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Abstract

An additive hereditary property of graphs is a class of simple graphs
which is closed under unions, subgraphs and isomorphism. Let Q be an
additive hereditary property of graphs. A Q-edge-coloring of a simple graph
is an edge coloring in which the edges colored with the same color induce a
subgraph of property Q. In this paper we present some results on fractional
Q-edge-colorings. We determine the fractional 9Q-edge chromatic number
for matroidal properties of graphs.
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1. INTRODUCTION

Our terminology and notation will be standard. The reader is referred to [1, 11]
for undefined terms. All graphs considered in this paper are simple, i.e. they have
no loops or multiple edges.

1 Peter Mihok passed away on March 27, 2012.
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We denote the class of all finite simple graphs by Z. A graph property Q is a
non-empty isomorphism-closed subclass of Z. We also say that a graph G has
property Q whenever G € Q. The fact that H is a subgraph of G is denoted
by H C G and the disjoint union of two graphs G and H is denoted by G U H.
A property Q is called additive if G U H € Q whenever G € Q and H € Q. A
property Q is called hereditary if G € @ and H C G implies H € Q. The set of
all additive hereditary properties will be denoted by L.
We list several well-known additive hereditary properties

Dir= {G € T : each subgraph of G contains a vertex of degree at most k},
Tr, = {G € I : G does not contain Ky o},

Je=1{GEeT:\(G) <k},

Or={G € I : each component of G has at most k + 1 vertices},
Sk={GeT:AG) <k},

B ={G €7 :(G is a bipartite graph},

where Kj o denotes the complete graph on k + 2 vertices, x/'(G) is the edge
chromatic number (chromatic index) and A(G) is the mazimum degree of the
graph G.

Generalized colorings of edges or/and vertices of graphs under restrictions
given by graph properties have recently attracted much attention, see e.g. [2, 3,
4,6, 7, 8, 10] and references therein.

By using the class of additive hereditary properties, there is the following
generalization of edge coloring. Let @ € IL and let ¢ be a positive integer. A t-fold
Q-edge-coloring of a graph is an assignment of ¢ distinct colors to each edge such
that each color class induces a subgraph of property Q. The smallest number k
such that G admits a t-fold Q-edge-coloring with k colors is the (¢, Q)-chromatic
inder of G, denoted by XQ’Q(G). Clearly, a 1-fold O;-edge-coloring is a usual
proper edge coloring and hence x} o, (G) = X/(G).

Another generalization of edge coloring is fractional edge coloring. The frac-

tional chromatic index of a graph G is defined in the following way: X}(G) =
. Xg,ol(G)
lim ———~
t—o0

graph property Q in the definition of the fractional chromatic index, then we

obtain the fractional Q-chromatic index of a graph G and we denote it X/f,Q(G)'

. If we replace the property O by any other additive hereditary

A hypergraph H is a pair (S, X), where S is a finite set and X is a family
of subsets of S. The elements of X are called hyperedges. A t-fold covering
of a hypergraph # is a collection (multiset) of hyperedges which includes every
element of S at least ¢ times. The smallest cardinality of such a multiset is called

the t-fold covering number of H and is denoted ki(H). The fractional covering

k
number of M is defined as ky(H) = Jim t(tH)
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For given simple graph G = (V, F) and additive hereditary property Q, let Hg =
(Eg, Q) denote the hypergraph whose vertex set is the edge set of G and the
hyperedges are those subsets of E(G) = E¢ which induce a graph of property Q.
Since Q is hereditary, we can formulate the (¢, Q)-chromatic index of the graph
G as the t-fold covering number of the hypergraph Hg. There is a natural one-
to-one correspondence between the color classes of G and the hyperedges of H.
Therefore the following assertion holds.

Claim 1. The fractional Q-chromatic index of the graph G is equal to the frac-
tional covering number of the hypergraph Hg = (Eg, Qa)-

A matroid M = (S,1) is a hypergraph which satisfies the following three condi-
tions:

1. D el,
2. if X € Tand Y C X, then Y € I,
3. if X,Y € I and |X| > |Y], then there is an x € X \ 'Y such that YU{z} € I.

In [12] the fractional covering number of matroids is determined. Let X be a
subset of the ground set S of a matroid M. The rank of X, denoted p(X), is
defined as the maximum cardinality of an independent subset of X (a subset of
X which belongs to I).

Theorem 2 [12|. If M = (S,1) is a matroid, then

RY
kr(M) = —_—.
sM) XC8x A0 p(X)
In this paper, by combining Claim 1 and Theorem 2, we give a general formula
for the fractional Q-chromatic index. Afterwards, by this formula and with other
results from the literature, we determine the exact values of X/f o(G) for so-called
O-matroidal graphs.

2. RESULTS

Let G = (V,E) be a graph and let Q be an additive hereditary property. If
the hypergraph (Eg, Qg) is a matroid, then G is called Q-matroidal. Let Q™M
denote the set of all Q-matroidal graphs. A property Q is called matroidal if
every graph G is Q-matroidal. Schmidt [13] proved the existence of uncountably
many matroidal properties.

A subset of the edge set of a graph is called Q-independent if it induces a
graph of property Q. For a graph H let Q(H) denote the maximum cardinality
of a Q-independent subset of E(H).
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Lemma 3. Let a;,b; >0 fori=1,...,n. Thenugmax dil
b1+ -+ by i b;

Proof. By induction on n. [
Theorem 4. Let Q € L and let G € QM. Then

[E(H)|
Q(H)

where the mazximum is taken over all connected nontrivial subgraphs H of G.

(1) X/ﬁQ(G) — max

Proof. Since G is Q-matroidal, the hypergraph He = (Fg, Qg) is a matroid.
Claim 1 with Theorem 2 imply that
x| _|EH)

/
X1l = | B o) - g
where the maximum is taken over all nontrivial subgraphs H of G.

Now we show that we may restrict our attention to connected H. Suppose
that the maximum on the right-hand side of (1) is achieved for a graph H with
more than one component. Let H = H1U---UH,,, where H; are the components of
H. If one of these components, say H;, is an empty graph (set of isolated vertices),
BB~ )
Q(H)  Q(H - Hy)

[E(H)| _ |EH)| + -+ |E(H)| _ {IE(Hi)\}
Q(H) Q(Hy)+ -+ Q(H,) — i | QH,;)

We can now determine the fractional Q-chromatic index for Q-matroidal graphs.
The following question arises: Which graphs are Q-matroidal for given properties
Q7

Each hereditary property Q can be determined by the set of minimal forbidden
subgraphs F(Q) = {G € ;G ¢ Qbut G\ {e} € Q foreach e € E(G)}. For
example: F(Oy) = {H; H is a tree on k + 2 vertices }; F(Z) = {Kj12}. Simoes-
Pereira [14| proved that if F'(Q) is finite, then Q is not matroidal.

In [9] there is the following characterization of Q-matroidal graphs.

. Thus we can assume that each component has at

least one edge. Then

Theorem 5 [9]. A graph G = (V, E) is Q-matroidal if and only if for each Q-
independent set I C E and for each edge e € E\ I the graph G[I U {e}] induced
by I U{e} contains at most one minimal forbidden subgraph of Q.

By Theorem 5 each graph G which contains either at most one minimal forbidden
subgraph of Q or only edge-disjoint minimal forbidden subgraphs of Q is O-
matroidal.

Lemma 6 [9]. The property QM belongs to L for every Q € L.
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By Lemma 6 we can characterize the structure of @-matroidal graphs by describ-
ing the set of minimal forbidden subgraphs F(QM).

For any two given graphs G; and G with a common induced subgraph H
we construct the graph G = (G1; H; G2) by amalgamation of G; and Gy with
respect to H so that V(G) = V(G1) UV(G2), E(G) = E(G1) U E(G3) and
H = (V(G1)NV(Ga), E(G1) N E(G3)).

In the following P, and C,, will denote the path and the cycle on n vertices,
respectively. D,, will denote the complement of K.

Theorem 7 |9]. Let G be a graph and let k > 1. Then

e G € F(OM) if and only if G € T\ {K1 g12; Cki2}, where T is the set of all
trees on k + 3 vertices and all unicyclic graphs on k 4+ 2 vertices,

e Ge F(S,?/‘) if and only if G = (K1 py1; KoUDp; K j11) for some 0 < p <k
and k > 2, where Ko joins the central vertices of the stars,

e Ge F(I,é”) if and only if G = (Kpqo; Ky Kiqo) for some 2 <r < k+1,

e G € F(BM) if and only if G = (Copy1; Py; Cr) for some p > 1, ¢ > 2 and
r> 3.

The seminal result on fractional edge colorings is due to Edmonds [5]. For a
2|E(H
graph G we define I'(G) = max |E(H)]

V(H)[-1"
every induced subgraph H of G with |V (H)| > 3 and |V (H)| odd.

where the maximization is over

Theorem 8 [5|. Let G be a graph. Then

X5 (G) = X}.5,(G) = Xj0,(G) = X}(G) = max{A(G),I'(G)}.
Lemma 9. FEvery graph is Di-matroidal.

Proof. Clearly, F(Dy) is a set of cycles. Moreover, if we add an edge to a tree
(forest) we obtain exactly (at most) one cycle. So the claim follows from Theorem
5. |

Although all graphs are Di-matroidal, for £ > 2 the characterization of Dj-
matroidal graphs seems to be difficult.

Theorem 10. Let G be a graph. Then

|E(H)|

/ J—
Xf,Dl(G) = max ‘V(H)‘ 1 ’

where the mazimum is taken over all connected nontrivial subgraphs H of G.
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Proof. From Lemma 9 it follows that G is Di-matroidal. Any spanning tree of a

connected graph H on n vertices has n — 1 edges, therefore D (H) = |[V(H)| — 1.

BB
HCG Dy(H) HCG|V(H)| -1

Theorem 4 implies X} p, (G) |

Corollary 11. Let G be a graph and let Q € L such that D1 C Q. Then

|E(H)|

!
Xt o(G) <max —————,
5(C) V) -1

where the maximization is over all connected nontrivial subgraphs H of G.

Lemma 12. Let k > 1. The graph G is Iy-matroidal if and only if any two
complete graphs on k + 2 vertices are edge-disjoint in G.

Proof. Assume that G contains two complete graphs on k + 2 vertices which
have r > 2 vertices in common. These r vertices induce K., hence G contains
(Kgy2; Kr; Ki12) as a subgraph. So G ¢ TM since (Kjio; Kr; Kpi2) € F(TM)
(see Theorem 7).

If G ¢ TM, then G contains a forbidden subgraph (Kj9; K;; Ki12) for some
2 <r < k+1, thus it contains two complete graphs on k + 2 vertices which share
an edge. [

Let Hy,o denote the number of complete graphs on k + 2 vertices in the graph
H.

Theorem 13. Let G be an Zi-matroidal graph, k > 1. Then
E(H))|
7 (G) = max |— )
X ) = T His
where the mazimum s taken over all connected nontrivial subgraphs H of G.

_ B

— max . So it is sufficient
HCG Ty (H)

Proof. From Theorem 4 it follows that X 7, (G)

to show that Zp(H) = |E(H)| — Hito.

Lemma 12 implies that any two complete graphs on k + 2 vertices are edge-
disjoint in every subgraph H of G. Hence, if we remove less than Hjy o edges
from H, then the obtained graph still contains at least one Kjys. Therefore
Ty(H) < |E(H)| — Hyo.

On the other hand, if we remove one edge from each Ky o, then the remaining
edges form an Zj-independent set, hence Zy,(H) > |E(H)| — Hy1o. |

Lemma 14. Let k > 2. The graph G is Sip-matroidal if and only if no two vertices
of degree at least k + 1 are incident in G.
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Proof. Let uv be an edge of G such that its endvertices have degree at least k+1.
Let GG1 be a subgraph of G which contains only the edges incident with w or v.
Clearly, G contains a subgraph G5 in which the vertices u and v are joined by an
edge and they have degree k 4+ 1. Let p denote the number of common neighbors
of v and v in Ga. Observe that Go = (K j41; K2 U Dy; K py1), consequently
Go € F(S{M). So G cannot be Sy-matroidal.

If G ¢ 8,?4, then it contains a minimal forbidden subgraph (K jy1; Ko U
Dy; K j41) for some 0 < p < k. The central vertices of these stars are joined by
an edge and they have degree k + 1. [

Theorem 15. Let G be an Si-matroidal graph, k > 2. Then

|E(H)|

vevny  (degy(v) — k)’
degy (v)>k+1

X () = max s =5

where the mazimum is taken over all connected nontrivial subgraphs H of G.

Proof. Let H be a subgraph of G. If for every vertex v of H of degree at least
k+1 we remove degy (v) — k edges incident with it, then we obtain a graph whose
maximum degree is at most k. Therefore

Sk(H) > |E(H)| -2 vevm)y (degy(v) — k).
degp (v)>k+1

The opposite inequality follows from the fact that no two vertices of degree at
least k + 1 are incident in G, thus neither in H C G (see Lemma 14). Therefore
the claim follows from Theorem 4. ]

Lemma 16. The graph G is B-matroidal if and only if no odd cycle of G shares
an edge with any other cycle of G.

Proof. G ¢ BM if and only if G contains a minimal forbidden subgraph (Copt1;
Py; Cy) for some p > 1, ¢ > 2 and r > 3. Equivalently, G contains an odd cycle
which shares an edge with an other cycle. [

Corollary 17. If G € BM, then the odd cycles of G are edge-disjoint.
Let oc(G) denote the number of odd cycles in the graph G.
Theorem 18. Let G be a B-matroidal graph. Then

[E(H))]
|E(H)| = oc(H)

X/f,B(G) = max

where the mazimum is taken over all connected nontrivial subgraphs H of G.
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Proof. Let H be a subgraph of G. If we remove one edge from every odd cycle
of H, then the remaining edges induce a bipartite graph, hence B(H) > |E(H)|—
oc(H).

The odd cycles in H are edge-disjoint (see Corollary 17), thus we must remove
at least oc(H ) edges from E(H) to obtain a B-independent set. Therefore B(H) <
|E(H)| — oc(H).

Consequently, B(H) = |E(H)| — oc(H) and hence the assertion follows from
Theorem 4. ]

Lemma 19. Let k > 1. The graph G is Op-matroidal if and only if G either
belongs to Oy, or it is isomorphic to K1 p, p > k+1, to C12 or to a tree on k+2
vertices.

Proof. G is Op-matroidal if and only if it does not contain any subgraph from
F(OM). So the claim follows from Theorem 7. |

Clearly, if G € O, then its fractional O-edge chromatic number equals one. If
G e O,/CM \ O, then it has k 4 2 vertices or it is a star on at least k + 3 vertices.

Theorem 20. Let G € O\ Oy and let |V(G)| =k +2, k> 2. Then

/ __ |E@)
Kol = TEGl =@

where \(G) is the edge-connectivity of G.

Proof. Let H be a connected subgraph of G. If E(H) is not Og-independent,
then either |[E(H)| =k +2 or |E(H)| = k+ 1. In the first case H = Cj42, hence
Or(H) = |E(H)|—2. In the second case H is a tree, therefore Oy (H) = |E(H)|—1.
Thus the claim follows from Theorem 4. [

Theorem 21. Let G € OM\ Oy and let |V(G)| =k +1i, k>2,i>3. Then

E(G)| k+i1—-1

/ G — | — .

X108 = E@ =i T k

Proof. 1t follows from Theorem 4 and from the fact that G is a star. [

3. EXAMPLES

Example 22. Let K33 denote the complete bipartite graph on 2+ 3 vertices. We
will show that X'} 5, (K23) = 3.
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Solution 1.

From Lemma 14 it follows that K3 € S3!. From Theorem 15 we have Xf.s,(K23)
[E(H))]
[E(H)| =3 vevan 1

degp (v)=3
nontrivial subgraphs H of G.

If H is a connected subgraph of G,
Figure 1. So X}732(K273) = max{1, %7 %7

SRR

Figure 1. Connected subgraphs of K3 3 which are not in Ss.

= max where the maximum is taken over all connected

hen either H € 8§ or it is a graph from
} pr—

t
5 3
1 2"

Solution 2.

Fractional Q-edge-colorings may be viewed in several ways. We present an equiv-
alent definition. Let r,s be positive integers with » > s. An (r, s)-fractional
Q-edge-coloring of G is an assignment of s-element subsets of {1,...,r} to the
edges of G such that each color class induces a graph of property Q. Then the
fractional Q-edge chromatic number of G is defined as

X}.o(G) = inf {C : G has an (r, s)-fractional Q—edge—coloring} .
' s

Note that in this definition we can replace the infimum by the minimum.

For each (r,s)-fractional Sz-edge-coloring of K3 and for each color i €
{1,...,r} the following holds: at most four edges are colored with sets containing
the color . On the other hand, every edge is assigned with an s-element color
set. This implies that 4r > 6s, hence X/f’SQ(Kgg) > %

To prove the inequality X/f, 5, (K23) < % we construct a (3,2)-fractional Sa-
edge-coloring of K> 3, see Figure 2.

127 13 23

12218 23

Figure 2. A (3, 2)-fractional Sy-edge-coloring of the graph Ks 3.

The following results immediately follows from Theorems 13, 15 and 18.
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Example 23. If k > 1, then X/, 7 (K )—& ‘s (K )_E
p . = XL \et2) = ) -1 Xfs \ B kt1) = 7
2
2k +1
and X's 5(Copt1) = RET
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