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Abstract

Let n > 3 and A > 1 be integers. Let AK,, denote the complete multi-
graph with edge-multiplicity A. In this paper, we show that there exists a
symmetric Hamilton cycle decomposition of AKs,, for all even A > 2 and
m > 2. Also we show that there exists a symmetric Hamilton cycle decom-
position of MKy, — F for all odd A > 3 and m > 2. In fact, our results
together with the earlier results (by Walecki and Brualdi and Schroeder)
completely settle the existence of symmetric Hamilton cycle decomposition
of AK,, (respectively, AK,, — F', where F' is a 1-factor of AK,,) which exist
if and only if A(n — 1) is even (respectively, A(n — 1) is odd), except the
non-existence cases n = 0 or 6 (mod 8) when A = 1.

Keywords: complete multigraph, 1-factor, symmetric Hamilton cycle, de-
composition.
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1. INTRODUCTION

Let n > 3 and A > 1 be integers. Let AK,, denote the complete multigraph
obtained from the complete graph K, by replacing each edge with A edges. A
partition of AG into edge-disjoint Hamilton cycles is called Hamilton cycle decom-
position of AG. A Hamilton cycle decomposition H of G is cyclic if V(G) = Zy,
and (vo + 1,v1 +1,...,0p-1 + 1) € H whenever (vo,v1,...,0p—1) € H. It is 1-
rotational if V(G) = Zy—1U{o0}, and (vo+1,v1+1,...,v,—1+1) € H whenever
(vo,V1,...,0p—1) € H, where co + 1 = oo is meaningful. Let the vertex set of
MK, be labeled as follows:
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VK, = {0,1,2,3,...,m,1,2,3,...,m}, if nisodd, say n =2m + 1;
Y {L,2,3,...,m,1,2,3,...,m}, if nis even, say n = 2m.

A Hamilton cycle (or a 2-factor) of AK,, or AK,, — F is said to be symmetric
if it is invariant under the involution ¢ — 7, where 7 = i and the vertex 0 is
a fixed point of this involution. A Hamilton cycle decomposition of AKa,11
(respectively, AKay,) is symmetric if it admits an involutory automorphism fixing
all its cycles and fixing exactly one vertex (respectively, fixing no vertices). Also
a Hamilton cycle decomposition of AKo, 11 — F is symmetric if it admits an
involutary automorphism switching all pairs of vertices that are adjacent in F. A
symmetric Hamilton cycle (or a 2-factor) in K, , with bipartition {1,2,3,...,n}
and {1,2,3,...,7} containing the edge ij should also contain ij. The cartesian
product, G10G9, of the graphs G1 and G5 has the vertex set V(G1) x V(G2) and
edge set E(G10G32) = {(u1,v1)(uz,v2) | u1 = ug and vive € E(G3) or v1 = vy
and ujug € E(Gh)}.

Buratti and Del Fra [6] proved that a cyclic Hamilton cycle decomposition of
K, exists if and only if n # 15 and n ¢ {p® | pis an odd prime and a > 2}. Jordon
and Morris [9] proved that for an even n > 4, there exists a cyclic Hamilton cycle
decomposition of K, — F' if and only if n = 2,4 (mod 8) and n # 2p® where p
is an odd prime and « > 1. Buratti et al. [5] completely solved the existence
of cyclic Hamilton cycle decomposition of AK,, and of A\(Ks, — F) for every \.
In general, finding necessary and sufficient conditions for the existence of cyclic
m-cycle decomposition of K, is an interesting problem and has received much
attention in recent days.

Walecki [10] proved the existence of a Hamilton cycle decomposition of K,
(when n is odd) and K,, — F' (when n is even), where F' is a 1-factor of K.
Further, it is easy to observe that the addition by "T_l gives an involutory map
fixing every cycle of the decomposition to be symmetric. Akiyama [1] et al. also
constructed a new symmetric Hamilton cycle decomposition of K,, for odd n > 7,
but is not isomorphic to Walecki decomposition.

Brualdi and Schroeder [4] proved that K, — F has a decomposition into
Hamilton cycles which are symmetric with respect to the 1-factor F' if and only
if n = 2 or 4(mod 8), and also show that the complete bipartite graph K,
(respectively K, , — F) has a symmetric Hamilton cycle decomposition if and
only if n is even (respectively n is odd). As Hamilton/ symmetric Hamilton cycle
decomposition of K, for even n does not exists, considering the existence of such
decomposition in AK,, gets merit (for suitable A and n), since it covers a wider
class of graphs.

Recently, Buratti and Merola [7] observed that every cyclic Hamilton cycle
decomposition of AKy,, or AKs, —F whose cycles having stabilizer of even order is,
in particular symmetric: the required involutory automorphism would be in fact
the addition by n, and also pointed that the existence of a symmetric Hamilton
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cycle decomposition of K, — F for n = 4 (mod 8) (part of the main result of the
paper by Brualdi and Schroeder [4]) implicitly follows from the result of Jordon
and Morris [9]. Also, the result of Buratti et al. [5] gives, implicitly, the existence
of a symmetric Hamilton cycle decomposition of 2K y4,,, m > 1.

In this paper, we show that there exists a symmetric Hamilton cycle decom-
position of AKs,, for all even A > 2 and m > 2. Also we show that there exists
a symmetric Hamilton cycle decomposition of AKs,,, — F for all odd A > 3 and
m > 2. In fact, our results together with the results of Walecki, Brualdi and
Schroeder prove that the complete multigraph AK,, ( respectively, AK,, — F') has
a symmetric Hamilton cycle decomposition if and only if A(n— 1) is even (respec-
tively, A(n — 1) is odd) except the non-existence cases n = 0 or 6 (mod 8) when
A =1, which were proved by Brualdi and Schroeder.

2. NOTATION AND PRELIMINARIES

Throughout this paper, we use the following notation:

~[{0,1,2,3,...,7,1,2,3,...,7}, ifnisodd, say n =2r+1;
o V(AK) = { {1,2,3,...,r,1,2,3,...,7}, if niseven, say n = 2r.
e AK} is the complete multigraph with the vertex set {1,2,...,7}.
e MK is the complete multigraph with the vertex set {1,2,...,7}.

o AKyg 9, is the complete bipartite multigraph with bipartition {1,2,...,2s}
and {1,2,...,2s}.

e (1,2,...,m,1,2,...,m) denotes a symmetric cycle of length 2m.
e For our convenience, we view AKs,., AK9, — F as follows:

(i) AKop= AK? ® MK, ® \K
(ii) AKar — F= AK} © \K,, — F ® \K,,, where F = {ii € E(K,,) |1 <
i <r}

e [ denotes the 1-factor {i(s + i), (s+i)i € E(Kos2s) | 1 < i < 2s} of Kog os.
o [ denotes the 1-factor {i(s +1i) € E(K3,) |1 <i<s} of K3,.
e T denotes the 1-factor {i(s + 1) € E(Kj,) | 1 <i < s} of Ka,.

To prove our results we state the following.

Proposition 1 [1]. Let p > 7 be a prime. There exists a Hamilton cycle decom-

position G, of K, which is not isomorphic to the Walecki’s decomposition VW, of
K.
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Theorem 2 [1]. Letn > 7 be an odd integer. There exists a symmetric Hamilton
cycle decomposition of K, which is not isomorphic to the Walecki’s Hamilton
cycle decomposition Wy,. Further, it is not isomorphic to G, when n is a prime.

Theorem 3 [4]. For each integer m > 1, there exist a symmetric Hamilton cycle
decomposition of Kom om, and Kopyy12m+1 — F', where F' is a 1-factor.

Theorem 4 [4]. Letn > 2 be an integer. Then K,,—F' has a symmetric Hamilton
cycle decomposition if and only if n = 2,4 (mod 8).

Remark 5 [4]. Consider the complete bipartite graph Koy, 2m with V(Ko 2m) =
{1,2,...,2m,1,2,...,2m}. Let B = {ab € E(Komam) | a +b = k(mod 2m)}.
Clearly, each S; = FE; U Ea;41 is a symmetric Hamilton cycle of Ko, 2, and
{S1,52,...,5n} gives a symmetric Hamilton cycle decomposition of Ko om.
Note that each S; contain the edges {i(i + 1),i(i + 1), (m +i)(m +i + 1), (m +
i)(m +i+1),4i, (m +i)(m+1i)}, 1 <i < m and the additions are taken with
modulo 2m.

Remark 6. Let V(K3,,)={1,2,...,2m}. Then H = (1,2,2m,3,2m —1,4,2m —
2,....,m+2m+1,1)={ab € E(K3,,) | a+b=2or 3(mod 2m)} is a Hamil-

ton cycle of K3,,. Now we define an injective map f; : {1,2,3,...,2m} —
{1,2,3,...,2m}, 1 <i < 2m — 1 as follows:
fil) =1,

cti—1, ifze{23,....2m—i+1);
x—2m+1i, ifre{2m—i+2,2m—i+3,...,2m}.

Let Hz = fz(H) Then {Hl, HQ, Ceey Hgm_l}, {Hl, Hg, ceey Hm} and {Hm+1,
Hpyo, ..., Hopm—1} respectively give a Hamilton cycle decomposition of multi-
graphs 2K3, , K3, &1 and K3, — I, where I = {i(m+1i) € E(K3,,) |1 <i<m}.
Note that each H; contain the edges {i(i +1),(m+i)(m+i+1)},1 <i<m
(see Figure 1).

Also we observe that the Hamilton cycle decompositions given above will
imply a 1-rotational Hamilton cycle decomposition of 2K3, ., K3, &I and K3, —1
by just replacing the symbols 1 by co and z, 2 < x < 2m, by = — 1.

3. COMPLETE MULTIGRAPHS

In this section, we investigate the existence of a symmetric Hamilton cycle decom-
position of complete multigraph AK,,, when A(n—1) is even. Since the symmetric
Hamilton cycle decomposition of MK, when n odd, exists from the well known
Walecki’s construction [10], our main focus is to find a symmetric Hamilton cycle
decomposition of 2Ko,,.
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Figure 1. Hl, HQ, H3, cey H2m—1 of K27n+1~

Lemma 7. For all integers m > 1, there exists a symmetric Hamilton cycle
decomposition of Kop,[1K>.
Proof. Let V(Kop,) = {u1,us,...,uzmn} and V(K3) = {v1,v2}. For our conve-

2
nience, we denote V(Ky,,[0K>) = Vs, where Vi = {i | ¢ = (u4,v1),1 < i <
=1

S

om}, Vo = {i | 7 = (usv2),1 < i < 2m} and E(KomOK>) = {ij,i7,i | i #
J, ,7=1,2,...,2m}. For 1 <k <2m, 1 <1< m, we define

E, = {ij € B(KynOK,) |i# j,i+j =k (mod 2m)},

By = {ij€ E(Ky,0K3) |i#j,i+j=k(mod2m)},

J; = {ii € BE(K2,OK3) | 2i = 21 (mod 2m)}.

Note that Fg U Eg41 and Eg U E941 are Hamilton paths with end vertices I,
m+1and I, m + 1 of K3 and Em respectively. For each [, 1 <[ < m, we define
H; = Ey U Ey 1 UJUEyUEg., ;. Clearly, each H; is a symmetric Hamilton
cycle and {Hy, Hs, ..., Hy,} gives a symmetric Hamilton cycle decomposition of
Ky,,UKs. |

Lemma 8. For all integers m > 1, there exists a symmetric Hamilton cycle
decomposition of 2(Kom+10K2).

Proof. Let V(Kopmt1) = {u1,u2,us,...,uzms1} and V(Ksz) = {v1,v2}. We
2

denote V(Kopm+1OK2) = |J Vs where Vi = {i | i = (u;,v1),1 < i < 2m},
s=1

‘/2 = {5 | 5 = (ui,vg), 1 <1< 2m} and E(Kgm_HDKQ) = {Zj,gi, 7,% |,i 75 j,i,j =

1,2,...,2m +1}.
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For all k, 1 < k <2m + 1, we define

B, = {ij € B(Kym1OKs) | i # j,i+j =k (mod 2m + 1)},
Er = {ij € B(Kom1OK2) [ i # j,i+j = k(mod 2m +1)}.

Note that Eo U Egj41, Eg—1 U Eg and Ej U Egy, 11 are Hamilton paths of K3
with end vertices I, m+1+1; [, m +[; and m + 1, 2m + [ respectively. Similarly,
EyUEgy 1, E9i_1 UEy and E1 U Ey,, 1 are Hamilton paths of F;m with end
vertices [, m +1+1; [, m + [; and m + 1, 2m + [ respectively.

For each [, 1 <[ < m, we define

H, = EQlUE2l+1U{ZZ, (m+1+l)(m+1+l)}UE2lUE2l+1,
Hl, = Fy_1UEy U{ﬂ, (m+l)(m+l)}UEQl_1 UEQZ,
Hampr = By U Bar U{(2m + 1)@RFT), (m+ )T 1)} UF, U,

Clearly, each H;, H] are symmetric Hamilton cycles and {H:, Ho,...,H,,, H{,
H,...,H] , Hypmi1} gives a symmetric Hamilton cycle decomposition of 2( Koy,1+1
DKQ). |

Remark 9. Note that the symmetric Hamilton cycles H; and H/,1<1<m
obtained in Lemma 8 contain the edges {/(I+1),I(l + 1)} and {(2m+1+1)(2m+
1+141),2m+1+1)(2m+ 1+ 1+ 1)} respectively.

Note 10. It is observed that for every Hamilton path decomposition of Ky, we
can find a symmetric Hamilton cycle decomposition of Koy, 2, and Koy, UKo,
also to every Hamilton path decomposition of 2K5,,4+1 we can find a symmetric
Hamilton cycle decomposition of 2( Ko, +10K3).

Theorem 11. For all integers m > 1, there exists a symmetric Hamilton cycle
decomposition of 2K gm12.

Proof. Let V(2Kymi2) = {1,2,...,2m + 1,1,2,...,2m + 1}. Now the com-
plete multigraph 2Ky, 12 can be viewed as follows: 2Ky,19 = 2(Kopn10K2) ©
2(K2m+172m+1 — F), where F = {Z% € E(K2m+172m+1) | 1 <4< 2m+ 1} is a
1-factor of K2m+1,2m+1- We know that 2(K2m+1|:|K2) and (K2m+1,2m+1 — F)
have symmetric Hamilton cycle decompositions by Lemma 8 and Theorem 3,
respectively. |

We recall that Buratti and Merola [7] observed that every cyclic Hamilton cycle
decomposition of AKs, or AKs, — F whose cycles have stabilizer of even order
is, in particular symmetric: the required involutory automorphism would be in
fact the addition by n. So the result of Buratti et al. [5] deduce the existence of
a symmetric Hamilton cycle decomposition of 2Ky,,, m > 1.
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The next construction provides an alternative proof for the existence of a symmet-
ric Hamilton cycle decomposition of 2Ky,,, m > 1 which is implicitly contained
in Buratti et al. ([[5], Lemma 3.5]).

Theorem 12. For all integers m > 1, there exists a symmetric Hamilton cycle
decomposition of 2K 4, .

Proof. Let V(2Ky,) = {1,2,...,2m,1,2,...,2m}. For m = 1 the graph is
2Ky. Clearly, {(1,2,2,1),(1,2,1,2),(1,1,2,2)} gives a symmetric Hamilton cycle
decomposition of 2Ky.

For m > 2, we write 2Ky, = 2K3,, & Kom om & Kém,Qm D QF;m. Now the
idea of decomposing 2Ky, into symmetric Hamilton cycles is as follows: First we
decompose Koy, 2., and Kémgm into symmetric Hamilton cycles S1,S52,...,5n
and S1,S5%,...,5),, and 2K3, . 9K, into Hamilton cycles {Hy, Ha, ..., Hopm_1},
{H{,H),...,H), .} respectively. Then by decomposing each H; & S; & H],
1<i<mand Hmﬂ@S;- @H,’nﬂ-, 1 < j < m—1 into symmetric Hamilton cycles
C1, C4 and Dy, D} respectively, we get the symmetric Hamilton cycle decomposi-
tion {C},C%,...,C1*,C3,C3,...,Cy, DI, D?, ... D" ' D} D3, ... Dyt S}
of 2K4m.
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Figure 2. Symmetric Hamilton cycles C% and C§ from H; & S; ® H;.

We know by Remark 5 that 2K, 2, has a symmetric Hamilton cycle decompo-
sition {S1,S2, ..., Sm, 51,55, ..., S}, } such that both S; and S; contain the edges
{ii +1),i(i+1),(m+9)(m+i+1),(m+i)(m+i+1),i,(m+i)(m—+1)}. Fur-
thermore, by Remark 6, 2K3,, has a Hamilton cycle decomposition {H1, Ha, .. .,
Hjp—1} such that each H; contain the edges {i(i + 1), (m+i)(m+1i+1)}. Simi-
larly, let {H1, Ho, ..., Hay,—1} be a Hamilton cycle decomposition of ZEm such

that each H; contain the edges {i(i + 1), (m +1i)(m +1i + 1)}.
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Now we define C{', C; from H; ® S; ® H;, 1 <i < m as follows:

O = (H\{i(i+ 1)) U@\ GEF DY) e (i 1),i( + 1)},

Chi o= (S \{iG+1),ii+ D)@ {i(i +1),i(i + 1)}

Do,

ooty I
\ .
m+i THr o mti
! W
II ‘\
1! \
T
o \
m+i+ 161 “
T \

m+i+1

T v

‘ )

Figure 3. Symmetric Hamilton cycles D and D} from H; ® SJ’» @ H;.

Now we define D{, Dg from Hy,q; © S§ ® Hptjy, 1 <j<m—1 as follows:

D] = (Hpwj \{(m+7)(m+j+1)})U Hpj \{(m+4)(m+j+1)})
{(m+j)(m+j+1),(m+j)(m+j+1)},

D} = (Si\{(m+j)(m+j+1),(m+j)(m+j+1)})
e{(m+j)m+j+1),m+jm+j+1)}

It is easy to check that Cf, C%, D{ and D% are edge-disjoint symmetric Hamilton
cycles of 2Ky, (see Figures 2 and 3). Hence {C%,C%, D1, D}, S, |1 <i<m,1<
j <m — 1} gives a symmetric Hamilton cycle decomposition of 2K y,,,. [

Theorem 13. For all A = 0(mod 2) and n = 0(mod 2) > 4, there ezists a
symmetric Hamilton cycle decomposition of AK,,.

Proof. Follows from Theorems 11 and 12. [

4. COMPLETE MULTIGRAPH MINUS A 1-FACTOR

In this section, we investigate the existence of symmetric Hamilton cycle decom-
position of AK,, — F', when AK,, has odd regularity.
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Theorem 14. For all A = 1(mod 2) and n = 2 or 4(mod 8), there exists a
symmetric Hamilton cycle decomposition of AK,, — F.

Proof. We can write AK,, — F = (A—1)K,,® K,, — F. Since both n and A\—1 are
even, (A — 1)K, and (K,, — F) have a symmetric Hamilton cycle decomposition
by Theorems 13 and 4 respectively. [

Theorem 15. For all n = 6 (mod 8), there exists a symmetric Hamilton cycle
decomposition of 3K, — F.

Proof. Let n = 8m + 6 and V(3Kgpm46) = {1,2,...,4m +3,1,2,...,4m + 3}
For m = 0, the graph is 3K — F. Clearly {(1 2 ,3,1,2,3), (1, § 3,1,2,3),
(1,2,3,1,2,3), (1,2.3.1,2,3), (1,3,2,2,3,1), (1,2,2,1,3,3). (1,2.3,3,2,1)} gives
a symmetric Hamilton cycle decomposition of 3Kg — F, where F = {11, 22,33}

is a 1-factor.

Now we construct a symmetric Hamilton cycle decomposition of 3K,, — F" for
n > 14 as follows: For 1 <k <4m+ 3,1 <1 <2m + 1, we define

H, = F;UFy1U {(4m + 3)i, (dm + 3)5, (Am +3)(2m + 1 + 1),
(4m +3)2m +1+0)} U Fy U Fyy g,

S; = Eo UFEy U{(dm + 3)i, (4m + 3)i, (4m + 3)(2m + 1 + i),
(Am+3)2m+1+1)},

where
E, = {ab€ E(Kuynt24m+2) | a #b,a+b=k (mod 4m + 2)},
F, = {abe E(K},, )| a+b=Fk (mod 4m + 2)},
F, = {abe BE(Ky.s) | a+b=k (mod 4m + 2)}.

It is easy to check that each H; is a symmetric Hamilton cycle of Kgni6 —
F and each §; is a symmetric 2-factor of Kgy,4+¢ — F containing the edges
{i(i+1),i(: + 1)}, where F = {ii € E(Kun+3am+3) | 1 < i < 4m + 3} is a
I-factor. So we write Kgni6 — F = (©2"H;) @ (@2™*1S;). Furthermore,
by Lemma 8, 2(Ky,430K3) has a symmetric Hamilton cycle decomposition
{C1,Ca, ..., Comy1,C1,Cs, ..., Chytq Camy 3} Now we can write

3Kmi6 — F = 2Ksmis® (Ksmio — F)

2(Kym30K2) ® 2(Kymi3.4mt3 — F) @ (Kgmys — F)

= (@®77Cy) @ (@77 C)) @ Camys) ® 2(Kamt34mes — F)
(S H) @ (97F1S)).
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We now construct the remaining symmetric Hamilton cycles D?, D} from C; @S,
1<i<2m+1 as follows:

Di = (S\{GE+ DG+ DY) @ {i(i+1),i(i + 1)},
Dy = (C\{iti+1),ii+ D} {i(i +1),i(i +1)}.

One can check that DY, D} are symmetric Hamilton cycles of 2(Kyy+30K2) @
Kgm+6 — F. Hence {D%, D}, C!, Cymis, H; | 1 < i < 2m + 1} together with the
symmetric Hamilton cycle decomposition of 2(K4y,434m+3 — F') which exists by
Theorem 3, gives a symmetric Hamilton cycle decomposition of 3Kgy,16 — F. |

Lemma 16. The graph (K3, ® 1) ® Kam,2m © (K>, &), where I = {i(m+1i) €
E(K$ ) |1<i<m}, T={i(m+1i)e E(K,,)|1<i<m} admits a symmetric
Hamilton cycle decomposition for all m > 1.

Proof. We know by Remark 5 that Ko, 2, has a symmetric Hamilton cycle
decomposition {51, Sa, ..., Spm} such that each S; contain the edges {i(i + 1), i(i+
1),(m+i)(m+i+1),(m+i)(m+i+1),4, (m+i)(m+1)}. Further by Remark
6, K3, ® I has a Hamilton cycle decomposition { Hy, Ha, . .., Hy,} such that each
H; contain the edges {i(i+1), (m+i)(m~+i+1)}. Similarly, let {Hq, Ho,..., Hy,}
be a Hamilton cycle decomposition of Em @ I such that each H; contain the
edges {i(i +1),(m+)(m+i+ 1)}
For each integer 7, 1 <7 < m, we construct C{, Cg as follows:

Ci = (H\{ili+ DY U@\ GG+ DY @ {6+ 1),i6+ 1),

Ci = (S \{iG+1),i+ DY) @ {i(i+1),i(i + 1)}

Clearly, {C%,C4 | 1 < i < m} gives a symmetric Hamilton cycle decomposition
of (K3, & I) & Kom,om & (Ko, & 1). n

Lemma 17. The graph K3, ® F' ® Ko,,, where F' = {i(m +1),i(m + i) €
E(Komam) | 1 <i < m} admits a symmetric Hamilton cycle decomposition for
allm > 1.

Proof. For 1 <1 < m, we define Hy = Ey; U Eo 1 U{l(m +1),l(m+1)}UEy U
E21+1, where

By = {ij € BE(K3,) |i# j,i+j =k (mod 2m)},
E, = {ije E(X,,)|i#j,i+7=k (mod2m)}.

Clearly, each H; is a symmetric Hamilton cycle and {H;, Ha, ..., Hy;,} gives a
symmetric Hamilton cycle decomposition of K3, & F' @ Fgm. [
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Lemma 18. The graph Kopom — {F, F'}, where F = {ii € E(Kamam) | 1 <
i <2m}, F' = {ilm+1i),ilm+1i) € E(Komom) | 1 <i < m} admits a Cop,-
factorization for all m > 2.

Proof. Let V(Komom) = {1,2,...,2m,1,2,...,2m}. By Remark 6, let H =
{Hm+1, Hnt2, - .., Ham—1} be a Hamilton cycle decomposition of K3, — I, where
I={ilm+i) e E(K},)|1<i<m}. Let He€ H and if H=(1,2,...,2m) in
K3, —F, then we define a 2-factor C' as C = (1,2,3,4,...,2m)(1,2,3,4,...,2m)
in Kom om — {F, F'}. So corresponding to each H,,; € H we can define a C' as
above. Hence {C® | 1 < i < m—1} gives a Cyy,-factorization of Koy, om — {F, F'}.
Since by Remark 6, each H,,1; € H contain the edges {i(i+1), (m+i)(m+i+1)},
C" also contain the edges {i(i + 1),i(i+1), (m+4)(m + i+ 1), (m +14)(m-+i+1)}.

|

Lemma 19. The graph (K3, — I) ® Komom — {F, F'} ® (K4, — 1), where T =
{itlm+1i) e B(K3,) |1 <i<m}, T={im+i) e E(K,,)|1<i<m},
F= {ﬁ € E(KQm,2m) | 1 <i<2mj, P = {z(m)’g(m_}_z) € E(KZm,Qm) 1<
i <m} admits a symmetric Hamilton cycle decomposition for all m > 1.

Proof. We know by Remark 6, K3, — I has a Hamilton cycle decomposition
{Hm+1, Hn+2,. .., Hom—1} such that each H,,; contain the edges {i(i+1), (m+
i)(m +i+1)}. Similarly, K,,, — I has a Hamilton cycle decomposition {H,, 1,
Hppi2, ., Hop—1} such that each H,,4; contain the edges {j(j + 1), (m + j)
(m+37+1)}. Let {C',C?,...,C™ 1} be a Cop-factorization of Koy, om—{F, F'}
as obtained in Lemma 18. Note that each factor C? contain the edges {j(j + 1),
FG+ 1), (m+ T T, (T )+ + 1)},

- For each integer j, 1 < j < m — 1, we construct symmetric Hamilton cycles
D], D} as follows:

Df = (H\{i(G+ DYV E\GEFDY & G150+ D},
Dy = (CU\{G+D.5G+D) @ (i +1).5(+ D}

Then {D{, D% |1<j<m-—1} gives a symmetric Hamilton cycle decomposition
of (K3, — I) ® Komam — {F, F'} ® (K, — ). m

Theorem 20. For all n = 0 (mod 8), there exists a symmetric Hamilton cycle
decomposition of 3K,, — F.

Proof. Let n = 8m and V(3Kgy,) = {1,2,...,4m,1,2,...,4m}. Now we write
3Kgm — F, where F = {ii € E(Kgmam) | 1 <i < 4m} as follows:

3Ksm — F = ((Kjp ®1) ® Kamam ® (K ® 1)) ® (K, @ F' & Ky,,,)
S((Kip — 1) ® Kamam — {F, F'} @ (K — 1)) © Kamam-
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Where I = {i(2m +1i) € BE(K},)|1<i<2m}, T={i2m+i) e BE(K},)|1<
i <2m}, F' ={i2m+1),i(2m + i) € E(Kamam) | 1 <i < 2m}. The remaining
proof follows from Lemmas 16, 17, 19 and Remark 5. [

Theorem 21. For all A =1 (mod 2) > 3 and n =0 (mod 2) > 4, there exists a
symmetric Hamilton cycle decomposition of AK, — F.

Proof. Follows from Theorems 14, 15 and 20. [

5. CONCLUSION

From the results of Sections 3 and 4 together with the known results of Section
2, we have the following:

Theorem 22. Forn > 3, there exists a symmetric Hamilton cycle decomposition
of AK,, if and only if

(i) A is even and n is odd, (or)

(ii) A is odd and n is odd, (or)

(iii) A is even and n is even.

Theorem 23. Forn > 3, there exists a symmetric Hamilton cycle decomposition
of AK,, — F with respect to the 1-factor F if and only if X is odd and n is even
except the non-ezistence cases n =0 or 6 (mod 8) when \ = 1.
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