7] observed that every cyclic Hamilton cycle
decomposition of λK2n or λK2n − F whose cycles have stabilizer of even order
is, in particular symmetric: the required involutory automorphism would be in
fact the addition by n. So the result of Buratti et al. [5] deduce the existence of
a symmetric Hamilton cycle decomposition of 2K4m, m ≥ 1.
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The next construction provides an alternative proof for the existence of a symmet-
ric Hamilton cycle decomposition of 2K4m, m ≥ 1 which is implicitly contained
in Buratti et al. ([[5], Lemma 3.5]).

Theorem 12. For all integers m ≥ 1, there exists a symmetric Hamilton cycle

decomposition of 2K4m.

Proof. Let V (2K4m) = {1, 2, . . . , 2m, 1, 2, . . . , 2m}. For m = 1 the graph is
2K4. Clearly, {(1, 2̄, 2, 1̄), (1, 2, 1̄, 2̄), (1, 1̄, 2̄, 2)} gives a symmetric Hamilton cycle
decomposition of 2K4.

For m ≥ 2, we write 2K4m = 2K⋆
2m ⊕K2m,2m ⊕K ′

2m,2m ⊕ 2K
⋆

2m. Now the
idea of decomposing 2K4m into symmetric Hamilton cycles is as follows: First we
decompose K2m,2m and K ′

2m,2m into symmetric Hamilton cycles S1, S2, . . . , Sm

and S′

1, S
′

2, . . . , S
′

m, and 2K⋆
2m, 2K

⋆

2m into Hamilton cycles {H1, H2, . . . , H2m−1},
{H ′

1, H
′

2, . . . , H
′

2m−1} respectively. Then by decomposing each Hi ⊕ Si ⊕ H ′

i,
1 ≤ i ≤ m and Hm+j⊕S′

j⊕H ′

m+j , 1 ≤ j ≤ m−1 into symmetric Hamilton cycles

Ci
1, C

i
2 and Di

1, D
i
2 respectively, we get the symmetric Hamilton cycle decomposi-

tion {C1
1 , C

2
1 , . . . , C

m
1 , C1

2 , C
2
2 , . . . , C

m
2 , D1

1, D
2
1, . . . , D

m−1
1

, D1
2, D

2
2, . . . , D

m−1
2

, S′

m}
of 2K4m.

b

b

b

b

b

b

b b

b b

i+ 1i i+ 1i
m+ i+ 1m+ im+ i+ 1m+ i

b bCi1
b b

b b

b b

b b

b b

b b

ii+ 1 ii+ 1m+ i m+ im+ i+ 1 m+ i+ 1Ci2
Figure 2. Symmetric Hamilton cycles Ci

1 and Ci
2 from Hi ⊕ Si ⊕Hi.

We know by Remark 5 that 2K2m,2m has a symmetric Hamilton cycle decompo-
sition {S1, S2, . . . , Sm, S′

1, S
′

2, . . . , S
′

m} such that both Si and S′

i contain the edges
{i(i+ 1), i(i+1), (m+ i)(m+ i+1), (m+ i)(m+ i+ 1), ii, (m+ i)(m+ i)}. Fur-
thermore, by Remark 6, 2K⋆

2m has a Hamilton cycle decomposition {H1, H2, . . . ,
H2m−1} such that each Hi contain the edges {i(i+1), (m+ i)(m+ i+1)}. Simi-
larly, let {H1, H2, . . . , H2m−1} be a Hamilton cycle decomposition of 2K

⋆

2m such
that each H i contain the edges {i(i+ 1), (m+ i)(m+ i+ 1)}.
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Now we define Ci
1, C

i
2 from Hi ⊕ Si ⊕H i, 1 ≤ i ≤ m as follows:

Ci
1 = (Hi \ {i(i+ 1)}) ∪ (H i \ {i(i+ 1)})⊕ {i(i+ 1), i(i+ 1)},

Ci
2 = (Si \ {i(i+ 1), i(i+ 1)})⊕ {i(i+ 1), i(i+ 1)}.

b

b

b

b

b

b

b b

b b

i+ 1i i+ 1i

b b

m+ i+ 1m+ im+ i+ 1m+ i
Di1

b b

b b

b b

b b

b b

ii+ 1 ii+ 1m+ i m+ im+ i+ 1 m+ i+ 1Di2
b b

Figure 3. Symmetric Hamilton cycles Di
1 and Di

2 from Hi ⊕ S′

j ⊕Hi.

Now we define Dj
1
, Dj

2
from Hm+j ⊕ S′

j ⊕Hm+j , 1 ≤ j ≤ m− 1 as follows:

Dj
1

= (Hm+j \ {(m+ j)(m+ j + 1)}) ∪ (Hm+j \ {(m+ j)(m+ j + 1)})

⊕{(m+ j)(m+ j + 1), (m+ j)(m+ j + 1)},

Dj
2

= (S′

j \ {(m+ j)(m+ j + 1), (m+ j)(m+ j + 1)})

⊕{(m+ j)(m+ j + 1),m+ j(m+ j + 1)}.

It is easy to check that Ci
1, C

i
2, D

j
1
and Dj

2
are edge-disjoint symmetric Hamilton

cycles of 2K4m, (see Figures 2 and 3). Hence {Ci
1, C

i
2, D

j
1
, Dj

2
, S′

m | 1 ≤ i ≤ m, 1 ≤
j ≤ m− 1} gives a symmetric Hamilton cycle decomposition of 2K4m.

Theorem 13. For all λ ≡ 0 (mod 2) and n ≡ 0 (mod 2) ≥ 4, there exists a

symmetric Hamilton cycle decomposition of λKn.

Proof. Follows from Theorems 11 and 12.

4. Complete Multigraph Minus a 1-factor

In this section, we investigate the existence of symmetric Hamilton cycle decom-
position of λKn − F , when λKn has odd regularity.
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Theorem 14. For all λ ≡ 1 (mod 2) and n ≡ 2 or 4 (mod 8), there exists a

symmetric Hamilton cycle decomposition of λKn − F .

Proof. We can write λKn−F = (λ−1)Kn⊕Kn−F . Since both n and λ−1 are
even, (λ− 1)Kn and (Kn − F ) have a symmetric Hamilton cycle decomposition
by Theorems 13 and 4 respectively.

Theorem 15. For all n ≡ 6 (mod 8), there exists a symmetric Hamilton cycle

decomposition of 3Kn − F .

Proof. Let n = 8m + 6 and V (3K8m+6) = {1, 2, . . . , 4m + 3, 1, 2, . . . , 4m+ 3}.
For m = 0, the graph is 3K6 − F . Clearly {(1, 2, 3, 1, 2, 3), (1, 2, 3, 1, 2, 3),
(1, 2, 3, 1, 2, 3), (1, 2, 3, 1, 2, 3), (1, 3, 2, 2, 3, 1), (1, 2, 2, 1, 3, 3), (1, 2, 3, 3, 2, 1)} gives
a symmetric Hamilton cycle decomposition of 3K6 − F , where F = {11, 22, 33}
is a 1-factor.

Now we construct a symmetric Hamilton cycle decomposition of 3Kn−F for
n ≥ 14 as follows: For 1 ≤ k ≤ 4m+ 3, 1 ≤ i ≤ 2m+ 1, we define

Hi = F2i ∪ F2i+1 ∪ {(4m+ 3)i, (4m+ 3)i, (4m+ 3)(2m+ 1 + i),

(4m+ 3)(2m+ 1 + i)} ∪ F ′

2i ∪ F ′

2i+1,

Si = E2i ∪ E2i+1 ∪ {(4m+ 3)i, (4m+ 3)i, (4m+ 3)(2m+ 1 + i),

(4m+ 3)(2m+ 1 + i)},

where

Ek = {ab ∈ E(K4m+2,4m+2) | a 6= b, a+ b ≡ k (mod 4m+ 2)},

Fk = {ab ∈ E(K⋆
4m+2) | a+ b ≡ k (mod 4m+ 2)},

F ′

k = {ab ∈ E(K
⋆

4m+2) | a+ b ≡ k (mod 4m+ 2)}.

It is easy to check that each Hi is a symmetric Hamilton cycle of K8m+6 −
F and each Si is a symmetric 2-factor of K8m+6 − F containing the edges
{i(i+ 1), i(i + 1)}, where F = {ii ∈ E(K4m+3,4m+3) | 1 ≤ i ≤ 4m + 3} is a
1-factor. So we write K8m+6 − F = (⊕2m+1

i=1
Hi) ⊕ (⊕2m+1

i=1
Si). Furthermore,

by Lemma 8, 2(K4m+3�K2) has a symmetric Hamilton cycle decomposition
{C1, C2, . . . , C2m+1, C

′

1, C
′

2, . . . , C
′

2m+1, C4m+3}. Now we can write

3K8m+6 − F = 2K8m+6 ⊕ (K8m+6 − F )

= 2(K4m+3�K2)⊕ 2(K4m+3,4m+3 − F )⊕ (K8m+6 − F )

= ((⊕2m+1

i=1
Ci)⊕ (⊕2m+1

i=1
C ′

i)⊕ C4m+3)⊕ 2(K4m+3,4m+3 − F )

⊕(⊕2m+1

i=1
Hi)⊕ (⊕2m+1

i=1
Si).
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We now construct the remaining symmetric Hamilton cycles Di
1, D

i
2 from Ci⊕Si,

1 ≤ i ≤ 2m+ 1 as follows:

Di
1 = (Si \ {i(i+ 1), i(i+ 1)})⊕ {i(i+ 1), i(i+ 1)},

Di
2 = (Ci \ {i(i+ 1), i(i+ 1)} ⊕ {i(i+ 1), i(i+ 1)}.

One can check that Di
1, D

i
2 are symmetric Hamilton cycles of 2(K4m+3�K2) ⊕

K8m+6 − F . Hence {Di
1, D

i
2, C

′

i, C4m+3, Hi | 1 ≤ i ≤ 2m + 1} together with the
symmetric Hamilton cycle decomposition of 2(K4m+3,4m+3 − F ) which exists by
Theorem 3, gives a symmetric Hamilton cycle decomposition of 3K8m+6 − F .

Lemma 16. The graph (K⋆
2m⊕ I)⊕K2m,2m⊕ (K

⋆

2m⊕ I), where I = {i(m+ i) ∈
E(K⋆

2m) | 1 ≤ i ≤ m}, I = {i(m+ i) ∈ E(K
⋆

2m) | 1 ≤ i ≤ m} admits a symmetric

Hamilton cycle decomposition for all m ≥ 1.

Proof. We know by Remark 5 that K2m,2m has a symmetric Hamilton cycle
decomposition {S1, S2, . . . , Sm} such that each Si contain the edges {i(i+ 1), i(i+
1), (m+ i)(m+ i+1), (m+ i)(m+ i+ 1), ii, (m+ i)(m+ i)}. Further by Remark
6, K⋆

2m⊕ I has a Hamilton cycle decomposition {H1, H2, . . . , Hm} such that each
Hi contain the edges {i(i+1), (m+i)(m+i+1)}. Similarly, let {H1, H2, . . . , Hm}
be a Hamilton cycle decomposition of K

⋆

2m ⊕ I such that each H i contain the
edges {i(i+ 1), (m+ i)(m+ i+ 1)}.

For each integer i, 1 ≤ i ≤ m, we construct Ci
1, C

i
2 as follows:

Ci
1 = (Hi \ {i(i+ 1)}) ∪ (H i \ {i(i+ 1)})⊕ {i(i+ 1), i(i+ 1)},

Ci
2 = (Si \ {i(i+ 1), i(i+ 1)})⊕ {i(i+ 1), i(i+ 1)}.

Clearly, {Ci
1, C

i
2 | 1 ≤ i ≤ m} gives a symmetric Hamilton cycle decomposition

of (K⋆
2m ⊕ I)⊕K2m,2m ⊕ (K

⋆

2m ⊕ I).

Lemma 17. The graph K⋆
2m ⊕ F ′ ⊕ K

⋆

2m, where F ′ = {i(m+ i), i(m + i) ∈
E(K2m,2m) | 1 ≤ i ≤ m} admits a symmetric Hamilton cycle decomposition for

all m ≥ 1.

Proof. For 1 ≤ l ≤ m, we define Hl = E2l ∪E2l+1 ∪ {l(m+ l), l(m+ l)} ∪E2l ∪
E2l+1, where

Ek = {ij ∈ E(K⋆
2m) | i 6= j, i+ j ≡ k (mod 2m)},

Ek = {i j ∈ E(K
⋆

2m) | i 6= j, i+ j ≡ k (mod 2m)}.

Clearly, each Hl is a symmetric Hamilton cycle and {H1, H2, . . . , Hm} gives a
symmetric Hamilton cycle decomposition of K⋆

2m ⊕ F ′ ⊕K
⋆

2m.
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Lemma 18. The graph K2m,2m − {F, F ′}, where F = {ii ∈ E(K2m,2m) | 1 ≤
i ≤ 2m}, F ′ = {i(m+ i), i(m + i) ∈ E(K2m,2m) | 1 ≤ i ≤ m} admits a C2m-

factorization for all m ≥ 2.

Proof. Let V (K2m,2m) = {1, 2, . . . , 2m, 1, 2, . . . , 2m}. By Remark 6, let H =
{Hm+1, Hm+2, . . . , H2m−1} be a Hamilton cycle decomposition of K⋆

2m−I, where
I = {i(m + i) ∈ E(K⋆

2m) | 1 ≤ i ≤ m}. Let H ∈ H and if H = (1, 2, . . . , 2m) in
K⋆

2m−F , then we define a 2-factor C as C = (1, 2, 3, 4, . . . , 2m)(1, 2, 3, 4, . . . , 2m)
in K2m,2m − {F, F ′}. So corresponding to each Hm+i ∈ H we can define a Ci as
above. Hence {Ci | 1 ≤ i ≤ m−1} gives a C2m-factorization of K2m,2m−{F, F ′}.
Since by Remark 6, each Hm+i ∈ H contain the edges {i(i+1), (m+i)(m+i+1)},
Ci also contain the edges {i(i+ 1), i(i+1), (m+i)(m+ i+ 1), (m+ i)(m+i+1)}.

Lemma 19. The graph (K⋆
2m − I)⊕K2m,2m − {F, F ′} ⊕ (K

⋆

2m − I), where I =
{i(m + i) ∈ E(K⋆

2m) | 1 ≤ i ≤ m}, I = {i(m+ i) ∈ E(K
⋆

2m) | 1 ≤ i ≤ m},
F = {ii ∈ E(K2m,2m) | 1 ≤ i ≤ 2m}, F ′ = {i(m+ i), i(m+ i) ∈ E(K2m,2m) | 1 ≤
i ≤ m} admits a symmetric Hamilton cycle decomposition for all m ≥ 1.

Proof. We know by Remark 6, K⋆
2m − I has a Hamilton cycle decomposition

{Hm+1, Hm+2,. . . , H2m−1} such that each Hm+i contain the edges {i(i+1), (m+
i)(m+ i+ 1)}. Similarly, K

⋆

2m − I has a Hamilton cycle decomposition {Hm+1,
Hm+2, . . . , H2m−1} such that each Hm+j contain the edges {j(j + 1), (m+ j)
(m+ j + 1)}. Let {C1, C2, . . . , Cm−1} be a C2m-factorization ofK2m,2m−{F, F ′}
as obtained in Lemma 18. Note that each factor Cj contain the edges {j(j + 1),
j(j + 1), (m+ j)(m+ j + 1), (m+ j)(m+ j + 1)}.

For each integer j, 1 ≤ j ≤ m − 1, we construct symmetric Hamilton cycles
Dj

1
, Dj

2
as follows:

Dj
1

= (Hj \ {j(j + 1)}) ∪ (Hj \ {j(j + 1)})⊕ {j(j + 1), j(j + 1)},

Dj
2

= (Cj \ {j(j + 1), j(j + 1)})⊕ {j(j + 1), j(j + 1)}.

Then {Dj
1
, Dj

2
| 1 ≤ j ≤ m− 1} gives a symmetric Hamilton cycle decomposition

of (K⋆
2m − I)⊕K2m,2m − {F, F ′} ⊕ (K

⋆

2m − I).

Theorem 20. For all n ≡ 0 (mod 8), there exists a symmetric Hamilton cycle

decomposition of 3Kn − F .

Proof. Let n = 8m and V (3K8m) = {1, 2, . . . , 4m, 1, 2, . . . , 4m}. Now we write
3K8m − F , where F = {ii ∈ E(K4m,4m) | 1 ≤ i ≤ 4m} as follows:

3K8m − F = ((K⋆
4m ⊕ I)⊕K4m,4m ⊕ (K

⋆

4m ⊕ I))⊕ (K⋆
4m ⊕ F ′ ⊕K

⋆

4m)

⊕((K⋆
4m − I)⊕K4m,4m − {F, F ′} ⊕ (K

⋆

4m − I))⊕K4m,4m.
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Where I = {i(2m+ i) ∈ E(K⋆
4m) | 1 ≤ i ≤ 2m}, I = {i(2m+ i) ∈ E(K

⋆

4m) | 1 ≤
i ≤ 2m}, F ′ = {i(2m+ i), i(2m+ i) ∈ E(K4m,4m) | 1 ≤ i ≤ 2m}. The remaining
proof follows from Lemmas 16, 17, 19 and Remark 5.

Theorem 21. For all λ ≡ 1 (mod 2) ≥ 3 and n ≡ 0 (mod 2) ≥ 4, there exists a

symmetric Hamilton cycle decomposition of λKn − F .

Proof. Follows from Theorems 14, 15 and 20.

5. Conclusion

From the results of Sections 3 and 4 together with the known results of Section
2, we have the following:

Theorem 22. For n ≥ 3, there exists a symmetric Hamilton cycle decomposition

of λKn if and only if

(i) λ is even and n is odd, (or)

(ii) λ is odd and n is odd, (or)

(iii) λ is even and n is even.

Theorem 23. For n ≥ 3, there exists a symmetric Hamilton cycle decomposition

of λKn − F with respect to the 1-factor F if and only if λ is odd and n is even

except the non-existence cases n ≡ 0 or 6 (mod 8) when λ = 1.
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