SYMMETRIC HAMILTON CYCLE DECOMPOSITIONS OF COMPLETE MULTIGRAPHS

V. Chitra and A. Muthusamy
Department of Mathematics
Periyar University
Salem-636 011, TN, India
e-mail: chit_krish@rediffmail.com
ambdu@yahoo.com

Abstract

Let $n \geq 3$ and $\lambda \geq 1$ be integers. Let λK_{n} denote the complete multigraph with edge-multiplicity λ. In this paper, we show that there exists a symmetric Hamilton cycle decomposition of $\lambda K_{2 m}$ for all even $\lambda \geq 2$ and $m \geq 2$. Also we show that there exists a symmetric Hamilton cycle decomposition of $\lambda K_{2 m}-F$ for all odd $\lambda \geq 3$ and $m \geq 2$. In fact, our results together with the earlier results (by Walecki and Brualdi and Schroeder) completely settle the existence of symmetric Hamilton cycle decomposition of λK_{n} (respectively, $\lambda K_{n}-F$, where F is a 1 -factor of λK_{n}) which exist if and only if $\lambda(n-1)$ is even (respectively, $\lambda(n-1)$ is odd), except the non-existence cases $n \equiv 0$ or $6(\bmod 8)$ when $\lambda=1$.

Keywords: complete multigraph, 1 -factor, symmetric Hamilton cycle, decomposition.
2010 Mathematics Subject Classification: 05C45, 05C51, 05C70.

1. Introduction

Let $n \geq 3$ and $\lambda \geq 1$ be integers. Let λK_{n} denote the complete multigraph obtained from the complete graph K_{n} by replacing each edge with λ edges. A partition of λG into edge-disjoint Hamilton cycles is called Hamilton cycle decomposition of λG. A Hamilton cycle decomposition \mathcal{H} of G is cyclic if $V(G)=\mathbb{Z}_{n}$, and $\left(v_{0}+1, v_{1}+1, \ldots, v_{n-1}+1\right) \in \mathcal{H}$ whenever $\left(v_{0}, v_{1}, \ldots, v_{n-1}\right) \in \mathcal{H}$. It is $1-$ rotational if $V(G)=\mathbb{Z}_{n-1} \cup\{\infty\}$, and $\left(v_{0}+1, v_{1}+1, \ldots, v_{n-1}+1\right) \in \mathcal{H}$ whenever $\left(v_{0}, v_{1}, \ldots, v_{n-1}\right) \in \mathcal{H}$, where $\infty+1=\infty$ is meaningful. Let the vertex set of λK_{n} be labeled as follows:

$$
V\left(\lambda K_{n}\right)= \begin{cases}\{0,1,2,3, \ldots, m, \overline{1}, \overline{2}, \overline{3}, \ldots, \bar{m}\}, & \text { if } n \text { is odd, say } n=2 m+1 \\ \{1,2,3, \ldots, m, \overline{1}, \overline{2}, \overline{3}, \ldots, \bar{m}\}, & \text { if } n \text { is even, say } n=2 m\end{cases}
$$

A Hamilton cycle (or a 2 -factor) of λK_{n} or $\lambda K_{n}-F$ is said to be symmetric if it is invariant under the involution $i \rightarrow \bar{i}$, where $\overline{\bar{i}}=i$ and the vertex 0 is a fixed point of this involution. A Hamilton cycle decomposition of $\lambda K_{2 n+1}$ (respectively, $\lambda K_{2 n}$) is symmetric if it admits an involutory automorphism fixing all its cycles and fixing exactly one vertex (respectively, fixing no vertices). Also a Hamilton cycle decomposition of $\lambda K_{2 n+1}-F$ is symmetric if it admits an involutary automorphism switching all pairs of vertices that are adjacent in F. A symmetric Hamilton cycle (or a 2 -factor) in $K_{n, n}$ with bipartition $\{1,2,3, \ldots, n\}$ and $\{\overline{1}, \overline{2}, \overline{3}, \ldots, \bar{n}\}$ containing the edge $i \bar{j}$ should also contain $\bar{i} j$. The cartesian product, $G_{1} \square G_{2}$, of the graphs G_{1} and G_{2} has the vertex set $V\left(G_{1}\right) \times V\left(G_{2}\right)$ and edge set $E\left(G_{1} \square G_{2}\right)=\left\{\left(u_{1}, v_{1}\right)\left(u_{2}, v_{2}\right) \mid u_{1}=u_{2}\right.$ and $v_{1} v_{2} \in E\left(G_{2}\right)$ or $v_{1}=v_{2}$ and $\left.u_{1} u_{2} \in E\left(G_{1}\right)\right\}$.

Buratti and Del Fra [6] proved that a cyclic Hamilton cycle decomposition of K_{n} exists if and only if $n \neq 15$ and $n \notin\left\{p^{\alpha} \mid p\right.$ is an odd prime and $\left.\alpha \geq 2\right\}$. Jordon and Morris [9] proved that for an even $n \geq 4$, there exists a cyclic Hamilton cycle decomposition of $K_{n}-F$ if and only if $n \equiv 2,4(\bmod 8)$ and $n \neq 2 p^{\alpha}$ where p is an odd prime and $\alpha \geq 1$. Buratti et al. [5] completely solved the existence of cyclic Hamilton cycle decomposition of λK_{n} and of $\lambda\left(K_{2 n}-F\right)$ for every λ. In general, finding necessary and sufficient conditions for the existence of cyclic m-cycle decomposition of K_{n} is an interesting problem and has received much attention in recent days.

Walecki [10] proved the existence of a Hamilton cycle decomposition of K_{n} (when n is odd) and $K_{n}-F$ (when n is even), where F is a 1-factor of K_{n}. Further, it is easy to observe that the addition by $\frac{n-1}{2}$ gives an involutory map fixing every cycle of the decomposition to be symmetric. Akiyama [1] et al. also constructed a new symmetric Hamilton cycle decomposition of K_{n} for odd $n>7$, but is not isomorphic to Walecki decomposition.

Brualdi and Schroeder [4] proved that $K_{n}-F$ has a decomposition into Hamilton cycles which are symmetric with respect to the 1-factor F if and only if $n \equiv 2$ or $4(\bmod 8)$, and also show that the complete bipartite graph $K_{n, n}$ (respectively $K_{n, n}-F$) has a symmetric Hamilton cycle decomposition if and only if n is even (respectively n is odd). As Hamilton/ symmetric Hamilton cycle decomposition of K_{n} for even n does not exists, considering the existence of such decomposition in λK_{n} gets merit (for suitable λ and n), since it covers a wider class of graphs.

Recently, Buratti and Merola [7] observed that every cyclic Hamilton cycle decomposition of $\lambda K_{2 n}$ or $\lambda K_{2 n}-F$ whose cycles having stabilizer of even order is, in particular symmetric: the required involutory automorphism would be in fact the addition by n, and also pointed that the existence of a symmetric Hamilton
cycle decomposition of $K_{n}-F$ for $n \equiv 4(\bmod 8)$ (part of the main result of the paper by Brualdi and Schroeder [4]) implicitly follows from the result of Jordon and Morris [9]. Also, the result of Buratti et al. [5] gives, implicitly, the existence of a symmetric Hamilton cycle decomposition of $2 K_{4 m}, m \geq 1$.

In this paper, we show that there exists a symmetric Hamilton cycle decomposition of $\lambda K_{2 m}$ for all even $\lambda \geq 2$ and $m \geq 2$. Also we show that there exists a symmetric Hamilton cycle decomposition of $\lambda K_{2 m}-F$ for all odd $\lambda \geq 3$ and $m \geq 2$. In fact, our results together with the results of Walecki, Brualdi and Schroeder prove that the complete multigraph λK_{n} (respectively, $\left.\lambda K_{n}-F\right)$ has a symmetric Hamilton cycle decomposition if and only if $\lambda(n-1)$ is even (respectively, $\lambda(n-1)$ is odd) except the non-existence cases $n \equiv 0$ or $6(\bmod 8)$ when $\lambda=1$, which were proved by Brualdi and Schroeder.

2. Notation and Preliminaries

Throughout this paper, we use the following notation:

- $V\left(\lambda K_{n}\right)= \begin{cases}\{0,1,2,3, \ldots, r, \overline{1}, \overline{2}, \overline{3}, \ldots, \bar{r}\}, & \text { if } n \text { is odd, say } n=2 r+1 ; \\ \{1,2,3, \ldots, r, \overline{1}, \overline{2}, \overline{3}, \ldots, \bar{r}\}, & \text { if } n \text { is even, say } n=2 r .\end{cases}$
- λK_{r}^{\star} is the complete multigraph with the vertex set $\{1,2, \ldots, r\}$.
- $\lambda \bar{K}_{r}^{\star}$ is the complete multigraph with the vertex set $\{\overline{1}, \overline{2}, \ldots, \bar{r}\}$.
- $\lambda K_{2 s, 2 s}$ is the complete bipartite multigraph with bipartition $\{1,2, \ldots, 2 s\}$ and $\{\overline{1}, \overline{2}, \ldots, \overline{2 s}\}$.
- $(1,2, \ldots, m, \overline{1}, \overline{2}, \ldots, \bar{m})$ denotes a symmetric cycle of length $2 m$.
- For our convenience, we view $\lambda K_{2 r}, \lambda K_{2 r}-F$ as follows:
(i) $\lambda K_{2 r}=\lambda K_{r}^{\star} \oplus \lambda K_{r, r} \oplus \lambda \bar{K}_{r}^{\star}$
(ii) $\lambda K_{2 r}-F=\lambda K_{r}^{\star} \oplus \lambda K_{r, r}-F \oplus \lambda \bar{K}_{r}^{\star}$, where $F=\left\{i \bar{i} \in E\left(K_{r, r}\right) \mid 1 \leq\right.$ $i \leq r\}$.
- F^{\prime} denotes the 1-factor $\left\{i(\overline{s+i}),(s+i) \bar{i} \in E\left(K_{2 s, 2 s}\right) \mid 1 \leq i \leq 2 s\right\}$ of $K_{2 s, 2 s}$.
- I denotes the 1 -factor $\left\{i(s+i) \in E\left(K_{2 s}^{\star}\right) \mid 1 \leq i \leq s\right\}$ of $K_{2 s}^{\star}$.
- \bar{I} denotes the 1 -factor $\left\{\bar{i}(\overline{s+i}) \in E\left(\bar{K}_{2 s}^{\star}\right) \mid 1 \leq i \leq s\right\}$ of $\bar{K}_{2 s}^{\star}$.

To prove our results we state the following.
Proposition 1 [1]. Let $p \geq 7$ be a prime. There exists a Hamilton cycle decomposition \mathcal{G}_{p} of K_{p} which is not isomorphic to the Walecki's decomposition \mathcal{W}_{p} of K_{p}.

Theorem 2 [1]. Let $n>7$ be an odd integer. There exists a symmetric Hamilton cycle decomposition of K_{n} which is not isomorphic to the Walecki's Hamilton cycle decomposition \mathcal{W}_{n}. Further, it is not isomorphic to \mathcal{G}_{n} when n is a prime .

Theorem 3 [4]. For each integer $m \geq 1$, there exist a symmetric Hamilton cycle decomposition of $K_{2 m, 2 m}$, and $K_{2 m+1,2 m+1}-F$, where F is a 1 -factor.

Theorem 4 [4]. Let $n>2$ be an integer. Then $K_{n}-F$ has a symmetric Hamilton cycle decomposition if and only if $n \equiv 2,4(\bmod 8)$.

Remark 5 [4]. Consider the complete bipartite graph $K_{2 m, 2 m}$ with $V\left(K_{2 m, 2 m}\right)=$ $\{1,2, \ldots, 2 m, \overline{1}, \overline{2}, \ldots, \overline{2 m}\}$. Let $E_{k}=\left\{a \bar{b} \in E\left(K_{2 m, 2 m}\right) \mid a+b \equiv k(\bmod 2 m)\right\}$. Clearly, each $S_{i}=E_{2 i} \cup E_{2 i+1}$ is a symmetric Hamilton cycle of $K_{2 m, 2 m}$ and $\left\{S_{1}, S_{2}, \ldots, S_{m}\right\}$ gives a symmetric Hamilton cycle decomposition of $K_{2 m, 2 m}$. Note that each S_{i} contain the edges $\{i(\overline{i+1}), \bar{i}(i+1),(\overline{m+i})(m+i+1),(m+$ $i)(\overline{m+i+1}), i \bar{i},(m+i)(\overline{m+i})\}, 1 \leq i \leq m$ and the additions are taken with modulo $2 m$.

Remark 6. Let $V\left(K_{2 m}^{\star}\right)=\{1,2, \ldots, 2 m\}$. Then $H=(1,2,2 m, 3,2 m-1,4,2 m-$ $2, \ldots, m+2, m+1,1)=\left\{a b \in E\left(K_{2 m}^{\star}\right) \mid a+b \equiv 2\right.$ or $\left.3(\bmod 2 m)\right\}$ is a Hamilton cycle of $K_{2 m}^{\star}$. Now we define an injective map $f_{i}:\{1,2,3, \ldots, 2 m\} \rightarrow$ $\{1,2,3, \ldots, 2 m\}, 1 \leq i \leq 2 m-1$ as follows:

$$
\begin{aligned}
& f_{i}(1)=1, \\
& f_{i}(x)= \begin{cases}x+i-1, & \text { if } x \in\{2,3, \ldots, 2 m-i+1\} ; \\
x-2 m+i, & \text { if } x \in\{2 m-i+2,2 m-i+3, \ldots, 2 m\} .\end{cases}
\end{aligned}
$$

Let $H_{i}=f_{i}(H)$. Then $\left\{H_{1}, H_{2}, \ldots, H_{2 m-1}\right\},\left\{H_{1}, H_{2}, \ldots, H_{m}\right\}$ and $\left\{H_{m+1}\right.$, $\left.H_{m+2}, \ldots, H_{2 m-1}\right\}$ respectively give a Hamilton cycle decomposition of multigraphs $2 K_{2 m}^{\star}, K_{2 m}^{\star} \oplus I$ and $K_{2 m}^{\star}-I$, where $I=\left\{i(m+i) \in E\left(K_{2 m}^{\star}\right) \mid 1 \leq i \leq m\right\}$. Note that each H_{i} contain the edges $\{i(i+1),(m+i)(m+i+1)\}, 1 \leq i \leq m$ (see Figure 1).

Also we observe that the Hamilton cycle decompositions given above will imply a 1-rotational Hamilton cycle decomposition of $2 K_{2 m}^{\star}, K_{2 m}^{\star} \oplus I$ and $K_{2 m}^{\star}-I$ by just replacing the symbols 1 by ∞ and $x, 2 \leq x \leq 2 m$, by $x-1$.

3. Complete Multigraphs

In this section, we investigate the existence of a symmetric Hamilton cycle decomposition of complete multigraph λK_{n}, when $\lambda(n-1)$ is even. Since the symmetric Hamilton cycle decomposition of λK_{n}, when n odd, exists from the well known Walecki's construction [10], our main focus is to find a symmetric Hamilton cycle decomposition of $2 K_{2 m}$.

Figure 1. $H_{1}, H_{2}, H_{3}, \ldots, H_{2 m-1}$ of $K_{2 m+1}$.

Lemma 7. For all integers $m \geq 1$, there exists a symmetric Hamilton cycle decomposition of $K_{2 m} \square K_{2}$.

Proof. Let $V\left(K_{2 m}\right)=\left\{u_{1}, u_{2}, \ldots, u_{2 m}\right\}$ and $V\left(K_{2}\right)=\left\{v_{1}, v_{2}\right\}$. For our convenience, we denote $V\left(K_{2 m} \square K_{2}\right)=\bigcup_{s=1}^{2} V_{s}$, where $V_{1}=\left\{i \mid i=\left(u_{i}, v_{1}\right), 1 \leq i \leq\right.$ $2 m\}, V_{2}=\left\{\bar{i} \mid \bar{i}=\left(u_{i}, v_{2}\right), 1 \leq i \leq 2 m\right\}$ and $E\left(K_{2 m} \square K_{2}\right)=\{i j, \bar{i} \bar{j}, i \bar{i} \mid i \neq$ $j, i, j=1,2, \ldots, 2 m\}$. For $1 \leq k \leq 2 m, 1 \leq l \leq m$, we define

$$
\begin{aligned}
E_{k} & =\left\{i j \in E\left(K_{2 m} \square K_{2}\right) \mid i \neq j, i+j \equiv k(\bmod 2 m)\right\}, \\
\bar{E}_{k} & =\left\{\bar{i} \bar{j} \in E\left(K_{2 m} \square K_{2}\right) \mid i \neq j, i+j \equiv k(\bmod 2 m)\right\}, \\
J_{l} & =\left\{\bar{i} \in E\left(K_{2 m} \square K_{2}\right) \mid 2 i \equiv 2 l(\bmod 2 m)\right\} .
\end{aligned}
$$

Note that $E_{2 l} \cup E_{2 l+1}$ and $\bar{E}_{2 l} \cup \bar{E}_{2 l+1}$ are Hamilton paths with end vertices l, $m+l$ and $\bar{l}, \overline{m+l}$ of $K_{2 m}^{\star}$ and $\bar{K}_{2 m}^{\star}$ respectively. For each $l, 1 \leq l \leq m$, we define $H_{l}=E_{2 l} \cup E_{2 l+1} \cup J_{l} \cup \bar{E}_{2 l} \cup \bar{E}_{2 l+1}$. Clearly, each H_{l} is a symmetric Hamilton cycle and $\left\{H_{1}, H_{2}, \ldots, H_{m}\right\}$ gives a symmetric Hamilton cycle decomposition of $K_{2 m} \square K_{2}$.

Lemma 8. For all integers $m \geq 1$, there exists a symmetric Hamilton cycle decomposition of $2\left(K_{2 m+1} \square K_{2}\right)$.

Proof. Let $V\left(K_{2 m+1}\right)=\left\{u_{1}, u_{2}, u_{3}, \ldots, u_{2 m+1}\right\}$ and $V\left(K_{2}\right)=\left\{v_{1}, v_{2}\right\}$. We denote $V\left(K_{2 m+1} \square K_{2}\right)=\bigcup_{s=1}^{2} V_{s}$ where $V_{1}=\left\{i \mid i=\left(u_{i}, v_{1}\right), 1 \leq i \leq 2 m\right\}$, $V_{2}=\left\{\bar{i} \mid \bar{i}=\left(u_{i}, v_{2}\right), 1 \leq i \leq 2 m\right\}$ and $E\left(K_{2 m+1} \square K_{2}\right)=\{i j, \bar{i} \bar{j}, i \bar{i} \mid, i \neq j, i, j=$ $1,2, \ldots, 2 m+1\}$.

For all $k, 1 \leq k \leq 2 m+1$, we define

$$
\begin{aligned}
E_{k} & =\left\{i j \in E\left(K_{2 m+1} \square K_{2}\right) \mid i \neq j, i+j \equiv k(\bmod 2 m+1)\right\} \\
\bar{E}_{k} & =\left\{\bar{i} \bar{j} \in E\left(K_{2 m+1} \square K_{2}\right) \mid i \neq j, i+j \equiv k(\bmod 2 m+1)\right\}
\end{aligned}
$$

Note that $E_{2 l} \cup E_{2 l+1}, E_{2 l-1} \cup E_{2 l}$ and $E_{1} \cup E_{2 m+1}$ are Hamilton paths of $K_{2 m}^{\star}$ with end vertices $l, m+1+l ; l, m+l$; and $m+1,2 m+l$ respectively. Similarly, $\bar{E}_{2 l} \cup \bar{E}_{2 l+1}, \bar{E}_{2 l-1} \cup \bar{E}_{2 l}$ and $\bar{E}_{1} \cup \bar{E}_{2 m+1}$ are Hamilton paths of $\bar{K}_{2 m}^{\star}$ with end vertices $\bar{l}, \overline{m+1+l} ; \bar{l}, \overline{m+l}$; and $\overline{m+1}, \overline{2 m+l}$ respectively.

For each $l, 1 \leq l \leq m$, we define

$$
\begin{aligned}
H_{l} & =E_{2 l} \cup E_{2 l+1} \cup\{l \bar{l},(m+1+l)(\overline{m+1+l})\} \cup \bar{E}_{2 l} \cup \bar{E}_{2 l+1} \\
H_{l}^{\prime} & =E_{2 l-1} \cup E_{2 l} \cup\{l \bar{l},(m+l)(\overline{m+l})\} \cup \bar{E}_{2 l-1} \cup \bar{E}_{2 l} \\
H_{2 m+1} & =E_{1} \cup E_{2 m+1} \cup\{(2 m+1)(\overline{2 m+1}),(m+1)(\overline{m+1})\} \cup \bar{E}_{1} \cup \bar{E}_{2 m+1}
\end{aligned}
$$

Clearly, each H_{l}, H_{l}^{\prime} are symmetric Hamilton cycles and $\left\{H_{1}, H_{2}, \ldots, H_{m}, H_{1}^{\prime}\right.$, $\left.H_{2}^{\prime}, \ldots, H_{m}^{\prime}, H_{2 m+1}\right\}$ gives a symmetric Hamilton cycle decomposition of $2\left(K_{2 m+1}\right.$ $\left.\square K_{2}\right)$.

Remark 9. Note that the symmetric Hamilton cycles H_{l} and $H_{l}^{\prime}, 1 \leq l \leq m$ obtained in Lemma 8 contain the edges $\{l(l+1), \bar{l}(\overline{l+1})\}$ and $\{(2 m+l+1)(2 m+$ $1+l+1),(\overline{2 m+l+1})(\overline{2 m+1+l+1})\}$ respectively.

Note 10. It is observed that for every Hamilton path decomposition of $K_{2 m}$ we can find a symmetric Hamilton cycle decomposition of $K_{2 m, 2 m}$ and $K_{2 m} \square K_{2}$, also to every Hamilton path decomposition of $2 K_{2 m+1}$ we can find a symmetric Hamilton cycle decomposition of $2\left(K_{2 m+1} \square K_{2}\right)$.

Theorem 11. For all integers $m \geq 1$, there exists a symmetric Hamilton cycle decomposition of $2 K_{4 m+2}$.

Proof. Let $V\left(2 K_{4 m+2}\right)=\{1,2, \ldots, 2 m+1, \overline{1}, \overline{2}, \ldots, \overline{2 m+1}\}$. Now the complete multigraph $2 K_{4 m+2}$ can be viewed as follows: $2 K_{4 m+2}=2\left(K_{2 m+1} \square K_{2}\right) \oplus$ $2\left(K_{2 m+1,2 m+1}-F\right)$, where $F=\left\{i \bar{i} \in E\left(K_{2 m+1,2 m+1}\right) \mid 1 \leq i \leq 2 m+1\right\}$ is a 1-factor of $K_{2 m+1,2 m+1}$. We know that $2\left(K_{2 m+1} \square K_{2}\right)$ and $\left(K_{2 m+1,2 m+1}-F\right)$ have symmetric Hamilton cycle decompositions by Lemma 8 and Theorem 3, respectively.

We recall that Buratti and Merola [7] observed that every cyclic Hamilton cycle decomposition of $\lambda K_{2 n}$ or $\lambda K_{2 n}-F$ whose cycles have stabilizer of even order is, in particular symmetric: the required involutory automorphism would be in fact the addition by n. So the result of Buratti et al. [5] deduce the existence of a symmetric Hamilton cycle decomposition of $2 K_{4 m}, m \geq 1$.

The next construction provides an alternative proof for the existence of a symmetric Hamilton cycle decomposition of $2 K_{4 m}, m \geq 1$ which is implicitly contained in Buratti et al. ([[5], Lemma 3.5]).
Theorem 12. For all integers $m \geq 1$, there exists a symmetric Hamilton cycle decomposition of $2 K_{4 m}$.
Proof. Let $V\left(2 K_{4 m}\right)=\{1,2, \ldots, 2 m, \overline{1}, \overline{2}, \ldots, \overline{2 m}\}$. For $m=1$ the graph is $2 K_{4}$. Clearly, $\{(1, \overline{2}, 2, \overline{1}),(1,2, \overline{1}, \overline{2}),(1, \overline{1}, \overline{2}, 2)\}$ gives a symmetric Hamilton cycle decomposition of $2 K_{4}$.

For $m \geq 2$, we write $2 K_{4 m}=2 K_{2 m}^{\star} \oplus K_{2 m, 2 m} \oplus K_{2 m, 2 m}^{\prime} \oplus 2 \bar{K}_{2 m}^{\star}$. Now the idea of decomposing $2 K_{4 m}$ into symmetric Hamilton cycles is as follows: First we decompose $K_{2 m, 2 m}$ and $K_{2 m, 2 m}^{\prime}$ into symmetric Hamilton cycles $S_{1}, S_{2}, \ldots, S_{m}$ and $S_{1}^{\prime}, S_{2}^{\prime}, \ldots, S_{m}^{\prime}$, and $2 K_{2 m}^{\star}, 2 \bar{K}_{2 m}^{\star}$ into Hamilton cycles $\left\{H_{1}, H_{2}, \ldots, H_{2 m-1}\right\}$, $\left\{H_{1}^{\prime}, H_{2}^{\prime}, \ldots, H_{2 m-1}^{\prime}\right\}$ respectively. Then by decomposing each $H_{i} \oplus S_{i} \oplus H_{i}^{\prime}$, $1 \leq i \leq m$ and $H_{m+j} \oplus S_{j}^{\prime} \oplus H_{m+j}^{\prime}, 1 \leq j \leq m-1$ into symmetric Hamilton cycles C_{1}^{i}, C_{2}^{i} and D_{1}^{i}, D_{2}^{i} respectively, we get the symmetric Hamilton cycle decomposition $\left\{C_{1}^{1}, C_{1}^{2}, \ldots, C_{1}^{m}, C_{2}^{1}, C_{2}^{2}, \ldots, C_{2}^{m}, D_{1}^{1}, D_{1}^{2}, \ldots, D_{1}^{m-1}, D_{2}^{1}, D_{2}^{2}, \ldots, D_{2}^{m-1}, S_{m}^{\prime}\right\}$ of $2 K_{4 m}$.

Figure 2. Symmetric Hamilton cycles C_{1}^{i} and C_{2}^{i} from $H_{i} \oplus S_{i} \oplus \bar{H}_{i}$.
We know by Remark 5 that $2 K_{2 m, 2 m}$ has a symmetric Hamilton cycle decomposition $\left\{S_{1}, S_{2}, \ldots, S_{m}, S_{1}^{\prime}, S_{2}^{\prime}, \ldots, S_{m}^{\prime}\right\}$ such that both S_{i} and S_{i}^{\prime} contain the edges $\{i(\overline{i+1}), \bar{i}(i+1),(\overline{m+i})(m+i+1),(m+i)(\overline{m+i+1}), i \bar{i},(m+i)(\overline{m+i})\}$. Furthermore, by Remark $6,2 K_{2 m}^{\star}$ has a Hamilton cycle decomposition $\left\{H_{1}, H_{2}, \ldots\right.$, $\left.H_{2 m-1}\right\}$ such that each H_{i} contain the edges $\{i(i+1),(m+i)(m+i+1)\}$. Similarly, let $\left\{\bar{H}_{1}, \bar{H}_{2}, \ldots, \bar{H}_{2 m-1}\right\}$ be a Hamilton cycle decomposition of $2 \bar{K}_{2 m}^{\star}$ such that each \bar{H}_{i} contain the edges $\{\bar{i}(\overline{i+1}),(\overline{m+i})(\overline{m+i+1})\}$.

Now we define C_{1}^{i}, C_{2}^{i} from $H_{i} \oplus S_{i} \oplus \bar{H}_{i}, 1 \leq i \leq m$ as follows:

$$
\begin{aligned}
& C_{1}^{i}=\left(H_{i} \backslash\{i(i+1)\}\right) \cup\left(\bar{H}_{i} \backslash\{\bar{i}(\overline{i+1})\}\right) \oplus\{i(\overline{i+1}), \bar{i}(i+1)\}, \\
& C_{2}^{i}=\left(S_{i} \backslash\{i(\overline{i+1}), \bar{i}(i+1)\}\right) \oplus\{i(i+1), \bar{i}(\overline{i+1})\}
\end{aligned}
$$

Figure 3. Symmetric Hamilton cycles D_{1}^{i} and D_{2}^{i} from $H_{i} \oplus S_{j}^{\prime} \oplus \bar{H}_{i}$.
Now we define D_{1}^{j}, D_{2}^{j} from $H_{m+j} \oplus S_{j}^{\prime} \oplus \bar{H}_{m+j}, 1 \leq j \leq m-1$ as follows:

$$
\begin{aligned}
D_{1}^{j}= & \left(H_{m+j} \backslash\{(m+j)(m+j+1)\}\right) \cup\left(\bar{H}_{m+j} \backslash\{\overline{(m+j)}(\overline{m+j+1})\}\right) \\
& \oplus\{(m+j)(\overline{m+j+1}),(\overline{m+j})(m+j+1)\} \\
D_{2}^{j}= & \left(S_{j}^{\prime} \backslash\{(m+j)(\overline{m+j+1}), \overline{(m+j)}(m+j+1)\}\right) \\
& \oplus\{(m+j)(m+j+1), \overline{m+j}(\overline{m+j+1})\} .
\end{aligned}
$$

It is easy to check that $C_{1}^{i}, C_{2}^{i}, D_{1}^{j}$ and D_{2}^{j} are edge-disjoint symmetric Hamilton cycles of $2 K_{4 m}$, (see Figures 2 and 3). Hence $\left\{C_{1}^{i}, C_{2}^{i}, D_{1}^{j}, D_{2}^{j}, S_{m}^{\prime} \mid 1 \leq i \leq m, 1 \leq\right.$ $j \leq m-1\}$ gives a symmetric Hamilton cycle decomposition of $2 K_{4 m}$.

Theorem 13. For all $\lambda \equiv 0(\bmod 2)$ and $n \equiv 0(\bmod 2) \geq 4$, there exists a symmetric Hamilton cycle decomposition of λK_{n}.

Proof. Follows from Theorems 11 and 12.

4. Complete Multigraph Minus a 1-factor

In this section, we investigate the existence of symmetric Hamilton cycle decomposition of $\lambda K_{n}-F$, when λK_{n} has odd regularity.

Theorem 14. For all $\lambda \equiv 1(\bmod 2)$ and $n \equiv 2$ or $4(\bmod 8)$, there exists a symmetric Hamilton cycle decomposition of $\lambda K_{n}-F$.

Proof. We can write $\lambda K_{n}-F=(\lambda-1) K_{n} \oplus K_{n}-F$. Since both n and $\lambda-1$ are even, $(\lambda-1) K_{n}$ and $\left(K_{n}-F\right)$ have a symmetric Hamilton cycle decomposition by Theorems 13 and 4 respectively.

Theorem 15. For all $n \equiv 6(\bmod 8)$, there exists a symmetric Hamilton cycle decomposition of $3 K_{n}-F$.

Proof. Let $n=8 m+6$ and $V\left(3 K_{8 m+6}\right)=\{1,2, \ldots, 4 m+3, \overline{1}, \overline{2}, \ldots, \overline{4 m+3}\}$. For $m=0$, the graph is $3 K_{6}-F$. Clearly $\{(1, \overline{2}, 3, \overline{1}, 2, \overline{3}),(1, \overline{2}, 3, \overline{1}, 2, \overline{3})$, $(1,2,3, \overline{1}, \overline{2}, \overline{3}),(1, \overline{2}, \overline{3}, \overline{1}, 2,3),(1,3,2, \overline{2}, \overline{3}, \overline{1}),(1,2, \overline{2}, \overline{1}, \overline{3}, 3),(1,2, \overline{3}, 3, \overline{2}, \overline{1})\}$ gives a symmetric Hamilton cycle decomposition of $3 K_{6}-F$, where $F=\{1 \overline{1}, 2 \overline{2}, 3 \overline{3}\}$ is a 1 -factor.

Now we construct a symmetric Hamilton cycle decomposition of $3 K_{n}-F$ for $n \geq 14$ as follows: For $1 \leq k \leq 4 m+3,1 \leq i \leq 2 m+1$, we define

$$
\begin{aligned}
H_{i}= & F_{2 i} \cup F_{2 i+1} \cup\{(4 m+3) i,(\overline{4 m+3}) \bar{i},(\overline{4 m+3})(2 m+1+i) \\
& (4 m+3)(\overline{2 m+1+i})\} \cup F_{2 i}^{\prime} \cup F_{2 i+1}^{\prime} \\
S_{i}= & E_{2 i} \cup E_{2 i+1} \cup\{(4 m+3) \bar{i},(\overline{4 m+3}) i,(4 m+3)(2 m+1+i), \\
& (\overline{4 m+3})(\overline{2 m+1+i})\}
\end{aligned}
$$

where

$$
\begin{aligned}
E_{k} & =\left\{a \bar{b} \in E\left(K_{4 m+2,4 m+2}\right) \mid a \neq b, a+b \equiv k(\bmod 4 m+2)\right\} \\
F_{k} & =\left\{a b \in E\left(K_{4 m+2}^{\star}\right) \mid a+b \equiv k(\bmod 4 m+2)\right\} \\
F_{k}^{\prime} & =\left\{\bar{a} \bar{b} \in E\left(\bar{K}_{4 m+2}^{\star}\right) \mid a+b \equiv k(\bmod 4 m+2)\right\}
\end{aligned}
$$

It is easy to check that each H_{i} is a symmetric Hamilton cycle of $K_{8 m+6}-$ F and each S_{i} is a symmetric 2-factor of $K_{8 m+6}-F$ containing the edges $\{i(\overline{i+1}), \bar{i}(i+1)\}$, where $F=\left\{i \bar{i} \in E\left(K_{4 m+3,4 m+3}\right) \mid 1 \leq i \leq 4 m+3\right\}$ is a 1-factor. So we write $K_{8 m+6}-F=\left(\oplus_{i=1}^{2 m+1} H_{i}\right) \oplus\left(\oplus_{i=1}^{2 m+1} S_{i}\right)$. Furthermore, by Lemma $8,2\left(K_{4 m+3} \square K_{2}\right)$ has a symmetric Hamilton cycle decomposition $\left\{C_{1}, C_{2}, \ldots, C_{2 m+1}, C_{1}^{\prime}, C_{2}^{\prime}, \ldots, C_{2 m+1}^{\prime}, C_{4 m+3}\right\}$. Now we can write

$$
\begin{aligned}
3 K_{8 m+6}-F= & 2 K_{8 m+6} \oplus\left(K_{8 m+6}-F\right) \\
= & 2\left(K_{4 m+3} \square K_{2}\right) \oplus 2\left(K_{4 m+3,4 m+3}-F\right) \oplus\left(K_{8 m+6}-F\right) \\
= & \left(\left(\oplus_{i=1}^{2 m+1} C_{i}\right) \oplus\left(\oplus_{i=1}^{2 m+1} C_{i}^{\prime}\right) \oplus C_{4 m+3}\right) \oplus 2\left(K_{4 m+3,4 m+3}-F\right) \\
& \oplus\left(\oplus_{i=1}^{2 m+1} H_{i}\right) \oplus\left(\oplus_{i=1}^{2 m+1} S_{i}\right)
\end{aligned}
$$

We now construct the remaining symmetric Hamilton cycles D_{1}^{i}, D_{2}^{i} from $C_{i} \oplus S_{i}$, $1 \leq i \leq 2 m+1$ as follows:

$$
\begin{aligned}
D_{1}^{i} & =\left(S_{i} \backslash\{i(\overline{i+1}), \bar{i}(i+1)\}\right) \oplus\{i(i+1), \bar{i}(\overline{i+1})\} \\
D_{2}^{i} & =\left(C_{i} \backslash\{i(i+1), \bar{i}(\overline{i+1})\} \oplus\{i(\overline{i+1}), \bar{i}(i+1)\}\right.
\end{aligned}
$$

One can check that D_{1}^{i}, D_{2}^{i} are symmetric Hamilton cycles of $2\left(K_{4 m+3} \square K_{2}\right) \oplus$ $K_{8 m+6}-F$. Hence $\left\{D_{1}^{i}, D_{2}^{i}, C_{i}^{\prime}, C_{4 m+3}, H_{i} \mid 1 \leq i \leq 2 m+1\right\}$ together with the symmetric Hamilton cycle decomposition of $2\left(K_{4 m+3,4 m+3}-F\right)$ which exists by Theorem 3, gives a symmetric Hamilton cycle decomposition of $3 K_{8 m+6}-F$.

Lemma 16. The graph $\left(K_{2 m}^{\star} \oplus I\right) \oplus K_{2 m, 2 m}^{\star} \oplus\left(\bar{K}_{2 m}^{\star} \oplus \bar{I}\right)$, where $I=\{i(m+i) \in$ $\left.E\left(K_{2 m}^{\star}\right) \mid 1 \leq i \leq m\right\}, \bar{I}=\left\{\bar{i}(\overline{m+i}) \in E\left(\overline{K_{2 m}^{\star}}\right) \mid 1 \leq i \leq m\right\}$ admits a symmetric Hamilton cycle decomposition for all $m \geq 1$.

Proof. We know by Remark 5 that $K_{2 m, 2 m}$ has a symmetric Hamilton cycle decomposition $\left\{S_{1}, S_{2}, \ldots, S_{m}\right\}$ such that each S_{i} contain the edges $\{i(\overline{i+1}), \bar{i}(i+$ 1), $(\overline{m+i})(m+i+1),(m+i)(\overline{m+i+1}), i \bar{i},(m+i)(\overline{m+i})\}$. Further by Remark $6, K_{2 m}^{\star} \oplus I$ has a Hamilton cycle decomposition $\left\{H_{1}, H_{2}, \ldots, H_{m}\right\}$ such that each H_{i} contain the edges $\{i(i+1),(m+i)(m+i+1)\}$. Similarly, let $\left\{\bar{H}_{1}, \bar{H}_{2}, \ldots, \bar{H}_{m}\right\}$ be a Hamilton cycle decomposition of $\bar{K}_{2 m}^{\star} \oplus \bar{I}$ such that each \bar{H}_{i} contain the edges $\{\bar{i}(\overline{i+1}),(\overline{m+i})(\overline{m+i+1})\}$.

For each integer $i, 1 \leq i \leq m$, we construct C_{1}^{i}, C_{2}^{i} as follows:

$$
\begin{aligned}
C_{1}^{i} & =\left(H_{i} \backslash\{i(i+1)\}\right) \cup\left(\bar{H}_{i} \backslash\{\bar{i}(\overline{i+1})\}\right) \oplus\{i(\overline{i+1}), \bar{i}(i+1)\} \\
C_{2}^{i} & =\left(S_{i} \backslash\{i(\overline{i+1}), \bar{i}(i+1)\}\right) \oplus\{i(i+1), \bar{i}(\overline{i+1})\}
\end{aligned}
$$

Clearly, $\left\{C_{1}^{i}, C_{2}^{i} \mid 1 \leq i \leq m\right\}$ gives a symmetric Hamilton cycle decomposition of $\left(K_{2 m}^{\star} \oplus I\right) \oplus K_{2 m, 2 m} \oplus\left(\overline{K_{2 m}^{\star}} \oplus \bar{I}\right)$.

Lemma 17. The graph $K_{2 m}^{\star} \oplus F^{\prime} \oplus \bar{K}_{2 m}^{\star}$, where $F^{\prime}=\{i(\overline{m+i}), \bar{i}(m+i) \in$ $\left.E\left(K_{2 m, 2 m}\right) \mid 1 \leq i \leq m\right\}$ admits a symmetric Hamilton cycle decomposition for all $m \geq 1$.

Proof. For $1 \leq l \leq m$, we define $H_{l}=E_{2 l} \cup E_{2 l+1} \cup\{l(\overline{m+l}), \bar{l}(m+l)\} \cup \bar{E}_{2 l} \cup$ $\bar{E}_{2 l+1}$, where

$$
\begin{aligned}
E_{k} & =\left\{i j \in E\left(K_{2 m}^{\star}\right) \mid i \neq j, i+j \equiv k(\bmod 2 m)\right\} \\
\bar{E}_{k} & =\left\{\bar{i} \bar{j} \in E\left(\bar{K}_{2 m}^{\star}\right) \mid i \neq j, i+j \equiv k(\bmod 2 m)\right\}
\end{aligned}
$$

Clearly, each H_{l} is a symmetric Hamilton cycle and $\left\{H_{1}, H_{2}, \ldots, H_{m}\right\}$ gives a symmetric Hamilton cycle decomposition of $K_{2 m}^{\star} \oplus F^{\prime} \oplus \bar{K}_{2 m}^{\star}$.

Lemma 18. The graph $K_{2 m, 2 m}-\left\{F, F^{\prime}\right\}$, where $F=\left\{i \bar{i} \in E\left(K_{2 m, 2 m}\right) \mid 1 \leq\right.$ $i \leq 2 m\}, F^{\prime}=\left\{i(\overline{m+i}), \bar{i}(m+i) \in E\left(K_{2 m, 2 m}\right) \mid 1 \leq i \leq m\right\}$ admits a $C_{2 m^{-}}$ factorization for all $m \geq 2$.

Proof. Let $V\left(K_{2 m, 2 m}\right)=\{1,2, \ldots, 2 m, \overline{1}, \overline{2}, \ldots, \overline{2 m}\}$. By Remark 6, let $\mathcal{H}=$ $\left\{H_{m+1}, H_{m+2}, \ldots, H_{2 m-1}\right\}$ be a Hamilton cycle decomposition of $K_{2 m}^{\star}-I$, where $I=\left\{i(m+i) \in E\left(K_{2 m}^{\star}\right) \mid 1 \leq i \leq m\right\}$. Let $H \in \mathcal{H}$ and if $H=(1,2, \ldots, 2 m)$ in $K_{2 m}^{\star}-F$, then we define a 2 -factor C as $C=(1, \overline{2}, 3, \overline{4}, \ldots, \overline{2 m})(\overline{1}, 2, \overline{3}, 4, \ldots, 2 m)$ in $K_{2 m, 2 m}-\left\{F, F^{\prime}\right\}$. So corresponding to each $H_{m+i} \in \mathcal{H}$ we can define a C^{i} as above. Hence $\left\{C^{i} \mid 1 \leq i \leq m-1\right\}$ gives a $C_{2 m}$-factorization of $K_{2 m, 2 m}-\left\{F, F^{\prime}\right\}$. Since by Remark 6 , each $H_{m+i} \in \mathcal{H}$ contain the edges $\{i(i+1),(m+i)(m+i+1)\}$, C^{i} also contain the edges $\{i(\overline{i+1}), \bar{i}(i+1),(m+i)(\overline{m+i+1}),(\overline{m+i})(m+i+1)\}$.

Lemma 19. The graph $\left(K_{2 m}^{\star}-I\right) \oplus K_{2 m, 2 m}-\left\{F, F^{\prime}\right\} \oplus\left({\overline{K_{2 m}}}_{\star}^{\star}-\bar{I}\right)$, where $I=$ $\left\{i(m+i) \in E\left(K_{2 m}^{\star}\right) \mid 1 \leq i \leq m\right\}, \bar{I}=\left\{\bar{i}(\overline{m+i}) \in E\left(\bar{K}_{2 m}^{\star}\right) \mid 1 \leq i \leq m\right\}$, $F=\left\{i \bar{i} \in E\left(K_{2 m, 2 m}\right) \mid 1 \leq i \leq 2 m\right\}, F^{\prime}=\left\{i(\overline{m+i}), \bar{i}(m+i) \in E\left(K_{2 m, 2 m}\right) \mid 1 \leq\right.$ $i \leq m\}$ admits a symmetric Hamilton cycle decomposition for all $m \geq 1$.

Proof. We know by Remark 6, $K_{2 m}^{\star}-I$ has a Hamilton cycle decomposition $\left\{H_{m+1}, H_{m+2}, \ldots, H_{2 m-1}\right\}$ such that each H_{m+i} contain the edges $\{i(i+1),(m+$ $i)(m+i+1)\}$. Similarly, $\bar{K}_{2 m}^{\star}-\bar{I}$ has a Hamilton cycle decomposition $\left\{\bar{H}_{m+1}\right.$, $\left.\bar{H}_{m+2}, \ldots, \bar{H}_{2 m-1}\right\}$ such that each \bar{H}_{m+j} contain the edges $\{\bar{j}(\overline{j+1}),(\overline{m+j})$ $(\overline{m+j+1})\}$. Let $\left\{C^{1}, C^{2}, \ldots, C^{m-1}\right\}$ be a $C_{2 m}$-factorization of $K_{2 m, 2 m}-\left\{F, F^{\prime}\right\}$ as obtained in Lemma 18. Note that each factor C^{j} contain the edges $\{j(\overline{j+1})$, $\bar{j}(j+1),(m+j)(\overline{m+j+1}),(\overline{m+j})(m+j+1)\}$.

For each integer $j, 1 \leq j \leq m-1$, we construct symmetric Hamilton cycles D_{1}^{j}, D_{2}^{j} as follows:

$$
\begin{aligned}
D_{1}^{j} & =\left(H_{j} \backslash\{j(j+1)\}\right) \cup\left(\bar{H}_{j} \backslash\{\bar{j}(\overline{j+1})\}\right) \oplus\{j(\overline{j+1}), \bar{j}(j+1)\} \\
D_{2}^{j} & =\left(C^{j} \backslash\{j(\overline{j+1}), \bar{j}(j+1)\}\right) \oplus\{j(j+1), \bar{j}(\overline{j+1})\} .
\end{aligned}
$$

Then $\left\{D_{1}^{j}, D_{2}^{j} \mid 1 \leq j \leq m-1\right\}$ gives a symmetric Hamilton cycle decomposition of $\left(K_{2 m}^{\star}-I\right) \oplus K_{2 m, 2 m}-\left\{F, F^{\prime}\right\} \oplus\left(\bar{K}_{2 m}^{\star}-\bar{I}\right)$.

Theorem 20. For all $n \equiv 0(\bmod 8)$, there exists a symmetric Hamilton cycle decomposition of $3 K_{n}-F$.

Proof. Let $n=8 m$ and $V\left(3 K_{8 m}\right)=\{1,2, \ldots, 4 m, \overline{1}, \overline{2}, \ldots, \overline{4 m}\}$. Now we write $3 K_{8 m}-F$, where $F=\left\{i \bar{i} \in E\left(K_{4 m, 4 m}\right) \mid 1 \leq i \leq 4 m\right\}$ as follows:

$$
\begin{aligned}
3 K_{8 m}-F= & \left(\left(K_{4 m}^{\star} \oplus I\right) \oplus K_{4 m, 4 m} \oplus\left(\bar{K}_{4 m}^{\star} \oplus \bar{I}\right)\right) \oplus\left(K_{4 m}^{\star} \oplus F^{\prime} \oplus \bar{K}_{4 m}^{\star}\right) \\
& \oplus\left(\left(K_{4 m}^{\star}-I\right) \oplus K_{4 m, 4 m}-\left\{F, F^{\prime}\right\} \oplus\left(\bar{K}_{4 m}^{\star}-\bar{I}\right)\right) \oplus K_{4 m, 4 m}
\end{aligned}
$$

Where $I=\left\{i(2 m+i) \in E\left(K_{4 m}^{\star}\right) \mid 1 \leq i \leq 2 m\right\}, \bar{I}=\left\{\bar{i}(\overline{2 m+i}) \in E\left(\bar{K}_{4 m}^{\star}\right) \mid 1 \leq\right.$ $i \leq 2 m\}, F^{\prime}=\left\{i(\overline{2 m+i}), \bar{i}(2 m+i) \in E\left(K_{4 m, 4 m}\right) \mid 1 \leq i \leq 2 m\right\}$. The remaining proof follows from Lemmas 16, 17, 19 and Remark 5.

Theorem 21. For all $\lambda \equiv 1(\bmod 2) \geq 3$ and $n \equiv 0(\bmod 2) \geq 4$, there exists a symmetric Hamilton cycle decomposition of $\lambda K_{n}-F$.

Proof. Follows from Theorems 14, 15 and 20.

5. Conclusion

From the results of Sections 3 and 4 together with the known results of Section 2 , we have the following:

Theorem 22. For $n \geq 3$, there exists a symmetric Hamilton cycle decomposition of λK_{n} if and only if
(i) λ is even and n is odd, (or)
(ii) λ is odd and n is odd, (or)
(iii) λ is even and n is even.

Theorem 23. For $n \geq 3$, there exists a symmetric Hamilton cycle decomposition of $\lambda K_{n}-F$ with respect to the 1 -factor F if and only if λ is odd and n is even except the non-existence cases $n \equiv 0$ or $6(\bmod 8)$ when $\lambda=1$.

Acknowledgement

We thank the anonymous referees for their helpful comments and suggestions. Also the second author thank the Department of Science and Technology, Government of India, New Delhi for its financial support through the Grant No.DST/ SR/ S4/ MS:372/ 06 and the first author thank Jawaharlal Nehru Memorial Fund for the financial assistance through Jawaharlal Nehru Memorial Fund scholarship for doctoral studies (No.SU-A/ 007/ 2011-12/ 394).

References

[1] J. Akiyama, M. Kobayashi and G. Nakamura, Symmetric Hamilton cycle decompositions of the complete graph, J. Combin. Des. 12 (2004) 39-45. doi:10.1002/jcd. 10066
[2] B. Alspach, The wonderful Walecki construction, Bull. Inst. Combin. Appl. 52 (2008) 7-20.
[3] J. Bosák, Decompositions of Graphs (Kluwer Academic Publishers, 1990).
[4] R.A. Brualdi and M.W. Schroeder, Symmetric Hamilton cycle decompositions of complete graphs minus a 1-factor, J. Combin. Des. 19 (2011) 1-15. doi:10.1002/jcd. 20257
[5] M. Buratti, S. Capparelli and A. Del Fra, Cyclic Hamiltonian cycle systems of the λ-fold complete and cocktail party graph, European J. Combin. 31 (2010) 1484-1496. doi:10.1016/j.ejc.2010.01.004
[6] M. Buratti and A. Del Fra, Cyclic Hamiltonian cycle systems of the complete graph, Discrete Math. 279 (2004) 107-119. doi:10.1016/S0012-365X(03)00267-X
[7] M. Buratti and F. Merola, Dihedral Hamiltonian cycle system of the cocktail party graph, J. Combin. Des. 21 (2013) 1-23. doi:10.1002/jcd. 21311
[8] A.J.W. Hilton, Hamiltonian decompositions of complete graphs, J. Combin. Theory (B) $\mathbf{3 6}$ (1984) 125-134. doi:10.1016/0095-8956(84)90020-0
[9] H. Jordon and J. Morris, Cyclic hamiltonian cycle systems of the complete graph minus a 1-factor, Discrete Math. 308 (2008) 2440-2449. doi:10.1016/j.disc.2007.05.009
[10] D.E. Lucas, Recreations Mathematiques, Vol. 2 (Gauthiers Villars, Paris, 1982).
Received 16 June 2011
Revised 14 August 2012
Accepted 20 August 2012

