Discussiones Mathematicae Graph Theory 33 (2013) 509–519 doi:10.7151/dmgt.1685

FRACTIONAL Q-EDGE-COLORING OF GRAPHS

Július Czap

Department of Applied Mathematics and Business Informatics, Faculty of Economics, Technical University of Košice, Němcovej 32, SK-040 01 Košice, Slovakia

e-mail: julius.czap@tuke.sk

AND

Peter Mihók[†]

Department of Applied Mathematics and Business Informatics, Faculty of Economics, Technical University of Košice, Němcovej 32, SK-040 01 Košice, Slovakia and Mathematical Institute of the Slovak Academy of Sciences, Grešákova 6, SK-040 01 Košice, Slovakia

Abstract

An additive hereditary property of graphs is a class of simple graphs which is closed under unions, subgraphs and isomorphism. Let \mathcal{Q} be an additive hereditary property of graphs. A \mathcal{Q} -edge-coloring of a simple graph is an edge coloring in which the edges colored with the same color induce a subgraph of property \mathcal{Q} . In this paper we present some results on fractional \mathcal{Q} -edge-colorings. We determine the fractional \mathcal{Q} -edge chromatic number for matroidal properties of graphs.

 ${\bf Keywords:} \ {\bf fractional} \ {\bf coloring,} \ {\bf graph} \ {\bf property.}$

2010 Mathematics Subject Classification: 05C15, 05C70, 05C72.

1. Introduction

Our terminology and notation will be standard. The reader is referred to [1, 11] for undefined terms. All graphs considered in this paper are simple, i.e. they have no loops or multiple edges.

[†] Peter Mihók passed away on March 27, 2012.

We denote the class of all finite simple graphs by \mathcal{I} . A graph property \mathcal{Q} is a non-empty isomorphism-closed subclass of \mathcal{I} . We also say that a graph G has property \mathcal{Q} whenever $G \in \mathcal{Q}$. The fact that H is a subgraph of G is denoted by $H \subseteq G$ and the disjoint union of two graphs G and H is denoted by $G \cup H$. A property \mathcal{Q} is called additive if $G \cup H \in \mathcal{Q}$ whenever $G \in \mathcal{Q}$ and $H \in \mathcal{Q}$. A property \mathcal{Q} is called hereditary if $G \in \mathcal{Q}$ and $H \subseteq G$ implies $H \in \mathcal{Q}$. The set of all additive hereditary properties will be denoted by \mathbb{L} .

We list several well-known additive hereditary properties

```
\mathcal{D}_k = \{G \in \mathcal{I} : \text{ each subgraph of } G \text{ contains a vertex of degree at most } k\},
\mathcal{I}_k = \{G \in \mathcal{I} : G \text{ does not contain } K_{k+2}\},
\mathcal{J}_k = \{G \in \mathcal{I} : \chi'(G) \leq k\},
\mathcal{O}_k = \{G \in \mathcal{I} : \text{ each component of } G \text{ has at most } k+1 \text{ vertices}\},
\mathcal{S}_k = \{G \in \mathcal{I} : \Delta(G) \leq k\},
\mathcal{B} = \{G \in \mathcal{I} : G \text{ is a bipartite graph}\},
```

where K_{k+2} denotes the complete graph on k+2 vertices, $\chi'(G)$ is the *edge* chromatic number (chromatic index) and $\Delta(G)$ is the maximum degree of the graph G.

Generalized colorings of edges or/and vertices of graphs under restrictions given by graph properties have recently attracted much attention, see e.g. [2, 3, 4, 6, 7, 8, 10] and references therein.

By using the class of additive hereditary properties, there is the following generalization of edge coloring. Let $Q \in \mathbb{L}$ and let t be a positive integer. A t-fold Q-edge-coloring of a graph is an assignment of t distinct colors to each edge such that each color class induces a subgraph of property Q. The smallest number k such that G admits a t-fold Q-edge-coloring with k colors is the (t,Q)-chromatic index of G, denoted by $\chi'_{t,Q}(G)$. Clearly, a 1-fold \mathcal{O}_1 -edge-coloring is a usual proper edge coloring and hence $\chi'_{1,\mathcal{O}_1}(G) = \chi'(G)$.

Another generalization of edge coloring is fractional edge coloring. The fractional chromatic index of a graph G is defined in the following way: $\chi'_f(G) = 0$

 $\lim_{t\to\infty}\frac{\chi'_{t,\mathcal{O}_1}(G)}{t}.$ If we replace the property \mathcal{O}_1 by any other additive hereditary graph property \mathcal{Q} in the definition of the fractional chromatic index, then we obtain the fractional \mathcal{Q} -chromatic index of a graph G and we denote it $\chi'_{f,\mathcal{O}}(G)$.

A hypergraph \mathcal{H} is a pair (S,X), where S is a finite set and X is a family of subsets of S. The elements of X are called hyperedges. A t-fold covering of a hypergraph \mathcal{H} is a collection (multiset) of hyperedges which includes every element of S at least t times. The smallest cardinality of such a multiset is called the t-fold covering number of \mathcal{H} and is denoted $k_t(\mathcal{H})$. The fractional covering number of \mathcal{H} is defined as $k_f(\mathcal{H}) = \lim_{t \to \infty} \frac{k_t(\mathcal{H})}{t}$.

For given simple graph G = (V, E) and additive hereditary property \mathcal{Q} , let $\mathcal{H}_G = (E_G, \mathcal{Q}_G)$ denote the hypergraph whose vertex set is the edge set of G and the hyperedges are those subsets of $E(G) = E_G$ which induce a graph of property \mathcal{Q} . Since \mathcal{Q} is hereditary, we can formulate the (t, \mathcal{Q}) -chromatic index of the graph G as the t-fold covering number of the hypergraph \mathcal{H}_G . There is a natural one-to-one correspondence between the color classes of G and the hyperedges of \mathcal{H}_G . Therefore the following assertion holds.

Claim 1. The fractional Q-chromatic index of the graph G is equal to the fractional covering number of the hypergraph $\mathcal{H}_G = (E_G, \mathcal{Q}_G)$.

A matroid $\mathcal{M} = (S, I)$ is a hypergraph which satisfies the following three conditions:

- 1. $\emptyset \in I$,
- 2. if $X \in I$ and $Y \subseteq X$, then $Y \in I$,
- 3. if $X, Y \in I$ and |X| > |Y|, then there is an $x \in X \setminus Y$ such that $Y \cup \{x\} \in I$.

In [12] the fractional covering number of matroids is determined. Let X be a subset of the ground set S of a matroid \mathcal{M} . The rank of X, denoted $\rho(X)$, is defined as the maximum cardinality of an independent subset of X (a subset of X which belongs to I).

Theorem 2 [12]. If $\mathcal{M} = (S, I)$ is a matroid, then

$$k_f(\mathcal{M}) = \max_{X \subseteq S; X \neq \emptyset} \frac{|X|}{\rho(X)}.$$

In this paper, by combining Claim 1 and Theorem 2, we give a general formula for the fractional \mathcal{Q} -chromatic index. Afterwards, by this formula and with other results from the literature, we determine the exact values of $\chi'_{f,\mathcal{Q}}(G)$ for so-called \mathcal{Q} -matroidal graphs.

2. Results

Let G = (V, E) be a graph and let \mathcal{Q} be an additive hereditary property. If the hypergraph (E_G, \mathcal{Q}_G) is a matroid, then G is called \mathcal{Q} -matroidal. Let $\mathcal{Q}^{\mathcal{M}}$ denote the set of all \mathcal{Q} -matroidal graphs. A property \mathcal{Q} is called matroidal if every graph G is \mathcal{Q} -matroidal. Schmidt [13] proved the existence of uncountably many matroidal properties.

A subset of the edge set of a graph is called Q-independent if it induces a graph of property Q. For a graph H let Q(H) denote the maximum cardinality of a Q-independent subset of E(H).

Lemma 3. Let
$$a_i, b_i > 0$$
 for $i = 1, ..., n$. Then $\frac{a_1 + \cdots + a_n}{b_1 + \cdots + b_n} \le \max_i \left\{ \frac{a_i}{b_i} \right\}$.

Proof. By induction on n.

Theorem 4. Let $Q \in \mathbb{L}$ and let $G \in \mathcal{Q}^{\mathcal{M}}$. Then

(1)
$$\chi'_{f,\mathcal{Q}}(G) = \max \frac{|E(H)|}{\mathcal{Q}(H)},$$

where the maximum is taken over all connected nontrivial subgraphs H of G.

Proof. Since G is Q-matroidal, the hypergraph $\mathcal{H}_G = (E_G, \mathcal{Q}_G)$ is a matroid. Claim 1 with Theorem 2 imply that

$$\chi'_{f,\mathcal{Q}}(G) = \max_{X \subset E_G; X \neq \emptyset} \frac{|X|}{\rho(X)} = \max \frac{|E(H)|}{\mathcal{Q}(H)},$$

where the maximum is taken over all nontrivial subgraphs H of G.

Now we show that we may restrict our attention to connected H. Suppose that the maximum on the right-hand side of (1) is achieved for a graph H with more than one component. Let $H=H_1\cup\cdots\cup H_n$, where H_i are the components of H. If one of these components, say H_j , is an empty graph (set of isolated vertices), then $\frac{|E(H)|}{\mathcal{Q}(H)}=\frac{|E(H-H_j)|}{\mathcal{Q}(H-H_j)}$. Thus we can assume that each component has at least one edge. Then $\frac{|E(H)|}{\mathcal{Q}(H)}=\frac{|E(H_1)|+\cdots+|E(H_n)|}{\mathcal{Q}(H_1)+\cdots+\mathcal{Q}(H_n)}\leq \max_i \left\{\frac{|E(H_i)|}{\mathcal{Q}(H_i)}\right\}$.

We can now determine the fractional Q-chromatic index for Q-matroidal graphs. The following question arises: Which graphs are Q-matroidal for given properties Q?

Each hereditary property \mathcal{Q} can be determined by the set of minimal forbidden subgraphs $F(\mathcal{Q}) = \{G \in \mathcal{I}; G \notin \mathcal{Q} \text{ but } G \setminus \{e\} \in \mathcal{Q} \text{ for each } e \in E(G)\}$. For example: $F(\mathcal{O}_k) = \{H; H \text{ is a tree on } k+2 \text{ vertices }\}; F(\mathcal{I}_k) = \{K_{k+2}\}$. Simões-Pereira [14] proved that if $F(\mathcal{Q})$ is finite, then \mathcal{Q} is not matroidal.

In [9] there is the following characterization of Q-matroidal graphs.

Theorem 5 [9]. A graph G = (V, E) is \mathcal{Q} -matroidal if and only if for each \mathcal{Q} -independent set $I \subseteq E$ and for each edge $e \in E \setminus I$ the graph $G[I \cup \{e\}]$ induced by $I \cup \{e\}$ contains at most one minimal forbidden subgraph of \mathcal{Q} .

By Theorem 5 each graph G which contains either at most one minimal forbidden subgraph of Q or only edge-disjoint minimal forbidden subgraphs of Q is Q-matroidal.

Lemma 6 [9]. The property $Q^{\mathcal{M}}$ belongs to \mathbb{L} for every $Q \in \mathbb{L}$.

By Lemma 6 we can characterize the structure of Q-matroidal graphs by describing the set of minimal forbidden subgraphs $F(Q^{\mathcal{M}})$.

For any two given graphs G_1 and G_2 with a common induced subgraph H we construct the graph $G = (G_1; H; G_2)$ by amalgamation of G_1 and G_2 with respect to H so that $V(G) = V(G_1) \cup V(G_2)$, $E(G) = E(G_1) \cup E(G_2)$ and $H = (V(G_1) \cap V(G_2), E(G_1) \cap E(G_2))$.

In the following P_n and C_n will denote the path and the cycle on n vertices, respectively. D_n will denote the complement of K_n .

Theorem 7 [9]. Let G be a graph and let $k \geq 1$. Then

- $G \in F(\mathcal{O}_k^{\mathcal{M}})$ if and only if $G \in T \setminus \{K_{1,k+2}; C_{k+2}\}$, where T is the set of all trees on k+3 vertices and all unicyclic graphs on k+2 vertices,
- $G \in F(\mathcal{S}_k^{\mathcal{M}})$ if and only if $G = (K_{1,k+1}; K_2 \cup D_p; K_{1,k+1})$ for some $0 \le p \le k$ and $k \ge 2$, where K_2 joins the central vertices of the stars,
- $G \in F(\mathcal{I}_k^{\mathcal{M}})$ if and only if $G = (K_{k+2}; K_r; K_{k+2})$ for some $2 \le r \le k+1$,
- $G \in F(\mathcal{B}^{\mathcal{M}})$ if and only if $G = (C_{2p+1}; P_q; C_r)$ for some $p \geq 1$, $q \geq 2$ and $r \geq 3$.

The seminal result on fractional edge colorings is due to Edmonds [5]. For a graph G we define $\Gamma(G) = \max \frac{2|E(H)|}{|V(H)|-1}$, where the maximization is over every induced subgraph H of G with $|V(H)| \geq 3$ and |V(H)| odd.

Theorem 8 [5]. Let G be a graph. Then

$$\chi_{f,\mathcal{J}_1}'(G)=\chi_{f,\mathcal{S}_1}'(G)=\chi_{f,\mathcal{O}_1}'(G)=\chi_f'(G)=\max\{\Delta(G),\Gamma(G)\}.$$

Lemma 9. Every graph is \mathcal{D}_1 -matroidal.

Proof. Clearly, $F(\mathcal{D}_1)$ is a set of cycles. Moreover, if we add an edge to a tree (forest) we obtain exactly (at most) one cycle. So the claim follows from Theorem 5.

Although all graphs are \mathcal{D}_1 -matroidal, for $k \geq 2$ the characterization of \mathcal{D}_k -matroidal graphs seems to be difficult.

Theorem 10. Let G be a graph. Then

$$\chi'_{f,\mathcal{D}_1}(G) = \max \frac{|E(H)|}{|V(H)| - 1},$$

where the maximum is taken over all connected nontrivial subgraphs H of G.

Proof. From Lemma 9 it follows that G is \mathcal{D}_1 -matroidal. Any spanning tree of a connected graph H on n vertices has n-1 edges, therefore $\mathcal{D}_1(H) = |V(H)| - 1$.

Theorem 4 implies
$$\chi'_{f,\mathcal{D}_1}(G) = \max_{H \subseteq G} \frac{|E(H)|}{\mathcal{D}_1(H)} = \max_{H \subseteq G} \frac{|E(H)|}{|V(H)| - 1}$$
.

Corollary 11. Let G be a graph and let $Q \in \mathbb{L}$ such that $\mathcal{D}_1 \subseteq Q$. Then

$$\chi'_{f,\mathcal{Q}}(G) \le \max \frac{|E(H)|}{|V(H)| - 1},$$

where the maximization is over all connected nontrivial subgraphs H of G.

Lemma 12. Let $k \geq 1$. The graph G is \mathcal{I}_k -matroidal if and only if any two complete graphs on k+2 vertices are edge-disjoint in G.

Proof. Assume that G contains two complete graphs on k+2 vertices which have $r \geq 2$ vertices in common. These r vertices induce K_r , hence G contains $(K_{k+2}; K_r; K_{k+2})$ as a subgraph. So $G \notin \mathcal{I}_k^{\mathcal{M}}$ since $(K_{k+2}; K_r; K_{k+2}) \in F(\mathcal{I}_k^{\mathcal{M}})$ (see Theorem 7).

If $G \notin \mathcal{I}_k^{\mathcal{M}}$, then G contains a forbidden subgraph $(K_{k+2}; K_r; K_{k+2})$ for some $2 \le r \le k+1$, thus it contains two complete graphs on k+2 vertices which share an edge.

Let H_{k+2} denote the number of complete graphs on k+2 vertices in the graph H

Theorem 13. Let G be an \mathcal{I}_k -matroidal graph, $k \geq 1$. Then

$$\chi'_{f,\mathcal{I}_k}(G) = \max \frac{|E(H)|}{|E(H)| - H_{k+2}},$$

where the maximum is taken over all connected nontrivial subgraphs H of G.

Proof. From Theorem 4 it follows that $\chi'_{f,\mathcal{I}_k}(G) = \max_{H \subseteq G} \frac{|E(H)|}{\mathcal{I}_k(H)}$. So it is sufficient to show that $\mathcal{I}_k(H) = |E(H)| - H_{k+2}$.

Lemma 12 implies that any two complete graphs on k+2 vertices are edgedisjoint in every subgraph H of G. Hence, if we remove less than H_{k+2} edges from H, then the obtained graph still contains at least one K_{k+2} . Therefore $\mathcal{I}_k(H) \leq |E(H)| - H_{k+2}$.

On the other hand, if we remove one edge from each K_{k+2} , then the remaining edges form an \mathcal{I}_k -independent set, hence $\mathcal{I}_k(H) \geq |E(H)| - H_{k+2}$.

Lemma 14. Let $k \geq 2$. The graph G is S_k -matroidal if and only if no two vertices of degree at least k+1 are incident in G.

Proof. Let uv be an edge of G such that its endvertices have degree at least k+1. Let G_1 be a subgraph of G which contains only the edges incident with u or v. Clearly, G_1 contains a subgraph G_2 in which the vertices u and v are joined by an edge and they have degree k+1. Let p denote the number of common neighbors of u and v in G_2 . Observe that $G_2 = (K_{1,k+1}; K_2 \cup D_p; K_{1,k+1})$, consequently $G_2 \in F(\mathcal{S}_k^{\mathcal{M}})$. So G cannot be \mathcal{S}_k -matroidal.

If $G \notin \mathcal{S}_k^{\mathcal{M}}$, then it contains a minimal forbidden subgraph $(K_{1,k+1}; K_2 \cup D_p; K_{1,k+1})$ for some $0 \le p \le k$. The central vertices of these stars are joined by an edge and they have degree k+1.

Theorem 15. Let G be an S_k -matroidal graph, $k \geq 2$. Then

$$\chi'_{f,S_k}(G) = \max \frac{|E(H)|}{|E(H)| - \sum_{\substack{v \in V(H) \\ \deg_H(v) \ge k+1}} (\deg_H(v) - k)},$$

where the maximum is taken over all connected nontrivial subgraphs H of G.

Proof. Let H be a subgraph of G. If for every vertex v of H of degree at least k+1 we remove $\deg_H(v)-k$ edges incident with it, then we obtain a graph whose maximum degree is at most k. Therefore

$$S_k(H) \ge |E(H)| - \sum_{\substack{v \in V(H) \\ \deg_H(v) \ge k+1}} (\deg_H(v) - k).$$

The opposite inequality follows from the fact that no two vertices of degree at least k+1 are incident in G, thus neither in $H \subseteq G$ (see Lemma 14). Therefore the claim follows from Theorem 4.

Lemma 16. The graph G is \mathcal{B} -matroidal if and only if no odd cycle of G shares an edge with any other cycle of G.

Proof. $G \notin \mathcal{B}^{\mathcal{M}}$ if and only if G contains a minimal forbidden subgraph $(C_{2p+1}; P_q; C_r)$ for some $p \geq 1$, $q \geq 2$ and $r \geq 3$. Equivalently, G contains an odd cycle which shares an edge with an other cycle.

Corollary 17. If $G \in \mathcal{B}^{\mathcal{M}}$, then the odd cycles of G are edge-disjoint.

Let oc(G) denote the number of odd cycles in the graph G.

Theorem 18. Let G be a \mathcal{B} -matroidal graph. Then

$$\chi'_{f,\mathcal{B}}(G) = \max \frac{|E(H)|}{|E(H)| - oc(H)},$$

where the maximum is taken over all connected nontrivial subgraphs H of G.

Proof. Let H be a subgraph of G. If we remove one edge from every odd cycle of H, then the remaining edges induce a bipartite graph, hence $\mathcal{B}(H) \geq |E(H)| - oc(H)$.

The odd cycles in H are edge-disjoint (see Corollary 17), thus we must remove at least oc(H) edges from E(H) to obtain a \mathcal{B} -independent set. Therefore $\mathcal{B}(H) \leq |E(H)| - oc(H)$.

Consequently, $\mathcal{B}(H) = |E(H)| - oc(H)$ and hence the assertion follows from Theorem 4.

Lemma 19. Let $k \geq 1$. The graph G is \mathcal{O}_k -matroidal if and only if G either belongs to \mathcal{O}_k or it is isomorphic to $K_{1,p}$, $p \geq k+1$, to C_{k+2} or to a tree on k+2 vertices.

Proof. G is \mathcal{O}_k -matroidal if and only if it does not contain any subgraph from $F(\mathcal{O}_k^{\mathcal{M}})$. So the claim follows from Theorem 7.

Clearly, if $G \in \mathcal{O}_k$, then its fractional \mathcal{O}_k -edge chromatic number equals one. If $G \in \mathcal{O}_k^{\mathcal{M}} \setminus \mathcal{O}_k$, then it has k+2 vertices or it is a star on at least k+3 vertices.

Theorem 20. Let $G \in \mathcal{O}_k^{\mathcal{M}} \setminus \mathcal{O}_k$ and let |V(G)| = k + 2, $k \geq 2$. Then

$$\chi'_{f,\mathcal{O}_k}(G) = \frac{|E(G)|}{|E(G)| - \lambda(G)},$$

where $\lambda(G)$ is the edge-connectivity of G.

Proof. Let H be a connected subgraph of G. If E(H) is not \mathcal{O}_k -independent, then either |E(H)| = k + 2 or |E(H)| = k + 1. In the first case $H = C_{k+2}$, hence $\mathcal{O}_k(H) = |E(H)| - 2$. In the second case H is a tree, therefore $\mathcal{O}_k(H) = |E(H)| - 1$. Thus the claim follows from Theorem 4.

Theorem 21. Let $G \in \mathcal{O}_k^{\mathcal{M}} \setminus \mathcal{O}_k$ and let |V(G)| = k + i, $k \geq 2$, $i \geq 3$. Then

$$\chi'_{f,\mathcal{O}_k}(G) = \frac{|E(G)|}{|E(G)| - i + 1} = \frac{k + i - 1}{k}.$$

Proof. It follows from Theorem 4 and from the fact that G is a star.

3. Examples

Example 22. Let $K_{2,3}$ denote the complete bipartite graph on 2+3 vertices. We will show that $\chi'_{f,S_2}(K_{2,3}) = \frac{3}{2}$.

Solution 1.

From Lemma 14 it follows that $K_{2,3} \in \mathcal{S}_2^{\mathcal{M}}$. From Theorem 15 we have $\chi'_{f,\mathcal{S}_2}(K_{2,3})$ = $\max \frac{|E(H)|}{|E(H)| - \sum_{\substack{v \in V(H) \ \deg_H(v) = 3}}}$, where the maximum is taken over all connected nontrivial subgraphs H of G.

If H is a connected subgraph of G, then either $H \in \mathcal{S}_2$ or it is a graph from Figure 1. So $\chi'_{f,\mathcal{S}_2}(K_{2,3}) = \max\{1,\frac{3}{2},\frac{4}{3},\frac{5}{4}\} = \frac{3}{2}$.

Figure 1. Connected subgraphs of $K_{2,3}$ which are not in S_2 .

Solution 2.

Fractional \mathcal{Q} -edge-colorings may be viewed in several ways. We present an equivalent definition. Let r, s be positive integers with $r \geq s$. An (r, s)-fractional \mathcal{Q} -edge-coloring of G is an assignment of s-element subsets of $\{1, \ldots, r\}$ to the edges of G such that each color class induces a graph of property \mathcal{Q} . Then the fractional \mathcal{Q} -edge chromatic number of G is defined as

$$\chi'_{f,\mathcal{Q}}(G) = \inf \left\{ \frac{r}{s} : G \text{ has an } (r,s) \text{-fractional } \mathcal{Q} \text{-edge-coloring} \right\}.$$

Note that in this definition we can replace the infimum by the minimum.

For each (r,s)-fractional S_2 -edge-coloring of $K_{2,3}$ and for each color $i \in \{1,\ldots,r\}$ the following holds: at most four edges are colored with sets containing the color i. On the other hand, every edge is assigned with an s-element color set. This implies that $4r \geq 6s$, hence $\chi'_{f,S_2}(K_{2,3}) \geq \frac{3}{2}$.

To prove the inequality $\chi'_{f,\mathcal{S}_2}(K_{2,3}) \leq \frac{3}{2}$ we construct a (3,2)-fractional \mathcal{S}_2 -edge-coloring of $K_{2,3}$, see Figure 2.

Figure 2. A (3,2)-fractional S_2 -edge-coloring of the graph $K_{2,3}$.

The following results immediately follows from Theorems 13, 15 and 18.

Example 23. If
$$k \geq 1$$
, then $\chi'_{f,\mathcal{I}_k}(K_{k+2}) = \frac{\binom{k+2}{2}}{\binom{k+2}{2}-1}$, $\chi'_{f,\mathcal{S}_k}(K_{1,k+1}) = \frac{k+1}{k}$ and $\chi'_{f,\mathcal{B}}(C_{2k+1}) = \frac{2k+1}{2k}$.

Acknowledgment

The authors would like to thank anonymous referees for many helpful comments and constructive suggestions.

References

- [1] J.A. Bondy and U.S.R. Murty, Graph Theory (Springer, 2008). doi:10.1007/978-1-84628-970-5
- [2] M. Borowiecki, A. Kemnitz, M. Marangio and P. Mihók, Generalized total colorings of graphs, Discuss. Math. Graph Theory 31 (2011) 209–222. doi:10.7151/dmgt.1540
- [3] I. Broere, S. Dorfling and E. Jonck, Generalized chromatic numbers and additive hereditary properties of graphs, Discuss. Math. Graph Theory 22 (2002) 259–270. doi:10.7151/dmgt.1174
- [4] M.J. Dorfling and S. Dorfling, Generalized edge-chromatic numbers and additive hereditary properties of graphs, Discuss. Math. Graph Theory 22 (2002) 349–359. doi:10.7151/dmgt.1180
- [5] J. Edmonds, Maximum matching and a polyhedron with 0,1-vertices, J. Res. Nat. Bur. Standards **69B** (1965) 125–130.
- [6] G. Karafová, Generalized fractional total coloring of complete graphs, Discuss. Math. Graph Theory, accepted.
- [7] A. Kemnitz, M. Marangio, P. Mihók, J. Oravcová and R. Soták, Generalized fractional and circular total coloring of graphs, preprint.
- [8] K. Kilakos and B. Reed, Fractionally colouring total graphs, Combinatorica 13 (1993) 435–440.
 doi:10.1007/BF01303515
- [9] P. Mihók, On graphs matroidal with respect to additive hereditary properties, Graphs, Hypergraphs and Matroids II, Zielona Góra (1987) 53–64.
- [10] P. Mihók, Zs. Tuza and M. Voigt, Fractional P-colourings and P-choice-ratio, Tatra Mt. Math. Publ. 18 (1999) 69–77.
- [11] J.G. Oxley, Matroid Theory (Oxford University Press, Oxford, 1992).
- [12] E.R. Scheinerman and D.H. Ullman, Fractional Graph Theory (John Wiley & Sons, 1997).

- [13] R. Schmidt, On the existence of uncountably many matroidal families, Discrete Math. $\bf 27~(1979)~93-97$. doi:10.1016/0012-365X(79)90072-4
- [14] J.M.S. Simões-Pereira, On matroids on edge sets of graphs with connected subgraphs as circuits, Proc. Amer. Math. Soc. 38 (1973) 503–506. doi:10.2307/2038939

Received 3 November 2011 Revised 29 May 2012 Accepted 29 May 2012