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Abstract

An additive hereditary property of graphs is a class of simple graphs
which is closed under unions, subgraphs and isomorphism. Let Q be an
additive hereditary property of graphs. A Q-edge-coloring of a simple graph
is an edge coloring in which the edges colored with the same color induce a
subgraph of property Q. In this paper we present some results on fractional
Q-edge-colorings. We determine the fractional Q-edge chromatic number
for matroidal properties of graphs.
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1. Introduction

Our terminology and notation will be standard. The reader is referred to [1, 11]
for undefined terms. All graphs considered in this paper are simple, i.e. they have
no loops or multiple edges.

† Peter Mihók passed away on March 27, 2012.
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We denote the class of all finite simple graphs by I. A graph property Q is a
non-empty isomorphism-closed subclass of I. We also say that a graph G has
property Q whenever G ∈ Q. The fact that H is a subgraph of G is denoted
by H ⊆ G and the disjoint union of two graphs G and H is denoted by G ∪H.
A property Q is called additive if G ∪ H ∈ Q whenever G ∈ Q and H ∈ Q. A
property Q is called hereditary if G ∈ Q and H ⊆ G implies H ∈ Q. The set of
all additive hereditary properties will be denoted by L.

We list several well-known additive hereditary properties

Dk= {G ∈ I : each subgraph of G contains a vertex of degree at most k},
Ik = {G ∈ I : G does not contain Kk+2},
Jk= {G ∈ I : χ′(G) ≤ k},
Ok= {G ∈ I : each component of G has at most k + 1 vertices},
Sk = {G ∈ I : ∆(G) ≤ k},
B = {G ∈ I : G is a bipartite graph},

where Kk+2 denotes the complete graph on k + 2 vertices, χ′(G) is the edge

chromatic number (chromatic index) and ∆(G) is the maximum degree of the
graph G.

Generalized colorings of edges or/and vertices of graphs under restrictions
given by graph properties have recently attracted much attention, see e.g. [2, 3,
4, 6, 7, 8, 10] and references therein.

By using the class of additive hereditary properties, there is the following
generalization of edge coloring. Let Q ∈ L and let t be a positive integer. A t-fold
Q-edge-coloring of a graph is an assignment of t distinct colors to each edge such
that each color class induces a subgraph of property Q. The smallest number k
such that G admits a t-fold Q-edge-coloring with k colors is the (t,Q)-chromatic

index of G, denoted by χ′
t,Q(G). Clearly, a 1-fold O1-edge-coloring is a usual

proper edge coloring and hence χ′
1,O1

(G) = χ′(G).

Another generalization of edge coloring is fractional edge coloring. The frac-

tional chromatic index of a graph G is defined in the following way: χ′
f (G) =

lim
t→∞

χ′
t,O1

(G)

t
. If we replace the property O1 by any other additive hereditary

graph property Q in the definition of the fractional chromatic index, then we
obtain the fractional Q-chromatic index of a graph G and we denote it χ′

f,Q(G).

A hypergraph H is a pair (S,X), where S is a finite set and X is a family
of subsets of S. The elements of X are called hyperedges. A t-fold covering

of a hypergraph H is a collection (multiset) of hyperedges which includes every
element of S at least t times. The smallest cardinality of such a multiset is called
the t-fold covering number of H and is denoted kt(H). The fractional covering

number of H is defined as kf (H) = lim
t→∞

kt(H)

t
.
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For given simple graph G = (V,E) and additive hereditary property Q, let HG =
(EG,QG) denote the hypergraph whose vertex set is the edge set of G and the
hyperedges are those subsets of E(G) = EG which induce a graph of property Q.
Since Q is hereditary, we can formulate the (t,Q)-chromatic index of the graph
G as the t-fold covering number of the hypergraph HG. There is a natural one-
to-one correspondence between the color classes of G and the hyperedges of HG.
Therefore the following assertion holds.

Claim 1. The fractional Q-chromatic index of the graph G is equal to the frac-

tional covering number of the hypergraph HG = (EG,QG).

A matroid M = (S, I) is a hypergraph which satisfies the following three condi-
tions:

1. ∅ ∈ I,

2. if X ∈ I and Y ⊆ X, then Y ∈ I,

3. if X,Y ∈ I and |X| > |Y |, then there is an x ∈ X \Y such that Y ∪{x} ∈ I.

In [12] the fractional covering number of matroids is determined. Let X be a
subset of the ground set S of a matroid M. The rank of X, denoted ρ(X), is
defined as the maximum cardinality of an independent subset of X (a subset of
X which belongs to I).

Theorem 2 [12]. If M = (S, I) is a matroid, then

kf (M) = max
X⊆S;X 6=∅

|X|

ρ(X)
.

In this paper, by combining Claim 1 and Theorem 2, we give a general formula
for the fractional Q-chromatic index. Afterwards, by this formula and with other
results from the literature, we determine the exact values of χ′

f,Q(G) for so-called
Q-matroidal graphs.

2. Results

Let G = (V,E) be a graph and let Q be an additive hereditary property. If
the hypergraph (EG,QG) is a matroid, then G is called Q-matroidal. Let QM

denote the set of all Q-matroidal graphs. A property Q is called matroidal if
every graph G is Q-matroidal. Schmidt [13] proved the existence of uncountably
many matroidal properties.

A subset of the edge set of a graph is called Q-independent if it induces a
graph of property Q. For a graph H let Q(H) denote the maximum cardinality
of a Q-independent subset of E(H).
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Lemma 3. Let ai, bi > 0 for i = 1, . . . , n. Then
a1 + · · ·+ an
b1 + · · ·+ bn

≤ max
i

{

ai
bi

}

.

Proof. By induction on n.

Theorem 4. Let Q ∈ L and let G ∈ QM. Then

(1) χ′
f,Q(G) = max

|E(H)|

Q(H)
,

where the maximum is taken over all connected nontrivial subgraphs H of G.

Proof. Since G is Q-matroidal, the hypergraph HG = (EG,QG) is a matroid.
Claim 1 with Theorem 2 imply that

χ′
f,Q(G) = max

X⊆EG;X 6=∅

|X|

ρ(X)
= max

|E(H)|

Q(H)
,

where the maximum is taken over all nontrivial subgraphs H of G.
Now we show that we may restrict our attention to connected H. Suppose

that the maximum on the right-hand side of (1) is achieved for a graph H with
more than one component. Let H = H1∪· · ·∪Hn, where Hi are the components of
H. If one of these components, say Hj , is an empty graph (set of isolated vertices),

then
|E(H)|

Q(H)
=

|E(H −Hj)|

Q(H −Hj)
. Thus we can assume that each component has at

least one edge. Then
|E(H)|

Q(H)
=

|E(H1)|+ · · ·+ |E(Hn)|

Q(H1) + · · ·+Q(Hn)
≤ max

i

{

|E(Hi)|

Q(Hi)

}

.

We can now determine the fractional Q-chromatic index for Q-matroidal graphs.
The following question arises: Which graphs are Q-matroidal for given properties
Q?

Each hereditary property Q can be determined by the set of minimal forbidden

subgraphs F (Q) = {G ∈ I;G /∈ Q but G \ {e} ∈ Q for each e ∈ E(G)}. For
example: F (Ok) = {H;H is a tree on k+2 vertices }; F (Ik) = {Kk+2}. Simões-
Pereira [14] proved that if F (Q) is finite, then Q is not matroidal.

In [9] there is the following characterization of Q-matroidal graphs.

Theorem 5 [9]. A graph G = (V,E) is Q-matroidal if and only if for each Q-

independent set I ⊆ E and for each edge e ∈ E \ I the graph G[I ∪ {e}] induced

by I ∪ {e} contains at most one minimal forbidden subgraph of Q.

By Theorem 5 each graph G which contains either at most one minimal forbidden
subgraph of Q or only edge-disjoint minimal forbidden subgraphs of Q is Q-
matroidal.

Lemma 6 [9]. The property QM belongs to L for every Q ∈ L.



Fractional Q-edge-coloring of Graphs 513

By Lemma 6 we can characterize the structure of Q-matroidal graphs by describ-
ing the set of minimal forbidden subgraphs F (QM).

For any two given graphs G1 and G2 with a common induced subgraph H
we construct the graph G = (G1;H;G2) by amalgamation of G1 and G2 with
respect to H so that V (G) = V (G1) ∪ V (G2), E(G) = E(G1) ∪ E(G2) and
H = (V (G1) ∩ V (G2), E(G1) ∩ E(G2)).

In the following Pn and Cn will denote the path and the cycle on n vertices,
respectively. Dn will denote the complement of Kn.

Theorem 7 [9]. Let G be a graph and let k ≥ 1. Then

• G ∈ F (OM
k ) if and only if G ∈ T \ {K1,k+2;Ck+2}, where T is the set of all

trees on k + 3 vertices and all unicyclic graphs on k + 2 vertices,

• G ∈ F (SM
k ) if and only if G = (K1,k+1;K2∪Dp;K1,k+1) for some 0 ≤ p ≤ k

and k ≥ 2, where K2 joins the central vertices of the stars,

• G ∈ F (IM
k ) if and only if G = (Kk+2;Kr;Kk+2) for some 2 ≤ r ≤ k + 1,

• G ∈ F (BM) if and only if G = (C2p+1;Pq;Cr) for some p ≥ 1, q ≥ 2 and

r ≥ 3.

The seminal result on fractional edge colorings is due to Edmonds [5]. For a

graph G we define Γ(G) = max
2|E(H)|

|V (H)| − 1
, where the maximization is over

every induced subgraph H of G with |V (H)| ≥ 3 and |V (H)| odd.

Theorem 8 [5]. Let G be a graph. Then

χ′
f,J1

(G) = χ′
f,S1

(G) = χ′
f,O1

(G) = χ′
f (G) = max{∆(G),Γ(G)}.

Lemma 9. Every graph is D1-matroidal.

Proof. Clearly, F (D1) is a set of cycles. Moreover, if we add an edge to a tree
(forest) we obtain exactly (at most) one cycle. So the claim follows from Theorem
5.

Although all graphs are D1-matroidal, for k ≥ 2 the characterization of Dk-
matroidal graphs seems to be difficult.

Theorem 10. Let G be a graph. Then

χ′
f,D1

(G) = max
|E(H)|

|V (H)| − 1
,

where the maximum is taken over all connected nontrivial subgraphs H of G.
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Proof. From Lemma 9 it follows that G is D1-matroidal. Any spanning tree of a
connected graph H on n vertices has n− 1 edges, therefore D1(H) = |V (H)| − 1.

Theorem 4 implies χ′
f,D1

(G) = max
H⊆G

|E(H)|

D1(H)
= max

H⊆G

|E(H)|

|V (H)| − 1
.

Corollary 11. Let G be a graph and let Q ∈ L such that D1 ⊆ Q. Then

χ′
f,Q(G) ≤ max

|E(H)|

|V (H)| − 1
,

where the maximization is over all connected nontrivial subgraphs H of G.

Lemma 12. Let k ≥ 1. The graph G is Ik-matroidal if and only if any two

complete graphs on k + 2 vertices are edge-disjoint in G.

Proof. Assume that G contains two complete graphs on k + 2 vertices which
have r ≥ 2 vertices in common. These r vertices induce Kr, hence G contains
(Kk+2;Kr;Kk+2) as a subgraph. So G 6∈ IM

k since (Kk+2;Kr;Kk+2) ∈ F (IM
k )

(see Theorem 7).

If G 6∈ IM
k , then G contains a forbidden subgraph (Kk+2;Kr;Kk+2) for some

2 ≤ r ≤ k+1, thus it contains two complete graphs on k+2 vertices which share
an edge.

Let Hk+2 denote the number of complete graphs on k + 2 vertices in the graph
H.

Theorem 13. Let G be an Ik-matroidal graph, k ≥ 1. Then

χ′
f,Ik

(G) = max
|E(H)|

|E(H)| −Hk+2
,

where the maximum is taken over all connected nontrivial subgraphs H of G.

Proof. From Theorem 4 it follows that χ′
f,Ik

(G) = max
H⊆G

|E(H)|

Ik(H)
. So it is sufficient

to show that Ik(H) = |E(H)| −Hk+2.

Lemma 12 implies that any two complete graphs on k + 2 vertices are edge-
disjoint in every subgraph H of G. Hence, if we remove less than Hk+2 edges
from H, then the obtained graph still contains at least one Kk+2. Therefore
Ik(H) ≤ |E(H)| −Hk+2.

On the other hand, if we remove one edge from each Kk+2, then the remaining
edges form an Ik-independent set, hence Ik(H) ≥ |E(H)| −Hk+2.

Lemma 14. Let k ≥ 2. The graph G is Sk-matroidal if and only if no two vertices

of degree at least k + 1 are incident in G.



Fractional Q-edge-coloring of Graphs 515

Proof. Let uv be an edge of G such that its endvertices have degree at least k+1.
Let G1 be a subgraph of G which contains only the edges incident with u or v.
Clearly, G1 contains a subgraph G2 in which the vertices u and v are joined by an
edge and they have degree k + 1. Let p denote the number of common neighbors
of u and v in G2. Observe that G2 = (K1,k+1;K2 ∪ Dp;K1,k+1), consequently
G2 ∈ F (SM

k ). So G cannot be Sk-matroidal.

If G 6∈ SM
k , then it contains a minimal forbidden subgraph (K1,k+1;K2 ∪

Dp;K1,k+1) for some 0 ≤ p ≤ k. The central vertices of these stars are joined by
an edge and they have degree k + 1.

Theorem 15. Let G be an Sk-matroidal graph, k ≥ 2. Then

χ′
f,Sk

(G) = max
|E(H)|

|E(H)| −
∑

v∈V (H)
degH(v)≥k+1

(degH(v)− k)
,

where the maximum is taken over all connected nontrivial subgraphs H of G.

Proof. Let H be a subgraph of G. If for every vertex v of H of degree at least
k+1 we remove degH(v)−k edges incident with it, then we obtain a graph whose
maximum degree is at most k. Therefore

Sk(H) ≥ |E(H)| −
∑

v∈V (H)
degH(v)≥k+1

(degH(v)− k).

The opposite inequality follows from the fact that no two vertices of degree at
least k + 1 are incident in G, thus neither in H ⊆ G (see Lemma 14). Therefore
the claim follows from Theorem 4.

Lemma 16. The graph G is B-matroidal if and only if no odd cycle of G shares

an edge with any other cycle of G.

Proof. G 6∈ BM if and only if G contains a minimal forbidden subgraph (C2p+1;
Pq;Cr) for some p ≥ 1, q ≥ 2 and r ≥ 3. Equivalently, G contains an odd cycle
which shares an edge with an other cycle.

Corollary 17. If G ∈ BM, then the odd cycles of G are edge-disjoint.

Let oc(G) denote the number of odd cycles in the graph G.

Theorem 18. Let G be a B-matroidal graph. Then

χ′
f,B(G) = max

|E(H)|

|E(H)| − oc(H)
,

where the maximum is taken over all connected nontrivial subgraphs H of G.
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Proof. Let H be a subgraph of G. If we remove one edge from every odd cycle
of H, then the remaining edges induce a bipartite graph, hence B(H) ≥ |E(H)|−
oc(H).

The odd cycles in H are edge-disjoint (see Corollary 17), thus we must remove
at least oc(H) edges from E(H) to obtain a B-independent set. Therefore B(H) ≤
|E(H)| − oc(H).

Consequently, B(H) = |E(H)| − oc(H) and hence the assertion follows from
Theorem 4.

Lemma 19. Let k ≥ 1. The graph G is Ok-matroidal if and only if G either

belongs to Ok or it is isomorphic to K1,p, p ≥ k+1, to Ck+2 or to a tree on k+2
vertices.

Proof. G is Ok-matroidal if and only if it does not contain any subgraph from
F (OM

k ). So the claim follows from Theorem 7.

Clearly, if G ∈ Ok, then its fractional Ok-edge chromatic number equals one. If
G ∈ OM

k \ Ok, then it has k + 2 vertices or it is a star on at least k + 3 vertices.

Theorem 20. Let G ∈ OM
k \ Ok and let |V (G)| = k + 2, k ≥ 2. Then

χ′
f,Ok

(G) =
|E(G)|

|E(G)| − λ(G)
,

where λ(G) is the edge-connectivity of G.

Proof. Let H be a connected subgraph of G. If E(H) is not Ok-independent,
then either |E(H)| = k + 2 or |E(H)| = k + 1. In the first case H = Ck+2, hence
Ok(H) = |E(H)|−2. In the second case H is a tree, therefore Ok(H) = |E(H)|−1.
Thus the claim follows from Theorem 4.

Theorem 21. Let G ∈ OM
k \ Ok and let |V (G)| = k + i, k ≥ 2, i ≥ 3. Then

χ′
f,Ok

(G) =
|E(G)|

|E(G)| − i+ 1
=

k + i− 1

k
.

Proof. It follows from Theorem 4 and from the fact that G is a star.

3. Examples

Example 22. Let K2,3 denote the complete bipartite graph on 2+3 vertices. We

will show that χ′
f,S2

(K2,3) =
3
2 .
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Solution 1.

From Lemma 14 it follows that K2,3 ∈ SM
2 . From Theorem 15 we have χ′

f,S2
(K2,3)

= max
|E(H)|

|E(H)| −
∑

v∈V (H)
degH(v)=3

1
, where the maximum is taken over all connected

nontrivial subgraphs H of G.

If H is a connected subgraph of G, then either H ∈ S2 or it is a graph from
Figure 1. So χ′

f,S2
(K2,3) = max{1, 32 ,

4
3 ,

5
4} = 3

2 .

Figure 1. Connected subgraphs of K2,3 which are not in S2.

Solution 2.

Fractional Q-edge-colorings may be viewed in several ways. We present an equiv-
alent definition. Let r, s be positive integers with r ≥ s. An (r, s)-fractional
Q-edge-coloring of G is an assignment of s-element subsets of {1, . . . , r} to the
edges of G such that each color class induces a graph of property Q. Then the
fractional Q-edge chromatic number of G is defined as

χ′
f,Q(G) = inf

{r

s
: G has an (r, s)-fractional Q-edge-coloring

}

.

Note that in this definition we can replace the infimum by the minimum.

For each (r, s)-fractional S2-edge-coloring of K2,3 and for each color i ∈
{1, . . . , r} the following holds: at most four edges are colored with sets containing
the color i. On the other hand, every edge is assigned with an s-element color
set. This implies that 4r ≥ 6s, hence χ′

f,S2
(K2,3) ≥

3
2 .

To prove the inequality χ′
f,S2

(K2,3) ≤ 3
2 we construct a (3, 2)-fractional S2-

edge-coloring of K2,3, see Figure 2.

12

12

13

13

23

23

Figure 2. A (3, 2)-fractional S2-edge-coloring of the graph K2,3.

The following results immediately follows from Theorems 13, 15 and 18.
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Example 23. If k ≥ 1, then χ′
f,Ik

(Kk+2) =

(

k+2
2

)

(

k+2
2

)

− 1
, χ′

f,Sk
(K1,k+1) =

k + 1

k

and χ′
f,B(C2k+1) =

2k + 1

2k
.
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