FRACTIONAL \mathcal{Q}-EDGE-COLORING OF GRAPHS

Július Czap
Department of Applied Mathematics and Business Informatics, Faculty of Economics, Technical University of Košice, Němcovej 32, SK-040 01 Košice, Slovakia
e-mail: julius.czap@tuke.sk
AND
Peter Mihók ${ }^{\dagger}$
Department of Applied Mathematics and Business Informatics, Faculty of Economics, Technical University of Košice, Němcovej 32, SK-040 01 Košice, Slovakia
and
Mathematical Institute of the Slovak Academy of Sciences, Grešákova 6, SK-040 01 Košice, Slovakia

Abstract

An additive hereditary property of graphs is a class of simple graphs which is closed under unions, subgraphs and isomorphism. Let \mathcal{Q} be an additive hereditary property of graphs. A \mathcal{Q}-edge-coloring of a simple graph is an edge coloring in which the edges colored with the same color induce a subgraph of property \mathcal{Q}. In this paper we present some results on fractional \mathcal{Q}-edge-colorings. We determine the fractional \mathcal{Q}-edge chromatic number for matroidal properties of graphs.

Keywords: fractional coloring, graph property.
2010 Mathematics Subject Classification: 05C15, 05C70, 05C72.

1. InTRODUCTION

Our terminology and notation will be standard. The reader is referred to $[1,11]$ for undefined terms. All graphs considered in this paper are simple, i.e. they have no loops or multiple edges.

[^0]We denote the class of all finite simple graphs by \mathcal{I}. A graph property \mathcal{Q} is a non-empty isomorphism-closed subclass of \mathcal{I}. We also say that a graph G has property \mathcal{Q} whenever $G \in \mathcal{Q}$. The fact that H is a subgraph of G is denoted by $H \subseteq G$ and the disjoint union of two graphs G and H is denoted by $G \cup H$. A property \mathcal{Q} is called additive if $G \cup H \in \mathcal{Q}$ whenever $G \in \mathcal{Q}$ and $H \in \mathcal{Q}$. A property \mathcal{Q} is called hereditary if $G \in \mathcal{Q}$ and $H \subseteq G$ implies $H \in \mathcal{Q}$. The set of all additive hereditary properties will be denoted by \mathbb{L}.

We list several well-known additive hereditary properties

$$
\begin{aligned}
& \mathcal{D}_{k}=\{G \in \mathcal{I}: \text { each subgraph of } G \text { contains a vertex of degree at most } k\}, \\
& \mathcal{I}_{k}=\left\{G \in \mathcal{I}: G \text { does not contain } K_{k+2}\right\}, \\
& \mathcal{J}_{k}=\left\{G \in \mathcal{I}: \chi^{\prime}(G) \leq k\right\}, \\
& \mathcal{O}_{k}=\{G \in \mathcal{I}: \text { each component of } G \text { has at most } k+1 \text { vertices }\}, \\
& \mathcal{S}_{k}=\{G \in \mathcal{I}: \Delta(G) \leq k\}, \\
& \mathcal{B}=\{G \in \mathcal{I}: G \text { is a bipartite graph }\},
\end{aligned}
$$

where K_{k+2} denotes the complete graph on $k+2$ vertices, $\chi^{\prime}(G)$ is the edge chromatic number (chromatic index) and $\Delta(G)$ is the maximum degree of the graph G.

Generalized colorings of edges or/and vertices of graphs under restrictions given by graph properties have recently attracted much attention, see e.g. $[2,3$, $4,6,7,8,10]$ and references therein.

By using the class of additive hereditary properties, there is the following generalization of edge coloring. Let $\mathcal{Q} \in \mathbb{L}$ and let t be a positive integer. A t-fold \mathcal{Q}-edge-coloring of a graph is an assignment of t distinct colors to each edge such that each color class induces a subgraph of property \mathcal{Q}. The smallest number k such that G admits a t-fold \mathcal{Q}-edge-coloring with k colors is the (t, \mathcal{Q})-chromatic index of G, denoted by $\chi_{t, \mathcal{Q}}^{\prime}(G)$. Clearly, a 1 -fold \mathcal{O}_{1}-edge-coloring is a usual proper edge coloring and hence $\chi_{1, \mathcal{O}_{1}}^{\prime}(G)=\chi^{\prime}(G)$.

Another generalization of edge coloring is fractional edge coloring. The fractional chromatic index of a graph G is defined in the following way: $\chi_{f}^{\prime}(G)=$ $\lim _{t \rightarrow \infty} \frac{\chi_{t, \mathcal{O}_{1}}^{\prime}(G)}{t}$. If we replace the property \mathcal{O}_{1} by any other additive hereditary graph property \mathcal{Q} in the definition of the fractional chromatic index, then we obtain the fractional \mathcal{Q}-chromatic index of a graph G and we denote it $\chi_{f, \mathcal{Q}}^{\prime}(G)$.

A hypergraph \mathcal{H} is a pair (S, X), where S is a finite set and X is a family of subsets of S. The elements of X are called hyperedges. A t-fold covering of a hypergraph \mathcal{H} is a collection (multiset) of hyperedges which includes every element of S at least t times. The smallest cardinality of such a multiset is called the t-fold covering number of \mathcal{H} and is denoted $k_{t}(\mathcal{H})$. The fractional covering number of \mathcal{H} is defined as $k_{f}(\mathcal{H})=\lim _{t \rightarrow \infty} \frac{k_{t}(\mathcal{H})}{t}$.

For given simple graph $G=(V, E)$ and additive hereditary property \mathcal{Q}, let $\mathcal{H}_{G}=$ $\left(E_{G}, \mathcal{Q}_{G}\right)$ denote the hypergraph whose vertex set is the edge set of G and the hyperedges are those subsets of $E(G)=E_{G}$ which induce a graph of property \mathcal{Q}. Since \mathcal{Q} is hereditary, we can formulate the (t, \mathcal{Q})-chromatic index of the graph G as the t-fold covering number of the hypergraph \mathcal{H}_{G}. There is a natural one-to-one correspondence between the color classes of G and the hyperedges of \mathcal{H}_{G}. Therefore the following assertion holds.

Claim 1. The fractional \mathcal{Q}-chromatic index of the graph G is equal to the fractional covering number of the hypergraph $\mathcal{H}_{G}=\left(E_{G}, \mathcal{Q}_{G}\right)$.

A matroid $\mathcal{M}=(S, I)$ is a hypergraph which satisfies the following three conditions:

1. $\emptyset \in I$,
2. if $X \in I$ and $Y \subseteq X$, then $Y \in I$,
3. if $X, Y \in I$ and $|X|>|Y|$, then there is an $x \in X \backslash Y$ such that $Y \cup\{x\} \in I$.

In [12] the fractional covering number of matroids is determined. Let X be a subset of the ground set S of a matroid \mathcal{M}. The rank of X, denoted $\rho(X)$, is defined as the maximum cardinality of an independent subset of X (a subset of X which belongs to $I)$.

Theorem 2 [12]. If $\mathcal{M}=(S, I)$ is a matroid, then

$$
k_{f}(\mathcal{M})=\max _{X \subseteq S ; X \neq \emptyset} \frac{|X|}{\rho(X)} .
$$

In this paper, by combining Claim 1 and Theorem 2, we give a general formula for the fractional \mathcal{Q}-chromatic index. Afterwards, by this formula and with other results from the literature, we determine the exact values of $\chi_{f, \mathcal{Q}}^{\prime}(G)$ for so-called \mathcal{Q}-matroidal graphs.

2. Results

Let $G=(V, E)$ be a graph and let \mathcal{Q} be an additive hereditary property. If the hypergraph $\left(E_{G}, \mathcal{Q}_{G}\right)$ is a matroid, then G is called \mathcal{Q}-matroidal. Let $\mathcal{Q}^{\mathcal{M}}$ denote the set of all \mathcal{Q}-matroidal graphs. A property \mathcal{Q} is called matroidal if every graph G is \mathcal{Q}-matroidal. Schmidt [13] proved the existence of uncountably many matroidal properties.

A subset of the edge set of a graph is called \mathcal{Q}-independent if it induces a graph of property \mathcal{Q}. For a graph H let $\mathcal{Q}(H)$ denote the maximum cardinality of a \mathcal{Q}-independent subset of $E(H)$.

Lemma 3. Let $a_{i}, b_{i}>0$ for $i=1, \ldots, n$. Then $\frac{a_{1}+\cdots+a_{n}}{b_{1}+\cdots+b_{n}} \leq \max _{i}\left\{\frac{a_{i}}{b_{i}}\right\}$.
Proof. By induction on n.
Theorem 4. Let $\mathcal{Q} \in \mathbb{L}$ and let $G \in \mathcal{Q}^{\mathcal{M}}$. Then

$$
\begin{equation*}
\chi_{f, \mathcal{Q}}^{\prime}(G)=\max \frac{|E(H)|}{\mathcal{Q}(H)}, \tag{1}
\end{equation*}
$$

where the maximum is taken over all connected nontrivial subgraphs H of G.
Proof. Since G is \mathcal{Q}-matroidal, the hypergraph $\mathcal{H}_{G}=\left(E_{G}, \mathcal{Q}_{G}\right)$ is a matroid. Claim 1 with Theorem 2 imply that

$$
\chi_{f, \mathcal{Q}}^{\prime}(G)=\max _{X \subseteq E_{G} ; X \neq \emptyset} \frac{|X|}{\rho(X)}=\max \frac{|E(H)|}{\mathcal{Q}(H)},
$$

where the maximum is taken over all nontrivial subgraphs H of G.
Now we show that we may restrict our attention to connected H. Suppose that the maximum on the right-hand side of (1) is achieved for a graph H with more than one component. Let $H=H_{1} \cup \cdots \cup H_{n}$, where H_{i} are the components of H. If one of these components, say H_{j}, is an empty graph (set of isolated vertices), then $\frac{|E(H)|}{\mathcal{Q}(H)}=\frac{\left|E\left(H-H_{j}\right)\right|}{\mathcal{Q}\left(H-H_{j}\right)}$. Thus we can assume that each component has at least one edge. Then $\frac{|E(H)|}{\mathcal{Q}(H)}=\frac{\left|E\left(H_{1}\right)\right|+\cdots+\left|E\left(H_{n}\right)\right|}{\mathcal{Q}\left(H_{1}\right)+\cdots+\mathcal{Q}\left(H_{n}\right)} \leq \max _{i}\left\{\frac{\left|E\left(H_{i}\right)\right|}{\mathcal{Q}\left(H_{i}\right)}\right\}$.
We can now determine the fractional \mathcal{Q}-chromatic index for \mathcal{Q}-matroidal graphs. The following question arises: Which graphs are \mathcal{Q}-matroidal for given properties \mathcal{Q} ?

Each hereditary property \mathcal{Q} can be determined by the set of minimal forbidden subgraphs $F(\mathcal{Q})=\{G \in \mathcal{I} ; G \notin \mathcal{Q}$ but $G \backslash\{e\} \in \mathcal{Q}$ for each $e \in E(G)\}$. For example: $F\left(\mathcal{O}_{k}\right)=\{H ; H$ is a tree on $k+2$ vertices $\} ; F\left(\mathcal{I}_{k}\right)=\left\{K_{k+2}\right\}$. SimõesPereira [14] proved that if $F(\mathcal{Q})$ is finite, then \mathcal{Q} is not matroidal.

In [9] there is the following characterization of \mathcal{Q}-matroidal graphs.
Theorem 5 [9]. A graph $G=(V, E)$ is \mathcal{Q}-matroidal if and only if for each \mathcal{Q} independent set $I \subseteq E$ and for each edge $e \in E \backslash I$ the graph $G[I \cup\{e\}]$ induced by $I \cup\{e\}$ contains at most one minimal forbidden subgraph of \mathcal{Q}.

By Theorem 5 each graph G which contains either at most one minimal forbidden subgraph of \mathcal{Q} or only edge-disjoint minimal forbidden subgraphs of \mathcal{Q} is \mathcal{Q} matroidal.

Lemma 6 [9]. The property $\mathcal{Q}^{\mathcal{M}}$ belongs to \mathbb{L} for every $\mathcal{Q} \in \mathbb{L}$.

By Lemma 6 we can characterize the structure of \mathcal{Q}-matroidal graphs by describing the set of minimal forbidden subgraphs $F\left(\mathcal{Q}^{\mathcal{M}}\right)$.

For any two given graphs G_{1} and G_{2} with a common induced subgraph H we construct the graph $G=\left(G_{1} ; H ; G_{2}\right)$ by amalgamation of G_{1} and G_{2} with respect to H so that $V(G)=V\left(G_{1}\right) \cup V\left(G_{2}\right), E(G)=E\left(G_{1}\right) \cup E\left(G_{2}\right)$ and $H=\left(V\left(G_{1}\right) \cap V\left(G_{2}\right), E\left(G_{1}\right) \cap E\left(G_{2}\right)\right)$.

In the following P_{n} and C_{n} will denote the path and the cycle on n vertices, respectively. D_{n} will denote the complement of K_{n}.

Theorem 7 [9]. Let G be a graph and let $k \geq 1$. Then

- $G \in F\left(\mathcal{O}_{k}^{\mathcal{M}}\right)$ if and only if $G \in T \backslash\left\{K_{1, k+2} ; C_{k+2}\right\}$, where T is the set of all trees on $k+3$ vertices and all unicyclic graphs on $k+2$ vertices,
- $G \in F\left(\mathcal{S}_{k}^{\mathcal{M}}\right)$ if and only if $G=\left(K_{1, k+1} ; K_{2} \cup D_{p} ; K_{1, k+1}\right)$ for some $0 \leq p \leq k$ and $k \geq 2$, where K_{2} joins the central vertices of the stars,
- $G \in F\left(\mathcal{I}_{k}^{\mathcal{M}}\right)$ if and only if $G=\left(K_{k+2} ; K_{r} ; K_{k+2}\right)$ for some $2 \leq r \leq k+1$,
- $G \in F\left(\mathcal{B}^{\mathcal{M}}\right)$ if and only if $G=\left(C_{2 p+1} ; P_{q} ; C_{r}\right)$ for some $p \geq 1, q \geq 2$ and $r \geq 3$.

The seminal result on fractional edge colorings is due to Edmonds [5]. For a graph G we define $\Gamma(G)=\max \frac{2|E(H)|}{|V(H)|-1}$, where the maximization is over every induced subgraph H of G with $|V(H)| \geq 3$ and $|V(H)|$ odd.

Theorem 8 [5]. Let G be a graph. Then

$$
\chi_{f, \mathcal{J}_{1}}^{\prime}(G)=\chi_{f, \mathcal{S}_{1}}^{\prime}(G)=\chi_{f, \mathcal{O}_{1}}^{\prime}(G)=\chi_{f}^{\prime}(G)=\max \{\Delta(G), \Gamma(G)\} .
$$

Lemma 9. Every graph is \mathcal{D}_{1}-matroidal.
Proof. Clearly, $F\left(\mathcal{D}_{1}\right)$ is a set of cycles. Moreover, if we add an edge to a tree (forest) we obtain exactly (at most) one cycle. So the claim follows from Theorem 5.

Although all graphs are \mathcal{D}_{1}-matroidal, for $k \geq 2$ the characterization of $\mathcal{D}_{k^{-}}$ matroidal graphs seems to be difficult.

Theorem 10. Let G be a graph. Then

$$
\chi_{f, \mathcal{D}_{1}}^{\prime}(G)=\max \frac{|E(H)|}{|V(H)|-1},
$$

where the maximum is taken over all connected nontrivial subgraphs H of G.

Proof. From Lemma 9 it follows that G is \mathcal{D}_{1}-matroidal. Any spanning tree of a connected graph H on n vertices has $n-1$ edges, therefore $\mathcal{D}_{1}(H)=|V(H)|-1$. Theorem 4 implies $\chi_{f, \mathcal{D}_{1}}^{\prime}(G)=\max _{H \subseteq G} \frac{|E(H)|}{\mathcal{D}_{1}(H)}=\max _{H \subseteq G} \frac{|E(H)|}{|V(H)|-1}$.

Corollary 11. Let G be a graph and let $\mathcal{Q} \in \mathbb{L}$ such that $\mathcal{D}_{1} \subseteq \mathcal{Q}$. Then

$$
\chi_{f, \mathcal{Q}}^{\prime}(G) \leq \max \frac{|E(H)|}{|V(H)|-1}
$$

where the maximization is over all connected nontrivial subgraphs H of G.
Lemma 12. Let $k \geq 1$. The graph G is \mathcal{I}_{k}-matroidal if and only if any two complete graphs on $k+2$ vertices are edge-disjoint in G.

Proof. Assume that G contains two complete graphs on $k+2$ vertices which have $r \geq 2$ vertices in common. These r vertices induce K_{r}, hence G contains $\left(K_{k+2} ; K_{r} ; K_{k+2}\right)$ as a subgraph. So $G \notin \mathcal{I}_{k}^{\mathcal{M}}$ since $\left(K_{k+2} ; K_{r} ; K_{k+2}\right) \in F\left(\mathcal{I}_{k}^{\mathcal{M}}\right)$ (see Theorem 7).

If $G \notin \mathcal{I}_{k}^{\mathcal{M}}$, then G contains a forbidden subgraph $\left(K_{k+2} ; K_{r} ; K_{k+2}\right)$ for some $2 \leq r \leq k+1$, thus it contains two complete graphs on $k+2$ vertices which share an edge.

Let H_{k+2} denote the number of complete graphs on $k+2$ vertices in the graph H.

Theorem 13. Let G be an \mathcal{I}_{k}-matroidal graph, $k \geq 1$. Then

$$
\chi_{f, \mathcal{I}_{k}}^{\prime}(G)=\max \frac{|E(H)|}{|E(H)|-H_{k+2}}
$$

where the maximum is taken over all connected nontrivial subgraphs H of G.
Proof. From Theorem 4 it follows that $\chi_{f, \mathcal{I}_{k}}^{\prime}(G)=\max _{H \subseteq G} \frac{|E(H)|}{\mathcal{I}_{k}(H)}$. So it is sufficient to show that $\mathcal{I}_{k}(H)=|E(H)|-H_{k+2}$.

Lemma 12 implies that any two complete graphs on $k+2$ vertices are edgedisjoint in every subgraph H of G. Hence, if we remove less than H_{k+2} edges from H, then the obtained graph still contains at least one K_{k+2}. Therefore $\mathcal{I}_{k}(H) \leq|E(H)|-H_{k+2}$.

On the other hand, if we remove one edge from each K_{k+2}, then the remaining edges form an \mathcal{I}_{k}-independent set, hence $\mathcal{I}_{k}(H) \geq|E(H)|-H_{k+2}$.

Lemma 14. Let $k \geq 2$. The graph G is \mathcal{S}_{k}-matroidal if and only if no two vertices of degree at least $k+1$ are incident in G.

Proof. Let $u v$ be an edge of G such that its endvertices have degree at least $k+1$. Let G_{1} be a subgraph of G which contains only the edges incident with u or v. Clearly, G_{1} contains a subgraph G_{2} in which the vertices u and v are joined by an edge and they have degree $k+1$. Let p denote the number of common neighbors of u and v in G_{2}. Observe that $G_{2}=\left(K_{1, k+1} ; K_{2} \cup D_{p} ; K_{1, k+1}\right)$, consequently $G_{2} \in F\left(\mathcal{S}_{k}^{\mathcal{M}}\right)$. So G cannot be \mathcal{S}_{k}-matroidal.

If $G \notin \mathcal{S}_{k}^{\mathcal{M}}$, then it contains a minimal forbidden subgraph $\left(K_{1, k+1} ; K_{2} \cup\right.$ $D_{p} ; K_{1, k+1}$) for some $0 \leq p \leq k$. The central vertices of these stars are joined by an edge and they have degree $k+1$.

Theorem 15. Let G be an \mathcal{S}_{k}-matroidal graph, $k \geq 2$. Then

$$
\chi_{f, \mathcal{S}_{k}}^{\prime}(G)=\max \frac{|E(H)|}{|E(H)|-\sum_{\substack{v \in V(H) \\ \operatorname{deg}_{H}(v) \geq k+1}}\left(\operatorname{deg}_{H}(v)-k\right)},
$$

where the maximum is taken over all connected nontrivial subgraphs H of G.
Proof. Let H be a subgraph of G. If for every vertex v of H of degree at least $k+1$ we remove $\operatorname{deg}_{H}(v)-k$ edges incident with it, then we obtain a graph whose maximum degree is at most k. Therefore

$$
\mathcal{S}_{k}(H) \geq|E(H)|-\sum_{\substack{v \in V(H) \\ \operatorname{deg}_{H}(v) \geq k+1}}\left(\operatorname{deg}_{H}(v)-k\right) .
$$

The opposite inequality follows from the fact that no two vertices of degree at least $k+1$ are incident in G, thus neither in $H \subseteq G$ (see Lemma 14). Therefore the claim follows from Theorem 4.

Lemma 16. The graph G is \mathcal{B}-matroidal if and only if no odd cycle of G shares an edge with any other cycle of G.

Proof. $G \notin \mathcal{B}^{\mathcal{M}}$ if and only if G contains a minimal forbidden subgraph $\left(C_{2 p+1}\right.$; $P_{q} ; C_{r}$) for some $p \geq 1, q \geq 2$ and $r \geq 3$. Equivalently, G contains an odd cycle which shares an edge with an other cycle.

Corollary 17. If $G \in \mathcal{B}^{\mathcal{M}}$, then the odd cycles of G are edge-disjoint.
Let $o c(G)$ denote the number of odd cycles in the graph G.
Theorem 18. Let G be a \mathcal{B}-matroidal graph. Then

$$
\chi_{f, \mathcal{B}}^{\prime}(G)=\max \frac{|E(H)|}{|E(H)|-o c(H)},
$$

where the maximum is taken over all connected nontrivial subgraphs H of G.

Proof. Let H be a subgraph of G. If we remove one edge from every odd cycle of H, then the remaining edges induce a bipartite graph, hence $\mathcal{B}(H) \geq|E(H)|-$ $o c(H)$.

The odd cycles in H are edge-disjoint (see Corollary 17), thus we must remove at least $o c(H)$ edges from $E(H)$ to obtain a \mathcal{B}-independent set. Therefore $\mathcal{B}(H) \leq$ $|E(H)|-o c(H)$.

Consequently, $\mathcal{B}(H)=|E(H)|-o c(H)$ and hence the assertion follows from Theorem 4.

Lemma 19. Let $k \geq 1$. The graph G is \mathcal{O}_{k}-matroidal if and only if G either belongs to \mathcal{O}_{k} or it is isomorphic to $K_{1, p}, p \geq k+1$, to C_{k+2} or to a tree on $k+2$ vertices.

Proof. G is \mathcal{O}_{k}-matroidal if and only if it does not contain any subgraph from $F\left(\mathcal{O}_{k}^{\mathcal{M}}\right)$. So the claim follows from Theorem 7.

Clearly, if $G \in \mathcal{O}_{k}$, then its fractional \mathcal{O}_{k}-edge chromatic number equals one. If $G \in \mathcal{O}_{k}^{\mathcal{M}} \backslash \mathcal{O}_{k}$, then it has $k+2$ vertices or it is a star on at least $k+3$ vertices.

Theorem 20. Let $G \in \mathcal{O}_{k}^{\mathcal{M}} \backslash \mathcal{O}_{k}$ and let $|V(G)|=k+2, k \geq 2$. Then

$$
\chi_{f, \mathcal{O}_{k}}^{\prime}(G)=\frac{|E(G)|}{|E(G)|-\lambda(G)},
$$

where $\lambda(G)$ is the edge-connectivity of G.
Proof. Let H be a connected subgraph of G. If $E(H)$ is not \mathcal{O}_{k}-independent, then either $|E(H)|=k+2$ or $|E(H)|=k+1$. In the first case $H=C_{k+2}$, hence $\mathcal{O}_{k}(H)=|E(H)|-2$. In the second case H is a tree, therefore $\mathcal{O}_{k}(H)=|E(H)|-1$. Thus the claim follows from Theorem 4.

Theorem 21. Let $G \in \mathcal{O}_{k}^{\mathcal{M}} \backslash \mathcal{O}_{k}$ and let $|V(G)|=k+i, k \geq 2, i \geq 3$. Then

$$
\chi_{f, \mathcal{O}_{k}}^{\prime}(G)=\frac{|E(G)|}{|E(G)|-i+1}=\frac{k+i-1}{k} .
$$

Proof. It follows from Theorem 4 and from the fact that G is a star.

3. Examples

Example 22. Let $K_{2,3}$ denote the complete bipartite graph on $2+3$ vertices. We will show that $\chi_{f, \mathcal{S}_{2}}^{\prime}\left(K_{2,3}\right)=\frac{3}{2}$.

Solution 1.

From Lemma 14 it follows that $K_{2,3} \in \mathcal{S}_{2}^{\mathcal{M}}$. From Theorem 15 we have $\chi_{f, \mathcal{S}_{2}}^{\prime}\left(K_{2,3}\right)$ $=\max \frac{|E(H)|}{|E(H)|-\sum_{\substack{v \in V(H) \\ \operatorname{deg}_{H}(v)=3}} 1}$, where the maximum is taken over all connected nontrivial subgraphs H of G.

If H is a connected subgraph of G, then either $H \in \mathcal{S}_{2}$ or it is a graph from Figure 1. So $\chi_{f, \mathcal{S}_{2}}^{\prime}\left(K_{2,3}\right)=\max \left\{1, \frac{3}{2}, \frac{4}{3}, \frac{5}{4}\right\}=\frac{3}{2}$.

Figure 1. Connected subgraphs of $K_{2,3}$ which are not in \mathcal{S}_{2}.

Solution 2.

Fractional \mathcal{Q}-edge-colorings may be viewed in several ways. We present an equivalent definition. Let r, s be positive integers with $r \geq s$. An (r, s)-fractional \mathcal{Q}-edge-coloring of G is an assignment of s-element subsets of $\{1, \ldots, r\}$ to the edges of G such that each color class induces a graph of property \mathcal{Q}. Then the fractional \mathcal{Q}-edge chromatic number of G is defined as

$$
\chi_{f, \mathcal{Q}}^{\prime}(G)=\inf \left\{\frac{r}{s}: G \text { has an }(r, s) \text {-fractional } \mathcal{Q} \text {-edge-coloring }\right\} .
$$

Note that in this definition we can replace the infimum by the minimum.
For each (r, s)-fractional \mathcal{S}_{2}-edge-coloring of $K_{2,3}$ and for each color $i \in$ $\{1, \ldots, r\}$ the following holds: at most four edges are colored with sets containing the color i. On the other hand, every edge is assigned with an s-element color set. This implies that $4 r \geq 6 s$, hence $\chi_{f, \mathcal{S}_{2}}^{\prime}\left(K_{2,3}\right) \geq \frac{3}{2}$.

To prove the inequality $\chi_{f, \mathcal{S}_{2}}^{\prime}\left(K_{2,3}\right) \leq \frac{3}{2}$ we construct a $(3,2)$-fractional $\mathcal{S}_{2^{-}}$ edge-coloring of $K_{2,3}$, see Figure 2.

Figure 2. A $(3,2)$-fractional \mathcal{S}_{2}-edge-coloring of the graph $K_{2,3}$.
The following results immediately follows from Theorems 13, 15 and 18.

Example 23. If $k \geq 1$, then $\chi_{f, \mathcal{I}_{k}}^{\prime}\left(K_{k+2}\right)=\frac{\binom{k+2}{2}}{\binom{k+2}{2}-1}$, $\chi_{f, \mathcal{S}_{k}}^{\prime}\left(K_{1, k+1}\right)=\frac{k+1}{k}$ and $\chi_{f, \mathcal{B}}^{\prime}\left(C_{2 k+1}\right)=\frac{2 k+1}{2 k}$.

Acknowledgment

The authors would like to thank anonymous referees for many helpful comments and constructive suggestions.

References

[1] J.A. Bondy and U.S.R. Murty, Graph Theory (Springer, 2008). doi:10.1007/978-1-84628-970-5
[2] M. Borowiecki, A. Kemnitz, M. Marangio and P. Mihók, Generalized total colorings of graphs, Discuss. Math. Graph Theory 31 (2011) 209-222. doi:10.7151/dmgt. 1540
[3] I. Broere, S. Dorfling and E. Jonck, Generalized chromatic numbers and additive hereditary properties of graphs, Discuss. Math. Graph Theory 22 (2002) 259-270. doi:10.7151/dmgt. 1174
[4] M.J. Dorfling and S. Dorfling, Generalized edge-chromatic numbers and additive hereditary properties of graphs, Discuss. Math. Graph Theory 22 (2002) 349-359. doi:10.7151/dmgt. 1180
[5] J. Edmonds, Maximum matching and a polyhedron with 0, 1-vertices, J. Res. Nat. Bur. Standards 69B (1965) 125-130.
[6] G. Karafová, Generalized fractional total coloring of complete graphs, Discuss. Math. Graph Theory, accepted.
[7] A. Kemnitz, M. Marangio, P. Mihók, J. Oravcová and R. Soták, Generalized fractional and circular total coloring of graphs, preprint.
[8] K. Kilakos and B. Reed, Fractionally colouring total graphs, Combinatorica 13 (1993) 435-440. doi:10.1007/BF01303515
[9] P. Mihók, On graphs matroidal with respect to additive hereditary properties, Graphs, Hypergraphs and Matroids II, Zielona Góra (1987) 53-64.
[10] P. Mihók, Zs. Tuza and M. Voigt, Fractional \mathcal{P}-colourings and \mathcal{P}-choice-ratio, Tatra Mt. Math. Publ. 18 (1999) 69-77.
[11] J.G. Oxley, Matroid Theory (Oxford University Press, Oxford, 1992).
[12] E.R. Scheinerman and D.H. Ullman, Fractional Graph Theory (John Wiley \& Sons, 1997).
[13] R. Schmidt, On the existence of uncountably many matroidal families, Discrete Math. 27 (1979) 93-97.
doi:10.1016/0012-365X(79)90072-4
[14] J.M.S. Simões-Pereira, On matroids on edge sets of graphs with connected subgraphs as circuits, Proc. Amer. Math. Soc. 38 (1973) 503-506.
doi:10.2307/2038939
Received 3 November 2011
Revised 29 May 2012
Accepted 29 May 2012

[^0]: † Peter Mihók passed away on March 27, 2012.

